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Chain

report

alarm

leaving

alarm and report are
independent: false.

alarm and report are
independent given
leaving: true.

Intuitively, the only way
that the alarm affects
report is by affecting
leaving.
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Common ancestors

smokealarm

fire

alarm and smoke are
independent: false.

alarm and smoke are
independent given fire:
true.

Intuitively, fire can
explain alarm and
smoke; learning one can
affect the other by
changing your belief in
fire.
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Common descendants

tampering

alarm

fire
tampering and fire are
independent: true.

tampering and fire are
independent given
alarm: false.

Intuitively, tampering
can explain away fire
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Belief Network Inference

Our goal: compute probabilities of variables in a belief network

Two cases:
1 the unconditional (prior) distribution over one or more variables
2 the posterior distribution over one or more variables,

conditioned on one or more observed variables

To address both cases, we only need a computational solution
to case 1

Our method: exploiting the structure of the network to
efficiently eliminate (sum out) the non-observed, non-query
variables one at a time.
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Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P (Z|Y1 = v1, . . . , Yj = vj)

=
P (Z, Y1 = v1, . . . , Yj = vj)
P (Y1 = v1, . . . , Yj = vj)

=
P (Z, Y1 = v1, . . . , Yj = vj)∑
Z P (Z, Y1 = v1, . . . , Yj = vj).

So the computation reduces to the probability of
P (Z, Y1 = v1, . . . , Yj = vj).
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Factors

A factor is a representation of a function from a tuple of
random variables into a number.

We will write factor f on variables X1, . . . , Xj as
f(X1, . . . , Xj).
A factor denotes a distribution over the given tuple of
variables in some (unspecified) context

e.g., P (X1, X2) is a factor f(X1, X2)
e.g., P (X1, X2, X3 = v3) is a factor f(X1, X2)
e.g., P (X1, X3 = v3|X2) is a factor f(X1, X2)
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Manipulating Factors

We can make new factors out of an existing factor

Our first operation: we can assign some or all of the variables
of a factor.

f(X1 = v1, X2, . . . , Xj), where v1 ∈ dom(X1), is a factor on
X2, . . . , Xj .
f(X1 = v1, X2 = v2, . . . , Xj = vj) is a number that is the value
of f when each Xi has value vi.

The former is also written as
f(X1, X2, . . . , Xj)X1 = v1,...,Xj = vj
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Summing out variables

Our second operation: we can sum out a variable, say X1 with
domain {v1, . . . , vk}, from factor f(X1, . . . , Xj), resulting in a
factor on X2, . . . , Xj defined by:

(
∑
X1

f)(X2, . . . , Xj)

= f(X1 = v1, . . . , Xj) + · · · + f(X1 = vk, . . . , Xj)
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Summing out a variable example

f3:

A B C val

t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑
B f3:

A C val

t t 0.57
t f 0.43
f t 0.54
f f 0.46
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Multiplying factors

Our third operation: factors can be multiplied together.

The product of factor f1(X,Y ) and f2(Y ,Z), where Y are
the variables in common, is the factor (f1 × f2)(X,Y , Z)
defined by:

(f1 × f2)(X,Y , Z) = f1(X,Y )f2(Y ,Z).
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Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32
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Probability of a conjunction

Suppose the variables of the belief network are X1, . . . , Xn.

What we want to compute: the factor
P (Z, Y1 = v1, . . . , Yj = vj)
We can compute P (Z, Y1 = v1, . . . , Yj = vj) by summing out
the variables Z1, . . . , Zk = {X1, . . . , Xn} \ {Z, Y1, . . . , Yj}.
We sum out these variables one at a time

the order in which we do this is called our elimination ordering.

P (Z, Y1 = v1, . . . , Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P (X1, . . . , Xn)Y1 = v1,...,Yj = vj .
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Probability of a conjunction

What we know: the factors P (Xi|pXi).
Using the chain rule and the definition of a belief network, we
can write P (X1, . . . , Xn) as

∏n
i=1 P (Xi|pXi). Thus:

P (Z, Y1 = v1, . . . , Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P (X1, . . . , Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P (Xi|pXi)Y1 = v1,...,Yj = vj .
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Computing sums of products

Computation in belief networks thus reduces to computing the
sums of products.

It takes 14 multiplications or additions to evaluate the
expression ab + ac + ad + aeh + afh + agh. How can this
expression be evaluated more efficiently?

factor out the a and then the h giving
a(b + c + d + h(e + f + g))
this takes only 7 multiplications or additions

How can we compute
∑

Z1

∏n
i=1 P (Xi|pXi) efficiently?

Factor out those terms that don’t involve Z1:( ∏
i|Z1 6∈ {Xi} ∪ pXi

(terms that do not involve Zi)

P (Xi|pXi)

)(∑
Z1

∏
i|Z1 ∈ {Xi} ∪ pXi

(terms that involve Zi)

P (Xi|pXi)

)
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