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Arc Consistency Algorithm

Consider the arcs in turn making each arc consistent.

Arcs may need to be revisited whenever the domains of other
variables are reduced.

Regardless of the order in which arcs are considered, we will
terminate with the same result: an arc consistent network.
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Revisiting Edges

When we change the domain of a variable X in the course of
making an arc 〈X, r〉 arc consistent, we add every arc 〈Z, r′〉
where r′ involves X and:

r 6= r′

Z 6= X

Thus we don’t add back the same arc:

This makes sense—it’s definitely arc consistent.
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Revisiting Edges

When we change the domain of a variable X in the course of
making an arc 〈X, r〉 arc consistent, we add every arc 〈Z, r′〉
where r′ involves X and:

r 6= r′

Z 6= X

We don’t add back other arcs involving the same variable X

We’ve just reduced the domain of X
If an arc 〈X, r〉 was arc consistent before, it will still be arc
consistent

in the “for all” we’ll just check fewer values
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Revisiting Edges

When we change the domain of a variable X in the course of
making an arc 〈X, r〉 arc consistent, we add every arc 〈Z, r′〉
where r′ involves X and:

r 6= r′

Z 6= X

We don’t add back other arcs involving the same constraint
and a different variable:

Imagine that such an arc—involving variable Y—had been arc
consistent before, but was no longer arc consistent after X’s
domain was reduced.
This means that some value in Y ’s domain could satisfy r only
when X took one of the dropped values
But we dropped these values precisely because there were no
values of Y that allowed r to be satisfied when X takes these
values—contradiction!
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Arc Consistency Example

A A<B B B<C C

dom(A) = {1, 2, 3, 4}; dom(B) = {1, 2, 3, 4}; dom(C) = {1, 2, 3, 4}
Suppose you first select the arc 〈A,A < B〉.

Remove A = 4 from the domain of A.
Add nothing to TDA.

Suppose that 〈B,B < C〉 is selected next.

Prune the value 4 from the domain of B.
Add 〈A,A < B〉 back into the TDA set (why?)

Suppose that 〈B,A < B〉 is selected next.

Prune 1 from the domain of B.
Add no element to TDA (why?)

Suppose the arc 〈A,A < B〉 is selected next

The value A = 3 can be pruned from the domain of A.
Add no element to TDA (why?)

Select 〈C,B < C〉 next.

Remove 1 and 2 from the domain of C.
Add 〈B,B < C〉 back into the TDA set

The other two edges are arc consistent, so the algorithm terminates
with dom(A) = {1, 2}, dom(B) = {2, 3}, dom(C) = {3, 4}.
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Local Search

Many search spaces are too big for systematic search.

A useful method in practice for some consistency and
optimization problems is local search

idea: consider the space of complete assignments of values to
variables
neighbours of a current node are similar variable assignments
move from one node to another according to a function that
scores how good each assignment is
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Local Search

Definition

A local search problem consists of a:

CSP. In other words, a set of variables, domains for these
variables, and constraints on their joint values. A node in the
search space will be a complete assignment to all of the
variables.

Neighbour relation. An edge in the search space will exist
when the neighbour relation holds between a pair of nodes.

Scoring function. This can be used to incorporate information
about how many constraints are violated. It can also
incorporate information about the cost of the solution in an
optimization context.
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Selecting Neighbours

How do we choose the neighbour relation?

Usually this is simple: some small incremental change to the
variable assignment

assignments that differ in one variable’s value
assignments that differ in one variable’s value, by a value
difference of one
assignments that differ in two variables’ values, etc.

There’s a trade-off: bigger neighbourhoods allow more nodes
to be compared before a step is taken

the best step is more likely to be taken
each step takes more time: in the same amount of time,
multiple steps in a smaller neighbourhood could have been
taken

Usually we prefer pretty small neighbourhoods
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Hill Climbing

Hill climbing means selecting the neighbour which best improves
the scoring function.

For example, if the goal is to find the highest point on a
surface, the scoring function might be the height at the
current point.
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Gradient Ascent

What can we do if the variable(s) are continuous?

With a constant step size we could overshoot the maximum.

Here we can use the scoring function h to determine the
neighbourhood dynamically:

Gradient ascent: change each variable proportional to the
gradient of the heuristic function in that direction.
The value of variable Xi goes from vi to vi + η ∂h

∂Xi
.

η is the constant of proportionality that determines how big
steps will be

Gradient descent: go downhill; vi becomes vi − η ∂h
∂Xi

.
these partial derivatives may be estimated using finite
differences
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Problems with Hill Climbing

Foothills local maxima that are
not global maxima

Plateaus heuristic values are
uninformative

Ridge foothill where a larger
neighbour relation
would help

Ignorance of the peak no way of
detecting a global
maximum

Ridge

Foothill

Plateau
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Randomized Algorithms

Consider two methods to find a maximum value:

Hill climbing, starting from some position, keep moving uphill
& report maximum value found
Pick values at random & report maximum value found

Which do you expect to work better to find a maximum?

hill climbing is good for finding local maxima
selecting random nodes is good for finding new parts of the
search space

A mix of the two techniques can work even better
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Stochastic Local Search

We can bring these two ideas together to make a randomized
version of hill climbing.

As well as uphill steps we can allow for:

Random steps: move to a random neighbor.
Random restart: reassign random values to all variables.

Which is more expensive computationally?

usually, random restart (consider that there could be an
extremely large number of neighbors)
however, if the neighbour relation is computationally
expensive, random restart could be cheaper
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

Which of hill climbing with random walk and hill climbing
with random restart would most easily find the maximum?

left: random restart; right: random walk

As indicated before, stochastic local search often involves
both kinds of randomization
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Random Walk

Some examples of ways to add randomness to local search for a
CSP:

When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.

When selecting a variable followed by a value:

Sometimes choose the variable which participates in the largest
number of conflicts.
Sometimes choose, at random, any variable that participates in
some conflict.
Sometimes choose a random variable.
Sometimes choose the best value for the chosen variable.
Sometimes choose a random value for the chosen variable.
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