Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 – Logic 4

Textbook §5.2
Lecture Overview

1. Recap

2. Soundness of Bottom-Up Proofs

3. Completeness of Bottom-Up Proofs
A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.

Recall $KB \models g$ means g is true in all models of KB.

Definition (soundness)

A proof procedure is **sound** if $KB \vdash g$ implies $KB \models g$.

Definition (completeness)

A proof procedure is **complete** if $KB \models g$ implies $KB \vdash g$.
Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of *modus ponens*:

If “$h \leftarrow b_1 \land \ldots \land b_m$” is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are **forward chaining** on this clause.

(This rule also covers the case when $m = 0$.)
Recap Soundness of Bottom-Up Proofs
Completeness of Bottom-Up Proofs

Bottom-up proof procedure

\[KB \vdash g \text{ if } g \subseteq C \] at the end of this procedure:

\[
C := \{\};
\]

repeat

- **select** clause “\(h \leftarrow b_1 \land \ldots \land b_m \)” in \(KB \) such that
 - \(b_i \in C \) for all \(i \), and \(h \notin C \);

\[
C := C \cup \{h\}
\]

until no more clauses can be selected.
Example

\[
\begin{align*}
a & \leftarrow b \land c. \\
a & \leftarrow e \land f. \\
b & \leftarrow f \land k. \\
c & \leftarrow e. \\
d & \leftarrow k. \\
e. \\
f & \leftarrow j \land e. \\
f & \leftarrow c. \\
j & \leftarrow c.
\end{align*}
\]
Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow e \land f. \\
 b & \leftarrow f \land k. \\
 c & \leftarrow e. \\
 d & \leftarrow k. \\
 e & . \\
 f & \leftarrow j \land e. \\
 f & \leftarrow c. \\
 j & \leftarrow c. \\
\end{align*}
\]
Recap Soundness of Bottom-Up Proofs
Completeness of Bottom-Up Proofs

Example

\[a \leftarrow b \land c. \]
\[a \leftarrow e \land f. \]
\[b \leftarrow f \land k. \]
\[c \leftarrow e. \]
\[d \leftarrow k. \]
\[e. \]
\[f \leftarrow j \land e. \]
\[f \leftarrow c. \]
\[j \leftarrow c. \]
Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow e \land f. \\
 b & \leftarrow f \land k. \\
 c & \leftarrow e. \\
 d & \leftarrow k. \\
 e & . \\
 f & \leftarrow j \land e. \\
 f & \leftarrow c. \\
 j & \leftarrow c.
\end{align*}
\]
Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow e \land f. \\
 b & \leftarrow f \land k. \\
 c & \leftarrow e. \\
 d & \leftarrow k. \\
 e. \\
 f & \leftarrow j \land e. \\
 f & \leftarrow c. \\
 j & \leftarrow c.
\end{align*}
\]
Example

\[
\begin{align*}
a & \leftarrow b \land c. \\
a & \leftarrow e \land f. \\
b & \leftarrow f \land k. \\
c & \leftarrow e. \\
d & \leftarrow k. \\
e & . \\
f & \leftarrow j \land e. \\
f & \leftarrow c. \\
j & \leftarrow c. \\
\end{align*}
\]
Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow e \land f. \\
 b & \leftarrow f \land k. \\
 c & \leftarrow e. \\
 d & \leftarrow k. \\
 e & \leftarrow c. \\
 f & \leftarrow j \land e. \\
 f & \leftarrow c. \\
 j & \leftarrow c.
\end{align*}
\]
Lecture Overview

1 Recap

2 Soundness of Bottom-Up Proofs

3 Completeness of Bottom-Up Proofs
Recap Soundness of Bottom-Up Proofs Completeness of Bottom-Up Proofs

Soundness of bottom-up proof procedure

If \(KB \vdash g \) then \(KB \models g \).

- Suppose there is a \(g \) such that \(KB \vdash g \) and \(KB \not\models g \).
- Let \(h \) be the first atom added to \(C \) that’s not true in every model of \(KB \).
- Suppose \(h \) isn’t true in model \(I \) of \(KB \).
- There must be a clause in \(KB \) of form

\[
h \leftarrow b_1 \land \ldots \land b_m
\]

Each \(b_i \) is true in \(I \). \(h \) is false in \(I \). So this clause is false in \(I \).
- Therefore \(I \) isn’t a model of \(KB \). Contradiction: thus no such \(g \) exists.
Lecture Overview

1 Recap

2 Soundness of Bottom-Up Proofs

3 Completeness of Bottom-Up Proofs
Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a fixed point.
 - further applications of our rule of derivation will not change C.

 Definition (minimal model)

 Let the minimal model I be the interpretation in which every element of the fixed point C is true and every other atom is false.

 Claim:

 I is a model of KB.

 Proof:

 Assume that I is not a model of KB. Then there must exist some clause $h ← b_1 ∧ \ldots ∧ b_m$ in KB (having zero or more b_i's) which is false in I.

 This can only occur when h is false and each b_i is true in I.

 If each b_i belonged to C, we would have added h to C as well.

 Since C is a fixed point, no such I can exist.
We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a **fixed point**.
- Further applications of our rule of derivation will not change C.

Definition (minimal model)

Let the **minimal model** I be the interpretation in which every element of the fixed point C is true and every other atom is false.
Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a **fixed point**.
 - Further applications of our rule of derivation will not change C.

Definition (minimal model)

Let the **minimal model** I be the interpretation in which every element of the fixed point C is true and every other atom is false.

Claim: I is a model of KB. **Proof:**

- Assume that I is not a model of KB. Then there must exist some clause $h \leftarrow b_1 \land \ldots \land b_m$ in KB (having zero or more b_i’s) which is false in I.
- This can only occur when h is false and each b_i is true in I.
- If each b_i belonged to C, we would have added h to C as well.
- Since C is a fixed point, no such I can exist.
Completeness

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.