CSPs: Arc Consistency

CPSC 322 – CSPs 3

Textbook §4.5, 4.8
Lecture Overview

1 Recap

2 Arc Consistency
CSPs as Search Problems

We map CSPs into search problems:
- **nodes**: assignments of values to a subset of the variables
- **neighbours** of a node: nodes in which values are assigned to one additional variable
- **start node**: the empty assignment (no variables assigned values)
- **goal node**: a node which assigns a value to each variable, and satisfies all of the constraints

Note: the path to a goal node is not important
An example of solving a CSP using depth-first search, with pruning whenever a partial assignment violates a constraint.
Constraint Networks

- A constraint network:
 - Two kinds of nodes in the graph
 - one node for every variable
 - one node for every constraint
 - Edges run between variable nodes and constraint nodes: they indicate that a given variable is involved in a given constraint
Lecture Overview

1 Recap

2 Arc Consistency
Definition

An arc \(\langle X, r(X, \bar{Y}) \rangle \) is arc consistent if for each value of \(X \) in \(\text{dom}(X) \) there is some value \(\bar{Y} \) in \(\text{dom}(\bar{Y}) \) such that \(r(X, \bar{Y}) \) is satisfied.

- In symbols, \(\forall X \in \text{dom}(X), \exists \bar{Y} \in \text{dom}(\bar{Y}) \) such that \(r(X, \bar{Y}) \) is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- If an arc \(\langle X, \bar{Y} \rangle \) is not arc consistent, all values of \(X \) in \(\text{dom}(X) \) for which there is no corresponding value in \(\text{dom}(\bar{Y}) \) may be deleted from \(\text{dom}(X) \) to make the arc \(\langle X, \bar{Y} \rangle \) consistent.
 - This removal can never rule out any models (do you see why?)
Arc Consistency Algorithm

- Consider the arcs in turn making each arc consistent.
 - Arcs may need to be revisited whenever the domains of other variables are reduced.
- Regardless of the order in which arcs are considered, we will terminate with the same result: an arc consistent network.
- Worst-case complexity of this procedure:
 - let the max size of a variable domain be d
 - let the number of constraints be e
 - complexity is $O(ed^3)$
- Some special cases are faster
 - e.g., if the constraint graph is a tree, arc consistency is $O(ed)$
procedure AC(V, dom, R)
Inputs
V: a set of variables
dom: a function such that dom(X) is the domain of variable X
R: set of relations to be satisfied
Output
arc consistent domains for each variable
Local
DX is a set of values for each variable X
for each variable X do
 DX ← dom(X)
end for each
TDA ← {(X, r) | r ∈ R is a constraint that involves X}
while TDA ≠ {} do
 select ⟨X, r⟩ ∈ TDA;
 TDA ← TDA − {(X, r)};
 NDX ← {x | x ∈ DX and there is y ∈ DY such that r(x, y)};
 if NDX ≠ DX then
 TDA ← TDA ∪ {(Z, r′) | r′ ≠ r and r′ involves X and Z ≠ X};
 DX ← NDX;
 end if
end while
return {DX : X is a variable}
end procedure
When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:

- $r \neq r'$
- $Z \neq X$

Thus we don’t add back the same arc:
- This makes sense—it’s definitely arc consistent.
When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:

- $r \neq r'$
- $Z \neq X$

We don’t add back other arcs that involve the same variable X

- We’ve just reduced the domain of X
- If an arc $\langle X, r \rangle$ was arc consistent before, it will still be arc consistent
 - in the “for all” we’ll just check fewer values
Adding edges back to \textit{TDA}

- When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:
 - $r \neq r'$
 - $Z \neq X$

- We don’t add back other arcs that involve the same constraint and a different variable:
 - Imagine that such an arc—involving variable Y—had been arc consistent before, but was no longer arc consistent after X’s domain was reduced.
 - This means that some value in Y’s domain could satisfy r only when X took one of the dropped values.
 - But we dropped these values precisely because there were no values of Y that allowed r to be satisfied when X takes these values—contradiction!