Propositional Logic: Bottom-Up Proofs

CPSC 322 – Logic 3

Textbook §5.2
Lecture Overview

1 Recap
2 Proofs
3 Bottom-Up Proofs
4 Soundness of Bottom-Up Proofs
5 Completeness of Bottom-Up Proofs
Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you’re trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements)

- A body $b_1 \land b_2$ is true in I if and only if b_1 is true in I and b_2 is true in I.
- A rule $h \leftarrow b$ is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.
Models and Logical Consequence

Definition (model)

A **model** of a set of clauses is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a **logical consequence** of KB, written $KB \models g$, if g is *true* in every model of KB.

- we also say that g **logically follows** from KB, or that KB **entails** g.
- In other words, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.
Lecture Overview

1. Recap
2. Proofs
3. Bottom-Up Proofs
4. Soundness of Bottom-Up Proofs
5. Completeness of Bottom-Up Proofs
Proofs

A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.

Recall $KB \models g$ means g is true in all models of KB.

Definition (soundness)
A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.

Definition (completeness)
A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.
Lecture Overview

1. Recap
2. Proofs
3. Bottom-Up Proofs
4. Soundness of Bottom-Up Proofs
5. Completeness of Bottom-Up Proofs
One rule of derivation, a generalized form of *modus ponens*:

If “$h ← b_1 ∧ \ldots ∧ b_m$” is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause.

(This rule also covers the case when $m = 0$.)

Propositional Logic: Bottom-Up Proofs

CPSC 322 – Logic 3, Slide 8
Bottom-up proof procedure

\(KB \vdash g \) if \(g \subseteq C \) at the end of this procedure:

\[C := \emptyset; \]
\[\text{repeat} \]
\[\quad \text{select clause } "h \leftarrow b_1 \land \ldots \land b_m" \text{ in } KB \text{ such that } \\
\quad \quad b_i \in C \text{ for all } i, \text{ and } h \notin C; \]
\[\quad C := C \cup \{h\} \]
\[\text{until no more clauses can be selected.} \]
Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow e \land f. \\
 b & \leftarrow f \land k. \\
 c & \leftarrow e. \\
 d & \leftarrow k. \\
 e. \\
 f & \leftarrow j \land e. \\
 f & \leftarrow c. \\
 j & \leftarrow c. \\
\end{align*}
\]
Example

\[a \leftarrow b \land c. \]
\[a \leftarrow e \land f. \]
\[b \leftarrow f \land k. \]
\[c \leftarrow e. \]
\[d \leftarrow k. \]
\[e. \]
\[f \leftarrow j \land e. \]
\[f \leftarrow c. \]
\[j \leftarrow c. \]

\[\{ \} \]
Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow e \land f. \\
 b & \leftarrow f \land k. \\
 c & \leftarrow e. \\
 d & \leftarrow k. \\
 e & . \\
 f & \leftarrow j \land e. \\
 f & \leftarrow c. \\
 j & \leftarrow c.
\end{align*}
\]
Example

\[a \leftarrow b \land c. \]
\[a \leftarrow e \land f. \]
\[b \leftarrow f \land k. \]
\[c \leftarrow e. \]
\[d \leftarrow k. \]
\[e. \]
\[f \leftarrow j \land e. \]
\[f \leftarrow c. \]
\[j \leftarrow c. \]
\[\{\} \]
\[\{e\} \]
\[\{c, e\} \]
\[\{c, e, f\} \]
\[\{c, e, f, j\} \]
\[\{a, c, e, f, j\} \]
Example

\[a \leftarrow b \land c. \]
\[a \leftarrow e \land f. \]
\[b \leftarrow f \land k. \]
\[c \leftarrow e. \]
\[d \leftarrow k. \]
\[e. \]
\[f \leftarrow j \land e. \]
\[f \leftarrow c. \]
\[j \leftarrow c. \]
Example

\[
a \leftarrow b \land c.
\]
\[
a \leftarrow e \land f.
\]
\[
b \leftarrow f \land k.
\]
\[
c \leftarrow e.
\]
\[
d \leftarrow k.
\]
\[
e.
\]
\[
f \leftarrow j \land e.
\]
\[
f \leftarrow c.
\]
\[
j \leftarrow c.
\]
Example

\[
\begin{align*}
a & \leftarrow b \land c. \\
a & \leftarrow e \land f. \\
b & \leftarrow f \land k. \\
c & \leftarrow e. \\
d & \leftarrow k. \\
e. \\
f & \leftarrow j \land e. \\
f & \leftarrow c. \\
j & \leftarrow c.
\end{align*}
\]
Lecture Overview

1 Recap
2 Proofs
3 Bottom-Up Proofs
4 Soundness of Bottom-Up Proofs
5 Completeness of Bottom-Up Proofs
Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Let h be the first atom added to C that's not true in every model of KB.
- Suppose h isn't true in model I of KB.
- There must be a clause in KB of form

$$h \leftarrow b_1 \land \ldots \land b_m$$

Each b_i is true in I. h is false in I. So this clause is false in I.

- Therefore I isn't a model of KB. Contradiction: thus no such g exists.
Lecture Overview

1. Recap
2. Proofs
3. Bottom-Up Proofs
4. Soundness of Bottom-Up Proofs
5. Completeness of Bottom-Up Proofs
Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a fixed point.
 - further applications of our rule of derivation will not change C.
Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a fixed point.
 - further applications of our rule of derivation will not change C.

Definition (minimal model)

Let the **minimal model** I be the interpretation in which every element of the fixed point C is true and every other atom is false.
Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a fixed point.
- Further applications of our rule of derivation will not change C.

Definition (minimal model)

Let the minimal model I be the interpretation in which every element of the fixed point C is true and every other atom is false.

Claim: I is a model of KB. **Proof:**

- Assume that I is not a model of KB. Then there must exist some clause $h \leftarrow b_1 \land \ldots \land b_m$ in KB (having zero or more b_i’s) which is false in I.
- This can only occur when h is false and each b_i is true in I.
- If each b_i belonged to C, we would have added h to C as well.
- Since C is a fixed point, no such I can exist.
If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.