Decision Theory: Markov Decision Processes

CPSC 322 Lecture 33

March 31, 2006
Textbook §12.5
Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration
A Markov decision process augments a stationary Markov chain with actions and values:
An MDP is defined by:

- set S of states.
- set A of actions.
- $P(S_{t+1}|S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t, S_{t+1})$ specifies the reward. The agent gets a reward at each time step (rather than just a final reward).
 - $R(s, a, s')$ is the reward received when the agent is in state s, does action a and ends up in state s'.
Example: Simple Grid World

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving.
Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- The robot gets +10 or +3 entering the state, then it stays there getting no reward. These are absorbing states.
 - The robot will eventually reach the absorbing state.
 - indefinite horizon
Lecture Overview

<table>
<thead>
<tr>
<th>Recap</th>
<th>Rewards and Policies</th>
<th>Value Iteration</th>
<th>Asynchronous Value Iteration</th>
</tr>
</thead>
</table>

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration
Rewards and Values

Suppose the agent receives the sequence of rewards $r_1, r_2, r_3, r_4, \ldots$. What value should be assigned?

- **total reward** $V = \sum_{i=1}^{\infty} r_i$
- **average reward** $V = \lim_{n \to \infty} \frac{r_1 + \cdots + r_n}{n}$
- **discounted reward** $V = \sum_{i=1}^{\infty} \gamma^{i-1} r_i$
 - γ is the discount factor
 - $0 \leq \gamma \leq 1$
A stationary policy is a function:

\[\pi : S \rightarrow A \]

Given a state \(s \), \(\pi(s) \) specifies what action the agent who is following \(\pi \) will do.

An optimal policy is one with maximum expected value.

- we’ll focus on the case where value is defined as discounted reward.

For an MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy in this case.
Value of a Policy

- $Q^\pi(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.

- $V^\pi(s)$, where s is a state, is the expected value of following policy π in state s.

- Q^π and V^π can be defined mutually recursively:

\[
V^\pi(s) = Q^\pi(s, \pi(s))
\]
\[
Q^\pi(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^\pi(s') \right)
\]
Value of the Optimal Policy

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

\[
Q^*(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^*(s') \right)
\]

\[
V^*(s) = \max_a Q^*(s, a)
\]

\[
\pi^*(s) = \arg\max_a Q^*(s, a)
\]
Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration
Value Iteration

- **Idea**: Given an estimate of the k-step lookahead value function, determine the $k + 1$ step lookahead value function.
- Set V_0 arbitrarily.
 - e.g., zeros
- Compute Q_{i+1} and V_{i+1} from V_i:
 \[
 Q_{i+1}(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V_i(s') \right)
 \]
 \[
 V_{i+1}(s) = \max_a Q_{i+1}(s, a)
 \]
- If we intersect these equations at Q_{i+1}, we get an update equation for V:
 \[
 V_{i+1}(s) = \max_a \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V_i(s') \right)
 \]
Pseudocode for Value Iteration

procedure value_iteration(P, r, θ)

inputs:
- P is state transition function specifying $P(s'|a, s)$
- r is a reward function $R(s, a, s')$
- θ a threshold $\theta > 0$

returns:
- $\pi[s]$ approximately optimal policy
- $V[s]$ value function

data structures:
- $V_k[s]$ a sequence of value functions

begin
 for $k = 1 : \infty$
 for each state s
 $V_k[s] = \max_a \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma V_{k-1}[s'])$
 if $\forall s \ |V_k(s) - V_{k-1}(s)| < \theta$
 for each state s
 $\pi(s) = \arg\max_a \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma V_{k-1}[s'])$
 return π, V_k
end
Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration
Asynchronous Value Iteration

- You don’t need to sweep through all the states, but can update the value functions for each state individually.
 - This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.

- You can either store $V[s]$ or $Q[s, a]$.

- This algorithm forms the basis of several reinforcement learning algorithms
 - how should an agent behave in an MDP if it doesn’t know the transition probabilities and the reward function?
Asynchronous VI: storing $Q[s, a]$

- Repeat forever:
 - Select state s, action a;
 - $Q[s, a] \leftarrow \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q[s', a'] \right)$;
Pseudocode for Asynchronous Value Iteration

procedure asynchronous_value_iteration(P, r)
inputs:
P is state transition function specifying $P(s'|a, s)$
r is a reward function $R(s, a, s')$
returns:
π approximately optimal policy
Q value function
data structures:
real array $Q[s, a]$
action array $\pi[s]$
begin
 repeat
 select a state s
 select an action a

 $Q[s, a] = \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma \max_{a'} Q[s', a'])$
 until some stopping criteria is true
 for each state s
 $\pi[s] = \arg \max_{a} Q[s, a]$
 return π, Q
end