Heuristic Search and A*

CPSC 322 Lecture 7

September 19, 2007
Textbook §3.5

Heuristic Search and A* CPSC 322 Lecture 7, Slide 1



Recap

Lecture Overview

@ Recap

Heuristic Search and A* CPSC 322 Lecture 7, Slide 2



Recap

Breadth-first Search

@ Breadth-first search treats the frontier as a queue
o It always selects one of the first elements added to the frontier.

Complete even when the graph has cycles or is infinite

Time complexity is O(b"™)

Space complexity is O(b™)

Heuristic Search and A* CPSC 322 Lecture 7, Slide 3



Recap

Search with Costs

@ Sometimes there are costs associated with arcs.
e The cost of a path is the sum of the costs of its arcs.
@ In this setting we often don't just want to find just any
solution
o Instead, we usually want to find the solution that minimizes
cost
@ We call a search algorithm which always finds such a solution
optimal
@ Lowest-Cost-First Search: expand paths from the frontier in
order of their costs.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 4



Heuristic Search

Lecture Overview

@ Heuristic Search

Heuristic Search and A* CPSC 322 Lecture 7, Slide 5



Heuristic Search

Past knowledge and search

@ Some people believe that they are good at solving hard
problems without search

o However, consider e.g., public key encryption codes (or
combination locks): the search problem is clear, but people
can't solve it

e When people do perform well on hard problems, it is usually
because they have useful knowledge about the structure of the
problem domain

@ Computers can also improve their performance when given
this sort of knowledge
e in search, they can estimate the distance from a given node to
the goal through a search heuristic

e in this way, they can take the goal into account when selecting
path

Heuristic Search and A* CPSC 322 Lecture 7, Slide 6



Heuristic Search

Heuristic Search

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest
path from node n to a goal node.

@ h can be extended to paths: h({(ng,...,nk)) = h(ng)
@ h(n) uses only readily obtainable information (that is easy to
compute) about a node.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 7



Heuristic Search

Heuristic Search

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest
path from node n to a goal node.

@ h can be extended to paths: h({(ng,...,nk)) = h(ng)
@ h(n) uses only readily obtainable information (that is easy to
compute) about a node.

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an overestimate
of the cost from n to a goal.

@ there is never a path from n to a goal that has path length
less than h(n).
@ another way of saying this: h(n) is a lower bound on the cost

of getting from n to the nearest goal.
Heuristic Search and A* CPSC 322 Lecture 7, Slide 7




Heuristic Search

Example Heuristic Functions

@ If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

e this makes sense if there are obstacles, or for other reasons not
all adjacent nodes share an arc

Heuristic Search and A* CPSC 322 Lecture 7, Slide 8



Heuristic Search

Example Heuristic Functions

@ If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

e this makes sense if there are obstacles, or for other reasons not
all adjacent nodes share an arc

o Likewise, if nodes are cells in a grid and the cost is the
number of steps, we can use “Manhattan distance”
e this is also known as the L distance; Euclidean distance is Lo
distance

Heuristic Search and A* CPSC 322 Lecture 7, Slide 8



Heuristic Search

Example Heuristic Functions

@ If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

e this makes sense if there are obstacles, or for other reasons not
all adjacent nodes share an arc
o Likewise, if nodes are cells in a grid and the cost is the
number of steps, we can use “Manhattan distance”
e this is also known as the L distance; Euclidean distance is Lo
distance
@ In the 8-puzzle, we can use the number of moves between
each tile's current position and its position in the solution

Heuristic Search and A* CPSC 322 Lecture 7, Slide 8



Heuristic Search

How to Construct a Heuristic

@ Overall, a cost-minimizing search problem is a constrained
optimization problem
e e.g., find a path from A to B which minimizes distance traveled,
subject to the constraint that the robot can't move through walls

Heuristic Search and A* CPSC 322 Lecture 7, Slide 9



Heuristic Search

How to Construct a Heuristic

@ Overall, a cost-minimizing search problem is a constrained
optimization problem
e e.g., find a path from A to B which minimizes distance traveled,
subject to the constraint that the robot can't move through walls
@ A relaxed version of the problem is a version of the problem where
one or more constraints have been dropped
e e.g., find a path from A to B which minimizes distance traveled,
allowing the agent to move through walls
o A relaxed version of a minimization problem will always return a value

which is weakly smaller than the original value: thus, it's an admissible
heuristic

Heuristic Search and A* CPSC 322 Lecture 7, Slide 9



Heuristic Search

How to Construct a Heuristic

@ Overall, a cost-minimizing search problem is a constrained
optimization problem
e e.g., find a path from A to B which minimizes distance traveled,
subject to the constraint that the robot can't move through walls
@ A relaxed version of the problem is a version of the problem where
one or more constraints have been dropped

e e.g., find a path from A to B which minimizes distance traveled,
allowing the agent to move through walls
o A relaxed version of a minimization problem will always return a value
which is weakly smaller than the original value: thus, it's an admissible
heuristic
@ It's usually possible to identify constraints which, when dropped,
make the problem extremely easy to solve

o this is important because heuristics are not useful if they're as hard to
solve as the original problem!

Heuristic Search and A* CPSC 322 Lecture 7, Slide 9



Heuristic Search

How to Construct a Heuristic

@ Overall, a cost-minimizing search problem is a constrained
optimization problem
e e.g., find a path from A to B which minimizes distance traveled,
subject to the constraint that the robot can't move through walls
@ A relaxed version of the problem is a version of the problem where
one or more constraints have been dropped
e e.g., find a path from A to B which minimizes distance traveled,
allowing the agent to move through walls
o A relaxed version of a minimization problem will always return a value
which is weakly smaller than the original value: thus, it's an admissible
heuristic
@ It's usually possible to identify constraints which, when dropped,
make the problem extremely easy to solve
o this is important because heuristics are not useful if they're as hard to
solve as the original problem!
@ Another trick for constructing heuristics: if hi(n) is an admissible
heuristic, and ha(n) is also an admissible heuristic, then
max(hi(n), ha(n)) is also admissible.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 9



Best-First Search

Lecture Overview

© Best-First Search

Heuristic Search and A* CPSC 322 Lecture 7, Slide 10



Best-First Search

Best-First Search

@ |dea: select the path whose end is closest to a goal according
to the heuristic function.

@ Best-First search selects a path on the frontier with minimal
h-value.

@ It treats the frontier as a priority queue ordered by h.

@ This is a greedy approach: it always takes the path which
appears locally best

Heuristic Search and A* CPSC 322 Lecture 7, Slide 11



Best-First Search

Complexity of Best-First Search

@ Complete: no: a low heuristic value can mean that a cycle
gets followed forever.

e Time complexity is O(b™)
@ Space complexity is O(b™)
e Optimal: no (why not?)

Heuristic Search and A* CPSC 322 Lecture 7, Slide 12



A™ Search

Lecture Overview

@ A~ Search

Heuristic Search and A* CPSC 322 Lecture 7, Slide 13



A™ Search

A* Search

@ A* search uses both path costs and heuristic values

e cost(p) is the cost of the path p.
o h(p) estimates the cost from the end of p to a goal.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 14



A* Search

@ A* search uses both path costs and heuristic values

e cost(p) is the cost of the path p.
o h(p) estimates the cost from the end of p to a goal.

e Let f(p) = cost(p) + h(p).
o f(p) estimates the total path cost of going from a start node

to a goal via p.
pﬂp n esti_ma)te

start oal
cost(p) h(p)

f(p)

Heuristic Search and A* CPSC 322 Lecture 7, Slide 14



A™ Search

A* Search

@ A* search uses both path costs and heuristic values

e cost(p) is the cost of the path p.
o h(p) estimates the cost from the end of p to a goal.

e Let f(p) = cost(p) + h(p).
o f(p) estimates the total path cost of going from a start node

to a goal via p.
pﬂp n esti_ma)te

start oal
cost(p) h(p)

f(p)

@ A* treats the frontier as a priority queue ordered by f(p).

o It always selects the node on the frontier with the lowest
estimated total distance.
e It's a mix of lowest-cost-first and best-first search.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 14



Analysis of A*

Let's assume that arc costs are strictly positive.

@ Completeness: yes.
@ Time complexity: O(b™)

e the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A* does the same
thing as BFS

@ Space complexity: O(b™)

o like BFS, A* maintains a frontier which grows with the size of

the tree

Optimality: yes.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 15



Optimality of A™

Lecture Overview

© Optimality of A*

Heuristic Search and A* CPSC 322 Lecture 7, Slide 16



Optimality of A™

Optimality® of A*

If A* returns a solution, that solution is guaranteed to be optimal,
as long as

@ the branching factor is finite
@ arc costs are strictly positive

@ h(n) is an underestimate of the length of the shortest path
from n to a goal node, and is non-negative

1Some literature, and the textbook, uses the word ‘admissiblity” here.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 17



Optimality of A™

Why is A* optimal?

If A* selects a path p, p is the shortest (i.e., lowest-cost) path. \

@ Assume for contradiction that some other path p’ is actually
the shortest path to a goal

@ Consider the moment just before p is chosen from the frontier.
Some part of path p’ will also be on the frontier; let’s call this
partial path p”.

@ Because p was expanded before p”, f(p) < f(p”).

@ Because p is a goal, h(p) = 0. Thus
cost(p) < cost(p”) + h(p").

@ Because h is admissible, cost(p”) + h(p”) < cost(p') for any
path p’ to a goal that extends p”

@ Thus cost(p) < cost(p') for any other path p’ to a goal. This
contradicts our assumption that p’ is the shortest path.

Heuristic Search and A* CPSC 322 Lecture 7, Slide 18



	Recap
	Heuristic Search
	Best-First Search
	A* Search
	Optimality of A*

