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Overview

• Multiagent systems
– autonomy; asymmetric information 

– cooperative: same interests

– competitive: selfish

• Resource allocation in multiagent systems
– cooperative: behavioral protocol can be imposed

– competitive: agents can’t be trusted to follow a protocol

• Explore interactions between Economics/Game Theory
and Computer Science
1. GT problems with CS solutions

2. CS problems with GT solutions

3. Bidirectional interactions; synthesis
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Why auctions?

• Theoretical framework for resource allocation among 
self-interested agents
– e.g., social welfare maximization; revenue maximization

• They’re big ($$$)
– and the internet is changing the way they’re used







What you need to know about auctions

• They’re a broader category than often perceived

• Of special interest: Combinatorial auctions
– hot topic in CS for past four years

– auctions where bidders can request bundles of goods

– interesting because of complementarity and substitutability
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Winner Determination Problem

• Input: n goods, m bids

• Objective: find revenue-maximizing non-conflicting 
allocation



What’s known about WDP

Equivalent to weighted set packing, NP-Complete

1. Approximation
– best guarantee is within factor of

– economic mechanisms can depend on optimal solution

2. Polynomial special cases
– very few (ring; tree; totally unimodular matrices)

– allowing unrestricted bidding is the whole point

3. Complete heuristic search
– CASS [Fujishima, Leyton-Brown, Shoham, 1999]

– CABOB [Sandholm, 1999; Sandholm, Suri, Gilpen, Levine, 2001]

– GL [Gonen & Lehmann, 2001]

– CPLEX [ILOG Inc., 1987-2003]



Where do we stand?

• Best solutions (e.g., CPLEX):
– often blindingly fast

– but sometimes very slow

• Problem I: Are we testing on the right data?
– Legacy [Sandholm, 1999]; [Fujishima, Leyton-Brown, Shoham, 1999]

– CATS  [Leyton-Brown, Pearson, Shoham, 2000]

• Problem II: How can we understand why performance 
varies so drastically?
– use machine learning to predict running time

[Leyton-Brown, Nudelman, Shoham, 2002]



Empirical Hardness Models

• Our goal: emulate success in understanding the 
hardness of (e.g.) satisfiability instances, but:
– we have an optimization problem

– and a very high dimensional one

• If we are nonetheless successful, we will be able to:
– go get coffee while the algorithm is running

– build algorithm portfolios

– tune distributions for hardness

– in general, gain insight into the sources of hardness

• Case study of these models on WDP
– recent work: applied these ideas to SAT



Empirical Hardness Methodology

1. Select optimization algorithm

2. Select set of distributions

3. Define problem size

4. Select features

5. Generate instances

6. Compute running time, features

7. Learn running time model



Features

1. Linear Programming
– L1, L2, L∞ norms of integer slack vector

2. Price
– stdev(prices)

– stdev(avg price / num goods)

– stdev(average price / sqrt(num goods))

3. Bid-Good graph
– node degree stats (max, min, avg, stdev)

4. Bid graph
– node degree stats

– edge density

– clustering coefficient (CC), stdev

– avg min path length (AMPL)

– ratio of CC to AMPL

– eccentricity stats (max, min, avg, stdev)
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Experimental Setup

Goods

• Problem size: goods, undominated bids

• Nine distributions (legacy; CATS)
– sample parameters uniformly from given ranges

– generate 500 instances/distribution: 4500 per dataset

• Three datasets:
– 256 goods, 1000 non-dominated bids

– 144 goods, 1000 non-dominated bids

– 64 goods, 2000 non-dominated bids

• Experiments:
– 32-machine cluster of 550 MHz Xeons, Linux 2.12

– collecting data took approximately 3 years of CPU time! 

– running times varied from 0.01 sec to 22 hours (CPLEX capped)

Bid: $50Bid: $100
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Learning

• Linear regression
– ignores interactions 

between variables

• Consider 2nd degree 
polynomials
– variables: pairwise

products of original 
features

– total of 325

• We tried various 
other non-linear 
approaches; none 
worked better.

(test set)



Understanding Models: RMSE vs. Subset Size
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Cost of Omission (subset size 6)
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Boosting as a Metaphor for Algorithm Design
[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003]

Boosting (machine learning technique):

1. Combine uncorrelated weak classifiers into aggregate

2. Train new classifiers on instances that are hard for 
the aggregate

Algorithm Design with Hardness Models:

1. Hardness models can be used to select an algorithm
to run on a per-instance basis

2. Use portfolio hardness model as a PDF, to induce a 
new test distribution for design of new algorithms



Portfolio Results
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Distribution Induction

• We want our test distribution to generate problems 
in proportion to the time our portfolio spends on them

– D: original distribution of instances 

– Hf: model of portfolio runtime (hf: normalized)

• Goal: generate instances from D · hf

– D is a distribution over the parameters of an instance generator

– hf depends on features of generated instance

• Use rejection sampling
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Focused Loading

• Many users demand network 
resources at a focal time

• Example: long distance phone

– want to talk as early as 
possible, minimize cost 

– max utility when rates drop: 
network demand spikes

• Computer networks: load can be 
even more focused

– sudden onset: TicketMaster
server as tickets go on sale

– deadline: IRS server just before 
taxes are due

• Idea: provide incentives for users 
to defocus their own loads
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Things you need to know from Game Theory

• Game: 
– players/agents

– actions

– strategies

– payoffs

• Equilibrium
– stable strategies

– weak/strict

– mixed/pure

• Mechanism design



Our Model

• Network resource: use is divided into t timeslots 

• Each slot has a fixed usage cost m

• n agents will use the network resource for one slot each
– slot   is preferred by all agents

• Agent ai’s valuation for slot s is vi(s).  Two cases:
1. all agents have the same v

2. mechanism designer knows bounds: vl and vu

• d(s) is the number of agents who choose slot s

• Give agents incentive to balance load, but make 
small computational demands on the network resource
– waive the usage fee for slot s with probability p(s) 

– q: expected number of free slots 



Mechanism Evaluation, Optimality

The mechanism designer has two goals:
1. maximize expected revenue

2. balance load caused by the agents’ selection of slots

Expressed in tradeoff function z

Optimality: A mechanism-equilibrium pair is optimal if it 
maximizes z, as compared to all other equilibria in 
other mechanisms (constant n, participation rational)

ε-optimality: z - zopt is bounded by nε

Theorem 1: The optimal mechanism-equilibrium pair has a 
weak equilibrium (complete indifference). [same v]

Theorem 2: No strict, optimal equilibrium exists



“Collective Reward”
1. The mechanism signals agents with slot numbers

– c(s): the number of agents given signal s

2. Each agent chooses a slot

3. The mechanism computes p, and determines which 
slots will be made (retroactively) free

Lemma 1: Assigning each agent the signal that greedily 
improves z gives rise to optimal d

Lemma 2: Strict equilibrium ϕ: ai chooses slot c(i)

Theorem 3: (CR, ϕ) is ε-optimal [same v] 

Theorem 4: (CR, ϕ) is k-optimal, 
[different v]
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Computation-Friendly Game Representations

• In practice, interesting games are large;
computing equilibrium is hard

• CS agenda: compact representation, tractable computation
– independencies/modularity [La Mura, 2000], [Kearns, Littman, Singh, 2001], 

[Vickrey & Koller, 2002]

– symmetries [Roughgarden & Tardos, 2001], [Kearns & Mansour, 2002]

• Congestion games (slightly simplified) [Rosenthal, 1973]

– each agent i selects an action a

– D(a) is the number of agents who choose action a

– Fa(·) are arbitrary functions for each a

– agent i pays

• Example: traffic congestion



Local Effect Games
[Leyton-Brown & Tennenholtz, 2003]

• An agent can be made to pay more because another 
agent chooses a different but related action
– location problem: ice cream vendors on the beach

• neigh(a) is the set of actions that locally affect agents 
who choose action a     

• Fa,a’(·) is the cost due to the local effect from action a
to action a’

• Agent i pays
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Local Effect Games

1. Compact representation

– context-specific independence between actions

– symmetry among players’ utility functions

2. What about finding equilibria?

– theoretical: exploit special properties
• pure-strategy Nash equilibrium

– computational
• myopic best-response dynamics



Main Technical Results
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Main Technical Results



Computational Results
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Computational Results
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Distribution Induction

• D: original distribution of instances 

• Hf: model of portfolio runtime 
– hf: normalized for interpretation as a density function

• Goal: generate instances from D · hf
– D is a distribution over the parameters of an instance generator

– hf depends on features of generated instance

• Rejection sampling
1. Create model of hardness Hp using parameters of the instance 

generator as features; normalize it to create a PDF hp

2. Generate an instance from D · hp

3. Keep the sample with probability proportional to

4. Else, goto 2
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