Lecture Overview

1. Recap
2. Conditional Probability
3. Bayes’ Theorem
Probability

- Probability is formal measure of uncertainty. There are two camps:
 - **Frequentists**: believe that probability represents something *objective*, and compute probabilities by counting the frequencies of different events
 - **Bayesians**: believe that probability represents something *subjective*, and understand probabilities as degrees of belief.
 - They compute probabilities by starting with *prior beliefs*, and then *updating* beliefs when they get new data.
 - **Example**: Your degree of belief that a bird can fly is your measure of belief in the flying ability of an individual based only on the knowledge that the individual is a bird.
 - Other agents may have different probabilities, as they may have had different experiences with birds or different knowledge about this particular bird.
 - An agent’s belief in a bird’s flying ability is affected by what the agent knows about that bird.
Possible World Semantics

- A random variable is a variable that is randomly assigned one of a number of different values.
- The domain of a variable X, written $\text{dom}(X)$, is the set of values X can take.
- A possible world specifies an assignment of one value to each random variable.
- $w \models X = x$ means variable X is assigned value x in world w.
- Let Ω be the set of all possible worlds.
- Define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1.
- The probability of proposition f is defined by:

$$P(f) = \sum_{w \models f} \mu(w).$$
Axioms of Probability: finite case

- Four axioms define what follows from a set of probabilities:
 - **Axiom 1** \(P(f) = P(g) \) if \(f \leftrightarrow g \) is a tautology. That is, logically equivalent formulae have the same probability.
 - **Axiom 2** \(0 \leq P(f) \) for any formula \(f \).
 - **Axiom 3** \(P(\tau) = 1 \) if \(\tau \) is a tautology.
 - **Axiom 4** \(P(f \lor g) = P(f) + P(g) \) if \(\neg(f \land g) \) is a tautology.

- You can think of these axioms as constraints on which functions \(P \) we can treat as probabilities.

- These axioms are sound and complete with respect to the semantics.
 - if you obey these axioms, there will exist some \(\mu \) which is consistent with your \(P \)
 - there exists some \(P \) which obeys these axioms for any given \(\mu \)
Probability Distributions

Definition (probability distribution)

A probability distribution P on a random variable X is a function $\text{dom}(X) \rightarrow [0, 1]$ such that

$$x \mapsto P(X = x).$$

- When $\text{dom}(X)$ is infinite we need a probability density function.
Joint Distribution and Marginalization

- When there are multiple random variables, their **joint distribution** is a probability distribution over the variables’ Cartesian product.
 - E.g., $P(X, Y, Z)$ means $P(\langle X, Y, Z \rangle)$.
 - Think of a joint distribution over n variables as an n-dimensional table.
 - Each entry, indexed by $X_1 = x_1, \ldots, X_n = x_n$, corresponds to $P(X_1 = x_1 \land \ldots \land X_n = x_n)$.
 - The sum of entries across the whole table is 1.

- Given the joint distribution, we can compute distributions over smaller sets of variables through **marginalization**:
 - E.g., $P(X, Y) = \sum_{z \in \text{dom}(Z)} P(X, Y, Z = z)$.
 - This corresponds to summing out a dimension in the table.
 - The new table still sums to 1.
Lecture Overview

1 Recap

2 Conditional Probability

3 Bayes’ Theorem
Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability $P(h|e)$ of h given e is the posterior probability of h.
Semantics of Conditional Probability

- Evidence e rules out possible worlds incompatible with e.
- We can represent this using a new measure, μ_e, over possible worlds

$$
\mu_e(\omega) = \begin{cases}
\frac{1}{P(e)} \times \mu(\omega) & \text{if } \omega \models e \\
0 & \text{if } \omega \not\models e
\end{cases}
$$

Definition

The conditional probability of formula h given evidence e is

$$
P(h|e) = \sum_{\omega \models h} \mu_e(\omega) = \frac{P(h \land e)}{P(e)}
$$
Chain Rule

Definition (Chain Rule)

\[
P(f_1 \land f_2 \land \ldots \land f_n)
= P(f_n|f_1 \land \ldots \land f_{n-1}) \times P(f_1 \land \ldots \land f_{n-1})
= P(f_n|f_1 \land \ldots \land f_{n-1}) \times P(f_{n-1}|f_1 \land \ldots \land f_{n-2}) \times P(f_1 \land \ldots \land f_{n-2})
= P(f_n|f_1 \land \ldots \land f_{n-1}) \times P(f_{n-1}|f_1 \land \ldots \land f_{n-2}) \times \ldots \times P(f_3|f_1 \land f_2) \times P(f_2|f_1) \times P(f_1)
= \prod_{i=1}^{n} P(f_i|f_1 \land \ldots \land f_{i-1})
\]
Lecture Overview

1. Recap
2. Conditional Probability
3. Bayes’ Theorem
The chain rule and commutativity of conjunction \((h \land e)\) gives us:

\[
P(h \land e) = P(h|e) \times P(e) = P(e|h) \times P(h).
\]

If \(P(e) \neq 0\), you can divide the right hand sides by \(P(e)\), giving us Bayes’ theorem.

Definition (Bayes’ theorem)

\[
P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}.
\]
Why is Bayes’ theorem interesting?

Often you have causal knowledge:

- \(P(\text{symptom} \mid \text{disease}) \)
- \(P(\text{light is off} \mid \text{status of switches and switch positions}) \)
- \(P(\text{alarm} \mid \text{fire}) \)
- \(P(\text{image looks like 🌳} \mid \text{a tree is in front of a car}) \)

...and you want to do evidential reasoning:

- \(P(\text{disease} \mid \text{symptom}) \)
- \(P(\text{status of switches} \mid \text{light is off and switch positions}) \)
- \(P(\text{fire} \mid \text{alarm}) \).
- \(P(\text{a tree is in front of a car} \mid \text{image looks like 🌳}) \)