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Recap

Markov Decision Processes

An MDP is defined by:
@ set S of states.
@ set A of actions.
® P(Si41|St, Ar) specifies the dynamics.
@ R(Sy, A¢, Si41) specifies the reward. The agent gets a reward
at each time step (rather than just a final reward).

o R(s,a,s’) is the reward received when the agent is in state s,
does action a and ends up in state s’.
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Recap

Decision Processes

@ A Markov decision process augments a stationary Markov
chain with actions and values:
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Rewards and Policies

Rewards and Values

Suppose the agent receives the sequence of rewards
r1,79,73,74, ... What value should be assigned?

o
@ total reward V = Zri
i=1

R
@ average reward V = lim ——"
n—oo n

e discounted reward V = Y20, v~ 1

e 7 is the discount factor
0o 0<~y<1
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Rewards and Policies

Policies

@ A stationary policy is a function:
T:S— A

Given a state s, 7(s) specifies what action the agent who is
following 7 will do.

@ An optimal policy is one with maximum expected value

o we'll focus on the case where value is defined as discounted
reward.

@ For an MDP with stationary dynamics and rewards with
infinite or indefinite horizon, there is always an optimal
stationary policy in this case.
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Rewards and Policies

Value of a Policy

@ (Q"(s,a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy .

e V/™(s), where s is a state, is the expected value of following
policy 7 in state s.

@ Q™ and V7 can be defined mutually recursively:

Vi(s) = Q(s,m(s))
Q7 (s,a) = ZP(S/\a,s) (T(s,a,s’)—l—vV”(s'))
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Rewards and Policies

Value of the Optimal Policy

@ (Q"(s,a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

e /*(s), where s is a state, is the expected value of following
the optimal policy in state s.

@ " and V* can be defined mutually recursively:
Q*(s,a) = ZP(S'\a, s) (r(s,a,8") +7V*(s))

Vi(s) = maxQ(s.a)

™ (s) = argmaxQ@(s,a)
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Value lteration

Value lteration

@ Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value function.

o Set Vj arbitrarily.
e e.g., zeros

o Compute Q;41 and V41 from V;:
Qit1(s,a) = Z P(s'|a,s) (r(s,a,s") +vVi(s"))
Virr(s) = maxQiti(s,a)

o If we intersect these equations at ();41, we get an update
equation for V:

Viti(s) = mgxz P(s'|a,s) (r(s,a,s") +Vi(s"))
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Value lteration

Pseudocode for Value lteration

procedure value_iteration(P, r, 6)
inputs:
P is state transition function specifying P(s'|a, s)
r is a reward function R(s, a, s)
6 a threshold 8 > 0
returns:
7 [s] approximately optimal policy
V[s] value function
data structures:
Vi[s] a sequence of value functions
begin
fork=1:00
for each state s
Vils] = max, >, P(s'|a, )(R(s, a, s") + y Vici[s'])
if Vs |Vi(s) — Vi1 (s)| < 0
for each state s
7 (s) = argmax, >, P(s'|a, s)(R(s, a,8") + y Vi_1[s'])
return 7, Vj
end
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