Searching: Intro

CPSC 322 – Search 1

Textbook §3.0 – 3.3
Lecture Overview

1. Agent Design
2. Example Problems
3. State Spaces
Agents and Representations

- Recall that an agent is something that acts in an environment.
- The agent also receives observations about the environment:
 - this could be observations from sensors such as cameras, laser rangefinders, etc.
 - can also include “observations” of the agent’s own past actions.
- In a deterministic environment, the agent can perfectly predict the outcome of an action:
 - doesn’t need sensors: just needs to remember its own past actions.
The Table-Lookup Agent

- An agent can be thought of as a mapping from observations to the new action that the agent will take.
- How should agents be constructed? One choice:
 - agent takes in the sequence of observations
 - agent looks up the correct action for this sequence of observations based on an internal representation (e.g., a table)
- Such an agent could indeed behave rationally. What’s the problem?
An agent can be thought of as a **mapping** from observations to the new action that the agent will take.

How should agents be constructed? One choice:
- agent takes in the sequence of observations
- agent looks up the correct action for this sequence of observations based on an internal representation (e.g., a table)

Such an agent could indeed behave rationally. What’s the problem?
- too many sequences of observations are possible!
- e.g., 10 possible observations, 10 timesteps $\rightarrow 10^{10}$ different entries in the table
- compare this to e.g., the number of different move sequences that are possible in chess
Lecture Overview

1. Agent Design
2. Example Problems
3. State Spaces
Example Problems

To make things more concrete, let’s think about some example problems:

- solving a Sudoku
- solving an 8-puzzle
- the delivery robot planning the route it will take
What’s an 8-Puzzle?

Start State

Goal State
To make things more concrete, let’s think about some example problems:
- solving a Sudoku
- solving an 8-puzzle
- the delivery robot planning the route it will take

All of these problems are deterministic; thus, there’s no need for any observations from sensors.

Are these single or sequential decision problems?
Example Problems

To make things more concrete, let’s think about some example problems:

- solving a Sudoku
- solving an 8-puzzle
- the delivery robot planning the route it will take

All of these problems are deterministic; thus, there’s no need for any observations from sensors.

Are these single or sequential decision problems?

- as discussed before, the distinction isn’t really useful here; problems can be seen both ways
- CSPs: settings where there’s nothing meaningfully sequential about the decision
- Planning: decisions are always sequential
- Now: we’re going to define the underlying tools that allow us to solve both
Lecture Overview

1. Agent Design
2. Example Problems
3. State Spaces
State Spaces

- **Idea**: sometimes it doesn’t matter what sequence of observations brought the world to a particular configuration; it just matters how the world is arranged now.
 - called the Markov assumption
- **Represent the different configurations in which the world can be arranged as different states**
 - which numbers are written in cells of the Sudoku and which are blank?
 - which numbers appear in which slots of the 8-puzzle?
 - where is the delivery robot?
- **States are assignments of values to one or more variables**
 - a single variable called “state”
 - x and y coordinates; etc...
- **From each state, one or more actions may be available, which would move the world into a new state**
 - write a new number in a blank cell of the Sudoku
 - slide a tile in the 8-puzzle
 - move the delivery robot to an adjacent location
Agent Design

- An agent can be thought of as a mapping from the given state to the new action that the agent will take.
- However, there’s a problem... often, we don’t understand the domain well enough to build the mapping.
 - we’d need to be able to tell the agent how it should behave in every state.
 - that’s why we want intelligent agents: they should decide how to act for themselves.
 - in order for them to do so, we need to give them goals.
State Spaces

- Represent the different configurations in which the world can be arranged as different states
 - which numbers are written in cells of the Sudoku and which are blank?
 - which numbers appear in which slots of the 8-puzzle?
 - where is the delivery robot?
- States are assignments of values to one or more variables
- From each state, one or more actions may be available, which would move the world into a new state
 - write a new number in a blank cell of the Sudoku
 - slide a tile in the 8-puzzle
 - move the delivery robot to an adjacent location
- Some states are goal states
 - A Sudoku state in which all numbers are different in each box, row and column
 - The single 8-puzzle state pictured earlier
 - The state in which the delivery robot is located in room 123