Propositional Logic: Semantics and an Example

CPSC 322 – Logic 2

Textbook §5.2
Lecture Overview

1. Recap: Syntax
2. Propositional Definite Clause Logic: Semantics
3. Using Logic to Model the World
Propositional Definite Clauses: Syntax

Definition (atom)
An **atom** is a symbol starting with a lower case letter.

Definition (body)
A body is an atom or is of the form $b_1 \land b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)
A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as "h if b".)
Propositional Definite Clauses: Syntax

<table>
<thead>
<tr>
<th>Definition (atom)</th>
<th>An atom is a symbol starting with a lower case letter</th>
</tr>
</thead>
</table>

| Definition (body) | A **body** is an atom or is of the form $b_1 \land b_2$ where b_1 and b_2 are bodies. |
Propositional Definite Clauses: Syntax

Definition (atom)

An atom is a symbol starting with a lower case letter.

Definition (body)

A body is an atom or is of the form $b_1 \land b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as “h if b.”)
Propositional Definite Clauses: Syntax

<table>
<thead>
<tr>
<th>Definition (atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An atom is a symbol starting with a lower case letter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (body)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A body is an atom or is of the form $b_1 \land b_2$ where b_1 and b_2 are bodies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (definite clause)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as “h if b.”)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (knowledge base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A knowledge base is a set of definite clauses</td>
</tr>
</tbody>
</table>
Lecture Overview

1. Recap: Syntax

2. Propositional Definite Clause Logic: Semantics

3. Using Logic to Model the World
Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you’re trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.
Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you’re trying to model.

Definition (interpretation)

An **interpretation** I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements)

- A body $b_1 \land b_2$ is true in I if and only if b_1 is true in I and b_2 is true in I.
- A rule $h \leftarrow b$ is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Models and Logical Consequence

Definition (model)

A model of a set of clauses is an interpretation in which all the clauses are true.
Models and Logical Consequence

Definition (model)

A *model* of a set of clauses is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a *logical consequence* of KB, written $KB \models g$, if g is *true* in every model of KB.

- we also say that g logically follows from KB, or that KB entails g.
- In other words, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.
Example: Models

\[KB = \begin{cases}
 p \leftarrow q. \\
 q. \\
 r \leftarrow s.
\end{cases} \]

<table>
<thead>
<tr>
<th>(I_1)</th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>(I_2)</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>(I_3)</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>(I_4)</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>(I_5)</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Which interpretations are models?
Example: Models

\[KB = \left\{ \begin{array}{c}
p \leftarrow q. \\
q. \\
r \leftarrow s.
\end{array} \right. \]

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>(I_2)</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>(I_3)</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>(I_4)</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>(I_5)</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>
Example: Models

\[KB = \begin{cases}
 p \leftarrow q, \\
 q, \\
 r \leftarrow s.
\end{cases} \]

<table>
<thead>
<tr>
<th>(I)</th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
</table>
| \(I_1 \) | true | true | true | true | is a model of \(KB \)
| \(I_2 \) | false | false | false | false | not a model of \(KB \)
| \(I_3 \) | true | true | false | false | is a model of \(KB \)
| \(I_4 \) | true | true | true | false | is a model of \(KB \)
| \(I_5 \) | true | true | false | true | not a model of \(KB \)

Which of the following is true?

- \(KB \models q \), \(KB \models p \), \(KB \models s \), \(KB \models r \)
Example: Models

\[KB = \begin{cases}
 p \leftarrow q, \\
 q, \\
 r \leftarrow s.
\end{cases} \]

\[\begin{array}{c|cccc}
I & p & q & r & s \\
--- & --- & --- & --- & --- \\
I_1 & true & true & true & true & \text{is a model of } KB \\
I_2 & false & false & false & false & \text{not a model of } KB \\
I_3 & true & true & false & false & \text{is a model of } KB \\
I_4 & true & true & true & false & \text{is a model of } KB \\
I_5 & true & true & false & true & \text{not a model of } KB \\
\end{array} \]

Which of the following is true?

- \(KB \models q, \ KB \models p, \ KB \models s, \ KB \models r \)
- \(KB \models q, \ KB \models p, \ KB \not\models s, \ KB \not\models r \)
Lecture Overview

1. Recap: Syntax

2. Propositional Definite Clause Logic: Semantics

3. Using Logic to Model the World
User’s view of Semantics

1. Choose a task domain: **intended interpretation.**
2. Associate an atom with each proposition you want to represent.
3. Tell the system clauses that are true in the intended interpretation: **axiomatizing the domain.**
4. Ask questions about the intended interpretation.
5. If $KB \models g$, then g must be true in the intended interpretation.
6. The user can interpret the answer using their intended interpretation of the symbols.
Computer’s view of semantics

- The computer doesn’t have access to the intended interpretation.
 - All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
 - If $KB \models g$ then g must be true in the intended interpretation.
 - If $KB \not\models g$ then there is a model of KB in which g is false.
 This could be the intended interpretation.
Electrical Environment

Propositional Logic: Semantics and an Example
Representing the Electrical Environment

\begin{align*}
l_{1} & \leftarrow \text{live}_{1} \quad \text{live}_{1} & \leftarrow \text{live}_{0} \\
l_{2} & \leftarrow \text{live}_{0} \quad \text{live}_{0} & \leftarrow \text{live}_{1} \wedge \text{up}_{2} \\
d_{1} & \leftarrow \text{live}_{1} \quad \text{live}_{1} & \leftarrow \text{live}_{3} \wedge \text{up}_{1} \\
d_{2} & \leftarrow \text{live}_{2} \quad \text{live}_{2} & \leftarrow \text{live}_{3} \wedge \text{down}_{2} \\
d_{3} & \leftarrow \text{live}_{2} \quad \text{live}_{2} & \leftarrow \text{live}_{4} \\
o_{1} & \leftarrow \text{live}_{3} \quad \text{live}_{3} & \leftarrow \text{live}_{5} \wedge \text{ok}_{1} \\
o_{2} & \leftarrow \text{live}_{5} \quad \text{live}_{5} & \leftarrow \text{live}_{6} \wedge \text{ok}_{2} \\
ok_{c} & \leftarrow \text{live}_{6} \\
ok_{c2} & \leftarrow \text{live}_{5} \wedge \text{ok}_{c2} \\
\text{live}_{outside} & \leftarrow \text{live}_{5} \wedge \text{live}_{outside}.
\end{align*}
Role of semantics

In user’s mind:
- \(l2\text{_}\text{broken} \): light \(l2 \) is broken
- \(\text{sw3_up} \): switch is up
- \(\text{power} \): there is power in the building
- \(\text{unlit_l2} \): light \(l2 \) isn’t lit
- \(\text{lit_l1} \): light \(l1 \) is lit

In Computer:
- \(l2\text{_}\text{broken} \leftarrow \text{sw3_up} \land \text{power} \land \text{unlit_l2} \)
- \(\text{sw3_up} \)
- \(\text{power} \leftarrow \text{lit_l1} \)
- \(\text{unlit_l2} \)
- \(\text{lit_l1} \)

Conclusion: \(l2\text{_}\text{broken} \)
- The computer doesn’t know the meaning of the symbols
- The user can interpret the symbols using their meaning