An Algorithm for
Multi-Unit
Combinatorial Auctions

., S

Kevin Leyton-Brown
Yoav Shoham
Moshe Tennenholtz

Computer Science Dept.
Stanford University

thanks also to Shobha Venkataraman



i Combinatorial Auctions

= Mechanisms that allow bidders to explicitly indicate
complementarities and substitutabilities
= Mmany goods are auctioned simultaneously
= bids name an arbitrary bundle and a price offer

= bidders may submit multiple bids
= If desired, some bids may be mutually exclusive
= Otherwise, more than one of a bidder’s bids may win

s Benefit: less risk for bidders
= won't win a subset of a bundle for more than it is worth to them

= can request multiple mutually-exclusive bundles

= More efficient / higher revenue
= No need to hedge bids or restrict bidding to a single bundle



i Multi-Unit CA’s

= Sometimes a set of goods are identical

= traditionally, bidders have no way to compactly
represent indifference between members of the set

« Instead, they must enumerate bundles between which they
are indifferent

= this can require a huge number of bids

= Multi-Unit CA

= set of identical goods: a single multi-unit good
= in general, consider all goods to have a fixed number of units

= bids specify goods, number of units for each good, a
price offer for the whole package



i Winner Determination

s Auctioneer’s task:

= given a set of bids, find the revenue-maximizing
subset of these bids allocating no more than the
maximum number of units for each good

= We can handle XOR with “dummy goods”
= unique virtual goods with one unit
= add a dummy good to every bid in an XOR set
= Now at most one bid from each set can be satisfied

= Same winner-determination procedure used by:
= first-price combinatorial auction
= generalized Vickrey auction
= various ascending auction mechanisms



Computational Problem

= Unfortunately, winner determination is NP-Hard,
even with only one unit per good

= Responses to intractability
= approximation
= restrict bids (tractable subcase)
= find optimal solution anyway

= Benefits of finding optimal solution
= constant-bounded approximation is still intractable
= bidders’ strategies affected by approximation

= restriction can prevent bidders from expressing full
preferences



i Finding Optimal Solution

= All previously-published work on CA’s has
concerned single-unit case

= A natural solution: mixed-integer
programming
= rich history
= commercial packages (CPLEX)



CAMUS

= Combinatorial Auction Multi-Unit Search
= branch and bound search

= Structure the search space
= avoid considering impossible allocations
= efficient upper-bound function for pruning

= enhancements
= preprocessing dominated bids
« dynamic programming
= caching to improve tightness of upper-bound
= heuristics
= Maximize effectiveness of pruning: upper bound
= find good allocations quickly: lower bound

= A generalization of our CASS algorithm (1999)



i First: CAMUS/CPLEX comparison

= Necessary to use artificial data for testing

= Used a distribution from our new paper
(to appear at EC-00)

= aims to model bidding in real-world domains
= Rallroad Shipping Domain: Railroad Graph

= nNodes: cities

= edges: railroad link between cities

= edge weights: link capacity



Rallroad Distribution

= Randomly generate a graph

random num units per edge: [1, max_units_per good]

s Create a new bidder

randomly choose start and end cities,
number of units to ship

valuation for route: random proportional to the
distance, superadditive in number of units

generate substitutable bids for all bundles of edges
where valuation > cost of shipping (¢ * distance)

price offer: valuation — cost, rounded to integer



i Rallroad Distribution: Example

' ' I U owiest &
"Biﬁ"
B \ |
Qs -
na |

|

¥ (LI ud [+ R [+ ] 1

Parameters: num_cities = 5.3 * goods + 3.5, initial_connections = 2, building_penalty = 2.7,
num_building_paths = (num_cities)2/4, shipping_cost_factor = 1.1,
max_bid_set size = 8, max_cap = 20, additivity = 0.2.

Q



Average over 10 Trials (s)

10 goods:
CAMUS, CPLEX, Min Performance

100000

10000 -

1000 -

100 -

[EEY
o
I

— - —

\.’/

0'1 T T T T T T T T T T T T T T T
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Number of Bids

——CAMUS - 10 —8—CPLEX-10 —@— Min-10




Average over 10 Trials (s)

12 goods:
CAMUS, CPLEX, Min Performance

100000

10000 -

1000 -

100 -

[EEY
o
I

0.1

400

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of Bids

——CAMUS - 12 —8—CPLEX-12 —@— Min-12

2100



CAMUS Implementation: Search

= Depth-First Search on allocations
= begin with empty allocation

= add bids to current partial allocation until
complete; backtrack

s Branch and Bound Search
= lower bound: best allocation observed so far

= upper bound: revenue of current partial
allocation + overestimate of revenue from
unallocated units

= when upper bound < lower bound, backtrack



Structure the Search Space

= Partition the bids into bins
= one bin for each good
= each bid belongs to the bin corresponding to its
lowest-order good
= After adding a bid, move to the bin for the
lowest-order good with unallocated units

= this may be the bin we just left (multi-unit!)
= Create a subbin of the current bin and keep searching
= subbin: include only higher-order bids than the last bid
chosen from this bin
= any bids that we skip are guaranteed to conflict with
the current partial allocation



i Upper Bound Function h(g,I,7)

= An overestimate of the revenue that can be achieved
from the remaining units of good ¢

= given that the search is in bin 1 and has partial allocation 7
= precompute lists for all g, I:
= each list: all bids for units of good g in bin I or beyond
= sorted in descending order of average price per unit (APPU)
= Let b be first bid in list I that doesn’t conflict with 7z
= [’s contribution to the overestimate:
APPU(b) * min(units;(b), units_needed))

= If more units are still needed, keep moving down the list and find
another non-conflicting bid; repeat

= Why does this work? Please see our paper...



i Dominated Bids

= For each pair of bids (b,, b,), where:
= price(b,) > price(b,)
= for all goods J, units;(b,) < units; (b,)

= b, will not win unless b, also wins

= store b, as a “child” of b,
= only consider adding b, after adding b,

= If units;(b,) + units; (b,) > maxunits; for any |
= we will never add b,: delete it




i Dynamic Programming

= In some auctions, singleton bids will be relatively
common

= Additionally, singleton bids can be computationally
expensive to consider: can lead to deep searches

= Dynamic programming preprocessing:

= find the optimal set of singleton bids requesting from
1 to maxunits;, for each good j

= In search, only ever consider the optimal singleton set
that consumes all remaining units of a good



i Caching

= It is possible to allocate the same number of
units of the same goods in more than one way

= the search beyond this point is always the same

= Store the results of search in a hash table, then reuse
them if we get to the same point again

= Mmost searches are pruned before they reach a full allocation,
so we can't store the best allocation in the cache

= Use the cache to store upper bounds

= only store the results that involved non-negligible cost to
compute

= cache upper bounds often tighter than h()

= cache can be seen as learning a better h()
= a tighter upper bound



Good-Ordering Heuristic

= designate as good #1 the good I that minimizes
(numbids; - maxunits;) / (avgunits;)
= Minimize number of bids in low-order bins
= reduce branching

= Minimize number of units of goods in low-order bins

=« move quickly past the first bins, where the pruning function is
least informative

= maximize total number of units requested by bids In
low-order bins
= move quickly to high-order bins

= remove bids involving good #1 and repeat for
good #2, etc.



Bid-Ordering Heuristic

= Order bids within bin so we encounter
most promising bids first

= Improve lower bound

= Sort bids b in descending order of
APPU(b) + h(z U b)
= APPU(b) Is a measure of b’'s promise

= h() I1s a measure of how promising the
unallocated units are, given partial allocation

= This ordering is dynamic, because
h(7z U b) depends on the past search




CAMUS vs. CPLEX

= The jury’s still out
= CAMUS outperforms CPLEX on the railroad distribution
= we've seen other cases where CPLEX is better
= What are the strengths of each approach?

= Choice of distribution is fundamental to testing

= can we agree on distributions that capture the
patterns we expect from real-world bidding?

s Jowards a Universal Test Suite for Combinatorial
Auctions, http://robotics.stanford.edu/CATS

= we'd love to get your feedback on this!



http://robotics.stanford.edu/CATS

i Conclusion

= CAMUS is a general-purpose algorithm for finding the
winners of multi-unit combinatorial auctions

= A branch and bound search:
= Structuring the search space
= preprocessing
= dynamic programming
= caching
= heuristics for ordering goods and bids

= Promising performance when compared to CPLEX on our
railroad distribution

= Mmore work needed to understand strengths and weaknesses of
each approach on other real-world CA distributions



	An Algorithm forMulti-UnitCombinatorial Auctions
	Combinatorial Auctions
	Multi-Unit CA’s
	Winner Determination
	Computational Problem
	Finding Optimal Solution
	CAMUS
	First: CAMUS/CPLEX comparison
	Railroad Distribution
	Railroad Distribution: Example
	10 goods:CAMUS, CPLEX, Min Performance
	12 goods:CAMUS, CPLEX, Min Performance
	CAMUS Implementation: Search
	Structure the Search Space
	Upper Bound Function h(g,i,)
	Dominated Bids
	Dynamic Programming
	Caching
	Good-Ordering Heuristic
	Bid-Ordering Heuristic
	CAMUS vs. CPLEX
	Conclusion

