Search: Advanced Topics and Conclusion

CPSC 322 Lecture 8

January 20, 2006
Textbook §2.6
Lecture Overview

Recap

Branch & Bound

A* Tricks

Other Pruning
A* Search Algorithm

- A* is a mix of lowest-cost-first and Best-First search.
- It treats the frontier as a priority queue ordered by \(f(p) \).
- It always selects the node on the frontier with the lowest estimated total distance.
Analysis of A^*

Let’s assume that arc costs are strictly positive.

- **Completeness:** yes.
- **Time complexity:** $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^* does the same thing as BFS
- **Space complexity:** $O(b^m)$
 - like BFS, A^* maintains a frontier which grows with the size of the tree
- **Optimality:** yes.
In fact, we can prove something even stronger about A^*: in a sense (given the particular heuristic that is available) no search algorithm could do better!

Optimal Efficiency: Among all optimal algorithms that start from the same start node and use the same heuristic h, A^* expands the minimal number of nodes.

- problem: A^* could be unlucky about how it breaks ties.
- So let’s define optimal efficiency as expanding the minimal number of nodes n for which $f(n) < f^*$, where f^* is the cost of the shortest path.
Why is A^* optimally efficient?

Theorem

A^* is optimally efficient.

- Let f^* be the cost of the shortest path to a goal. Consider any algorithm A' which has the same start node as A^*, uses the same heuristic and fails to expand some node n' expanded by A^* for which $\text{cost}(n') + h(n') < f^*$. Assume that A' is optimal.
- Consider a different search problem which is identical to the original and on which h returns the same estimate for each node, except that n' has a child node n'' which is a goal node, and the true cost of the path to n'' is $f(n')$.
 - that is, the edge from n' to n'' has a cost of $h(n')$: the heuristic is exactly right about the cost of getting from n' to a goal.
- A' would behave identically on this new problem.
 - The only difference between the new problem and the original problem is beyond node n', which A' does not expand.
- Cost of the path to n'' is lower than cost of the path found by A'.
- This violates our assumption that A' is optimal.
Branch-and-Bound Search

- A search strategy often not covered in AI, but widely used in practice
- Uses a heuristic function: like A*, can avoid expanding some unnecessary nodes
- Depth-first: modest memory demands
 - in fact, some people see “branch and bound” as a broad family that includes A*
 - these people would use the term “depth-first branch and bound”
Branch-and-Bound Search Algorithm

- Follow exactly the same search path as depth-first search
 - treat the frontier as a stack: expand the most-recently added node first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic
- Keep track of a lower bound and upper bound on solution cost at each node
 - lower bound: $LB(n) = cost(n) + h(n)$
 - upper bound: $UB = cost(n')$, where n' is the best solution found so far.
 - if no solution has been found yet, set the upper bound to ∞.
- When a node n is selected for expansion:
 - if $LB(n) \geq UB$, remove n from frontier without expanding it
 - this is called “pruning the search tree” (really!)
 - else expand n, adding all of its neighbours to the frontier
Branch-and-Bound Analysis

- **Completeness:** no, for the same reasons that DFS isn’t complete
 - however, for many problems of interest there are no infinite paths and no cycles
 - hence, for many problems B&B is complete
- **Time complexity:** $O(b^m)$
- **Space complexity:** $O(bm)$
 - Branch & Bound has the same space complexity as DFS
 - this is a big improvement over A*!
- **Optimality:** yes.
Other A* Enhancements

The main problem with A* is that it uses exponential space. Branch and bound was one way around this problem. Are there others?

- Iterative deepening
- Memory-bounded A*
Iterative Deepening

- B & B can still get stuck in cycles
- Search depth-first, but to a fixed depth
 - if you don’t find a solution, increase the depth tolerance and try again
 - of course, depth is measured in f value
- Counter-intuitively, the asymptotic complexity is not changed, even though we visit nodes multiple times
Memory-bounded A^*

- Iterative deepening and B & B use a tiny amount of memory
- what if we’ve got more memory to use?
- keep as much of the fringe in memory as we can
- if we have to delete something:
 - delete the oldest paths
 - “back them up” to a common ancestor
Non-heuristic pruning

What can we prune besides nodes that are ruled out by our heuristic?

- Cycles
- Multiple paths to the same node
Cycle Checking

- You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.
- Using depth-first methods, with the graph explicitly stored, this can be done in constant time.
- For other methods, the cost is linear in path length.
You can prune a path to node n that you have already found a path to.

- Multiple-path pruning subsumes a cycle check.
- This entails storing all nodes you have found paths to.
Problem: what if a subsequent path to \(n \) is shorter than the first path to \(n \)?

- You can remove all paths from the frontier that use the longer path.
- You can change the initial segment of the paths on the frontier to use the shorter path.
- You can ensure this doesn’t happen. You make sure that the shortest path to a node is found first.

 ▶ Heuristic function \(h \) satisfies the **monotone restriction** if \(|h(m) - h(n)| \leq d(m, n) \) for every arc \(\langle m, n \rangle \).

 ▶ If \(h \) satisfies the monotone restriction, \(A^* \) with multiple path pruning always finds the shortest path to a goal.