Decision Theory: Sequential Decisions

CPSC 322 Lecture 32

April 2, 2007
Textbook §12.3
Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies
Decision Variables

- **Decision variables** are like random variables that an agent gets to choose the value of.
- A possible world specifies the value for each decision variable and each random variable.
- For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
- The probability of a proposition is undefined unless you condition on the values of all decision variables.
Single decisions

- Given a single decision variable, the agent can choose $D = d_i$ for any $d_i \in \text{dom}(D)$.
- The expected utility of decision $D = d_i$ is $\mathbb{E}(U | D = d_i)$.
- An optimal single decision is the decision $D = d_{\text{max}}$ whose expected utility is maximal:

$$d_{\text{max}} = \arg \max_{d_i \in \text{dom}(D)} \mathbb{E}(U | D = d_i).$$
A **decision network** is a graphical representation of a finite sequential decision problem.

Decision networks extend belief networks to include decision variables and utility.

A decision network specifies what information is available when the agent has to act.

A decision network specifies which variables the utility depends on.
Decision Networks

- A random variable is drawn as an ellipse. Arcs into the node represent probabilistic dependence.
- A decision variable is drawn as an rectangle. Arcs into the node represent information available when the decision is made.
- A value node is drawn as a diamond. Arcs into the node represent values that the value depends on.
Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies
An intelligent agent doesn’t make a multi-step decision and carry it out without considering revising it based on future information.

A more typical scenario is where the agent: observes, acts, observes, acts, ... just like your final homework!

Subsequent actions can depend on what is observed.

What is observed depends on previous actions.

Often the sole reason for carrying out an action is to provide information for future actions.

For example: diagnostic tests, spying.
Sequential decision problems

- A **sequential decision problem** consists of a sequence of decision variables D_1, \ldots, D_n.
- Each D_i has an **information set** of variables pD_i, whose value will be known at the time decision D_i is made.

- What should an agent do?
 - What an agent should do at any time depends on what it will do in the future.
 - What an agent does in the future depends on what it did before.
Policies

- A policy specifies what an agent should do under each circumstance.
- A policy is a sequence $\delta_1, \ldots, \delta_n$ of decision functions $\delta_i : \text{dom}(pD_i) \rightarrow \text{dom}(D_i)$.

This policy means that when the agent has observed $O \in \text{dom}(pD_i)$, it will do $\delta_i(O)$.
Expected Value of a Policy

- Possible world ω satisfies policy δ, written $\omega \models \delta$ if the world assigns the value to each decision node that the policy specifies.

- The expected utility of policy δ is

$$E(U|\delta) = \sum_{\omega \models \delta} P(\omega)U(\omega)$$

- An optimal policy is one with the highest expected utility.
Decision Network for the Alarm Problem

Tampering → Fire → Alarm → Leaving → Report

Tampering → Fire → Smoke → SeeSmoke → Call
Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies
Finding the optimal policy

- **Remove** all variables that are not ancestors of a value node.
- Create a factor for each conditional probability table and a factor for the utility.
- **Sum out** variables that are not parents of a decision node.
- Select a variable D that is only in a factor f with (some of) its parents.
 - this variable will be one of the decisions that is made **latest**
- Eliminate D by **maximizing**. This returns:
 - the optimal decision function for D, $\arg \max_D f$
 - a new factor to use in VE, $\max_D f$
- Repeat till there are no more decision nodes.
- **Sum out** the remaining random variables. Multiply the factors: this is the expected utility of the optimal policy.
Complexity of finding the optimal policy

- If a decision D has k binary parents, there are 2^k assignments of values to the parents.
- If there are b possible actions, there are b^{2^k} different decision functions.
- If there are d decisions, each with k binary parents and b possible actions, there are $\left(b^{2^k}\right)^d$ policies.
- Doing variable elimination lets us find the optimal policy after considering only $d \cdot b^{2^k}$ policies.
 - The dynamic programming algorithm is much more efficient than searching through policy space.
 - However, this complexity is still doubly-exponential!