Uninformed Search

CPSC 322 Lecture 5

January 13, 2006
Textbook §2.4
Lecture Overview

Recap

Searching

Depth-First Search

Breadth-First Search

Search with Costs
What we want to be able to do:

- find a solution when we are not given an algorithm to solve a problem, but only a specification of what a solution looks like
- idea: search for a solution

What we need:

- A set of states
- A start state
- A goal state or set of goal states
 - or, equivalently, a goal test: a boolean function which tells us whether a given state is a goal state
- A set of actions
- An action function: a mapping from a state and an action to a new state
A graph consists of
- a set N of nodes;
- a set A of ordered pairs of nodes, called arcs or edges.

Node n_2 is a neighbor of n_1 if there is an arc from n_1 to n_2.
- i.e., if $\langle n_1, n_2 \rangle \in A$

A path is a sequence of nodes $\langle n_0, n_1, \ldots, n_k \rangle$ such that $\langle n_{i-1}, n_i \rangle \in A$.

Given a start node and a set of goal nodes, a solution is a path from the start node to a goal node.
Uninformed Search

Problem Solving by Graph Searching

- Start node
- Frontier
- Explored nodes
- Unexplored nodes
Graph Search Algorithm

Input: a graph, a set of start nodes, Boolean procedure $\text{goal}(n)$ that tests if n is a goal node.

$\text{frontier} := \{s : s \text{ is a start node}\}$;

while frontier is not empty:
 select and remove path $\langle n_0, \ldots, n_k \rangle$ from frontier;
 if $\text{goal}(n_k)$
 return $\langle n_0, \ldots, n_k \rangle$;
 for every neighbor n of n_k
 add $\langle n_0, \ldots, n_k, n \rangle$ to frontier;

end while

- After the algorithm returns, it can be asked for more answers and the procedure continues.
- Which value is selected from the frontier defines the search strategy.
- The neighbor relationship defines the graph.
- The goal function defines what is a solution.
- The **forward branching factor** of a node is the number of arcs going out of that node.
- The **backward branching factor** of a node is the number of arcs going into the node.
- If the forward branching factor of every node is b and the graph is a tree, how many nodes are exactly n steps away from the start node?
 - b^n nodes.
- We’ll assume that all branching factors are finite.
Comparing Algorithms

- **Completeness**
 - if at least one solution exists, the algorithm is guaranteed to find a solution within a finite amount of time

- **Time Complexity**
 - in terms of the maximum path length m, and the maximum branching factor b, what is the worst-case amount of time that the algorithm will take to run?

- **Space Complexity**
 - in terms of m and b, what is the worst-case amount of memory that the algorithm must use?
Depth-first Search

- **Depth-first search** treats the frontier as a stack
- It always selects one of the last elements added to the frontier.

Example:
- the frontier is \([p_1, p_2, \ldots, p_r]\)
- neighbours of \(p_1\) are \(\{n_1, \ldots, n_k\}\)

What happens?
- \(p_1\) is selected, and tested for being a goal.
- Neighbours of \(p_1\) replace \(p_1\) at the beginning of the frontier.
- Thus, the frontier is now \([n_1, \ldots, n_k, p_2, \ldots, p_r]\).
- \(p_2\) is only selected when all paths from \(p_1\) have been explored.
Illustrative Graph — Depth-first Search
Analysis of Depth-first Search

- Is DFS complete?
 - Depth-first search isn't guaranteed to halt on infinite graphs or on graphs with cycles.
 - However, DFS is complete for finite trees.
- What is the time complexity, if the maximum path length is m and the maximum branching factor is b?
 - The time complexity is $O(b^m)$: must examine every node in the tree.
 - Search is unconstrained by the goal until it happens to stumble on the goal.
- What is the space complexity?
 - Space complexity is $O(bm)$: the longest possible path is m, and for every node in that path must maintain a fringe of size b.
Using Depth-First Search

- When is DFS **appropriate**?
 - space is restricted
 - solutions tend to occur at the same depth in the tree
 - you know how to order nodes in the list of neighbours so that solutions will be found relatively quickly

- When is DFS **inappropriate**?
 - some paths have infinite length
 - the graph contains cycles
 - some solutions are very deep, while others are very shallow
Breadth-first Search

- Breadth-first search treats the frontier as a **queue**
 - it always selects one of the earliest elements added to the frontier.

Example:
- the frontier is \([p_1, p_2, \ldots, p_r]\)
- neighbours of \(p_1\) are \(\{n_1, \ldots, n_k\}\)

What happens?
- \(p_1\) is selected, and tested for being a goal.
- Neighbours of \(p_1\) follow \(p_r\) at the end of the frontier.
- Thus, the frontier is now \([p_2, \ldots, p_r, n_1, \ldots, n_k]\).
- \(p_2\) is selected next.
Illustrative Graph — Breadth-first Search
Analysis of Breadth-First Search

- Is BFS complete?
 - Yes (but it wouldn’t be if the branching factor for any node was infinite)
 - In fact, BFS is guaranteed to find the path that involves the fewest arcs (why?)
- What is the time complexity, if the maximum path length is \(m \) and the maximum branching factor is \(b \)?
 - The time complexity is \(O(b^m) \): must examine every node in the tree.
 - The order in which we examine nodes (BFS or DFS) makes no difference to the worst case: search is unconstrained by the goal.
- What is the space complexity?
 - Space complexity is \(O(b^m) \): we must store the whole frontier in memory
Using Breadth-First Search

▶ When is BFS **appropriate**?
 ▶ space is not a problem
 ▶ it’s necessary to find the solution with the fewest arcs
 ▶ although all solutions may not be shallow, at least some are
 ▶ there may be infinite paths

▶ When is BFS **inappropriate**?
 ▶ space is limited
 ▶ all solutions tend to be located deep in the tree
 ▶ the branching factor is very large
Search with Costs

▶ Sometimes there are costs associated with arcs.
 ▶ The cost of a path is the sum of the costs of its arcs.

\[
\text{cost}(\langle n_0, \ldots, n_k \rangle) = \sum_{i=1}^{k} |\langle n_{i-1}, n_i \rangle|
\]

▶ In this setting we often don’t just want to find just any solution
 ▶ Instead, we usually want to find the solution that minimizes cost

▶ We call a search algorithm which always finds such a solution optimal
Lowest-Cost-First Search

- At each stage, lowest-cost-first search selects a path on the frontier with lowest cost.
 - The frontier is a priority queue ordered by path cost.
 - We say “a path” because there may be ties
- When all arc costs are equal, LCFS is equivalent to BFS.
- Example:
 - the frontier is $[⟨p_1, 10⟩, ⟨p_2, 5⟩, ⟨p_3, 7⟩]$
 - p_2 is the lowest-cost node in the frontier
 - neighbours of p_2 are $\{⟨p_9, 12⟩, ⟨p_{10}, 15⟩\}$
- What happens?
 - p_2 is selected, and tested for being a goal.
 - Neighbours of p_2 are inserted into the frontier (it doesn't matter where they go)
 - Thus, the frontier is now $[⟨p_1, 10⟩, ⟨p_9, 12⟩, ⟨p_{10}, 15⟩, ⟨p_3, 7⟩]$.
 - p_3 is selected next.
 - Of course, we’d really implement this as a priority queue.
Analysis of Lowest-Cost-First Search

- Is LCFS **complete**?
 - not in general: a cycle with zero or negative arc costs could be followed forever.
 - yes, as long as arc costs are strictly positive
- **What is the time complexity**, if the maximum path length is m and the maximum branching factor is b?
 - The time complexity is $O(b^m)$: must examine every node in the tree.
 - Knowing costs doesn’t help here.
- **What is the space complexity?**
 - Space complexity is $O(b^m)$: we must store the whole frontier in memory.
- Is LCFS **optimal**?
 - Not in general. Why not?
 - Arc costs could be negative: a path that initially looks high-cost could end up getting a “refund”.
 - However, LCFS is optimal if arc costs are guaranteed to be non-negative.