CSP Introduction

CPSC 322 – CSPs 1

Textbook §4.0 – 4.2
Lecture Overview

1. Recap
2. Dynamic Programming
3. Variables
4. Constraints
5. CSPs
Branch-and-Bound Search Algorithm

- Follow exactly the same search path as **depth-first search**
 - treat the frontier as a stack: expand the most-recently added node first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic
- Keep track of a **lower bound** and **upper bound** on solution cost at each node
 - lower bound: \(LB(n) = cost(n) + h(n) \)
 - upper bound: \(UB = cost(n') \), where \(n' \) is the best solution found so far.
 - if no solution has been found yet, set the upper bound to \(\infty \).
- When a node \(n \) is selected for expansion:
 - if \(LB(n) \geq UB \), remove \(n \) from frontier without expanding it
 - this is called “pruning the search tree” (really!)
 - else expand \(n \), adding all of its neighbours to the frontier
Branch and Bound Example

- http://aispace.org/search/
- Example: Load from URL http://cs.ubc.ca/~kevinlb/teaching/cs322/BnBSearchDemo.xml
Summary of Search Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Frontier Selection</th>
<th>Complete?</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>Last node added</td>
<td>No</td>
<td>Linear</td>
</tr>
<tr>
<td>Breadth-first</td>
<td>First node added</td>
<td>Yes</td>
<td>Exp</td>
</tr>
<tr>
<td>A^*</td>
<td>Minimal $f(n)$</td>
<td>Yes</td>
<td>Exp</td>
</tr>
<tr>
<td>Branch-and-Bound</td>
<td>Last node added, with pruning</td>
<td>No</td>
<td>Linear</td>
</tr>
</tbody>
</table>
Non-heuristic pruning

What can we prune besides nodes that are ruled out by our heuristic?

- Cycles
 - this one is really easy
- Multiple paths to the same node
 - if we want to maintain optimality, either keep the shortest path, or ensure that we always find the shortest path first
The main problem with \(A^* \) is that it uses exponential space. Branch and bound was one way around this problem. Two others are:

- Iterative deepening
- Memory-bounded \(A^* \)

Other search paradigms:

- Backwards search
- bi-directional search
Lecture Overview

1 Recap
2 Dynamic Programming
3 Variables
4 Constraints
5 CSPs
Idea: for statically stored graphs, build a table of $dist(n)$ the actual distance of the shortest path from node n to a goal.

Initialize $dist(n) = \infty$ for each node n

Then repeatedly, until no $dist(n)$ value changes, set each $dist(n)$ value to the smallest (neighboring $dist(n')$ value + cost of reaching n' from n):

$$dist(n) = \begin{cases} 0 & \text{if } is_goal(n), \\ \min_{\langle n,m \rangle \in A} (|\langle n,m \rangle| + dist(m)) & \text{otherwise}. \end{cases}$$
There are two main problems:

- You need **enough space** to store the graph.
- The $dist$ function needs to be **recomputed for each goal**.

Complexity: polynomial in the **size of the graph**.

- but so is DFS (in fact, it’s linear)
- the gain is when there are lots of nested cycles
Lecture Overview

1. Recap
2. Dynamic Programming
3. Variables
4. Constraints
5. CSPs
Recall that we defined the state of the world as an assignment of values to a set of (one or more) variables

- variable: a synonym for feature
- we denote variables using capital letters
- each variable V has a domain $\text{dom}(V)$ of possible values

Variables can be of several main kinds:

- **Boolean**: $|\text{dom}(V)| = 2$
- **Finite**: the domain contains a finite number of values
- **Infinite but Discrete**: the domain is countably infinite
- **Continuous**: e.g., real numbers between 0 and 1

We’ll call the set of states that are induced by a set of variables the set of possible worlds
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are English words of the correct length
 - possible worlds: all ways of assigning words
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are English words of the correct length
 - possible worlds: all ways of assigning words

- **Crossword 2:**
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - possible worlds: all ways of assigning letters to cells
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are English words of the correct length
 - possible worlds: all ways of assigning words

- **Crossword 2:**
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - possible worlds: all ways of assigning letters to cells

- **Sudoku**
 - variables are cells
 - domains are numbers between 1 and 9
 - possible worlds: all ways of assigning numbers to cells
More Examples

- **Scheduling Problem:**
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - possible worlds: time/location assignments for each task
More Examples

- **Scheduling Problem:**
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - possible worlds: time/location assignments for each task

- **n-Queens problem**
 - variable: location of a queen on a chess board
 - there are n of them in total, hence the name
 - domains: grid coordinates
 - possible worlds: locations of all queens
Lecture Overview

1 Recap
2 Dynamic Programming
3 Variables
4 Constraints
5 CSPs
Constraints

Constraints are restrictions on the values that one or more variables can take

- **Unary constraint**: restriction involving a single variable
 - of course, we could also achieve the same thing by using a smaller domain in the first place

- **k-ary constraint**: restriction involving the domains of k different variables
 - it turns out that k-ary constraints can always be represented as binary constraints, so we’ll often talk about this case

Constraints can be specified by

- giving a list of valid domain values for each variable participating in the constraint
- giving a function that returns true when given values for each variable which satisfy the constraint

- A possible world **satisfies** a set of constraints if the set of variables involved in each constraint take values that are consistent with that constraint
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are valid English words
 - constraints: words have the same letters at points where they intersect

- **Crossword 2:**
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - constraints: sequences of letters form valid English words

- **Sudoku**
 - variables are cells
 - domains are numbers between 1 and 9
 - constraints: rows, columns, boxes contain all different numbers
More Examples

- **Scheduling Problem:**
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - constraints: tasks can’t be scheduled in the same location at the same time; certain tasks can’t be scheduled in different locations at the same time; some tasks must come earlier than others; etc.

- **n-Queens problem**
 - variable: location of a queen on a chess board
 - domains: grid coordinates
 - constraints: no queen can attack another
Lecture Overview

1. Recap
2. Dynamic Programming
3. Variables
4. Constraints
5. CSPs
Definition

A constraint satisfaction problem consists of:

1. a set of variables
2. a domain for each variable
3. a set of constraints

Definition

A model of a CSP is an assignment of values to variables that satisfies all of the constraints.
We may want to solve the following problems with a CSP:

- determine whether or not a model exists
- find a model
- find all of the models
- count the number of models
- find the best model, given some measure of model quality
 - this is now an optimization problem
- determine whether some property of the variables holds in all models
It turns out that even the simplest problem of determining whether or not a model exists in a general CSP with finite domains is \mathcal{NP}-hard.

- we can’t hope to find an efficient algorithm.

However, we can try to:

- find algorithms that are fast on “typical” cases
- identify special cases for which algorithms are efficient (polynomial)
- find approximation algorithms that can find good solutions quickly, even they may offer no theoretical guarantees
- develop parallel or distributed algorithms so that additional hardware can be used