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Overview

Multiagent systems
— autonomy; asymmetric information
— cooperative: same interests

— competitive: selfish

Resource allocation in multiagent systems
— cooperative: behavioral protocol can be imposed

— competitive: agents can’t be trusted to follow a protocol

Explore interactions between Economics/Game Theory
and Computer Science

1. GT problems with CS solutions

2. CS problems with GT solutions

3. Bidirectional interactions; synthesis
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Why auctions?

e Theoretical framework for resource allocation among
self-interested agents

— e.g., social welfare maximization; revenue maximization

e They're big ($$$)

— and the internet is changing the way they're used
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What you need to know about auctions

e They're a broader category than often perceived

e Of special interest: Combinatorial auctions
— hot topic in CS for past four years
— auctions where bidders can request bundles of goods

— interesting because of complementarity and substitutability
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Winner Determination Problem

e Input: n goods, m bids
< S’vaz >7S’i C {1,,%}

e Objective: find revenue-maximizing non-conflicting
allocation

T
maximize: ) x;p;
i=1

subject to: ) ;<1 Vg
i|gES;
z; € {0,1} Vi



What's known about WDP

Equivalent to weighted set packing, N’P-Complete

1. Approximation
— best guarantee is within factor of \/n

— economic mechanisms can depend on optimal solution

2. Polynomial special cases
— very few (ring; tree; totally unimodular matrices)

— allowing unrestricted bidding is the whole point

3. Complete heuristic search

— CPLEX

— CASS [Fujishima, Leyton-Brown, Shoham, 1999]
— CABOB [Sandholm, 1999; Sandholm, Suri, Gilpen, Levine, 2001]
— GL |Gonen & Lehmann, 2001]

[

ILOG Inc., 1987-2003]



Where do we stand?

Best solutions (e.g., CPLEX):
— often blindingly fast

— but sometimes very slow

Problem I: Are we testing on the right data?
— Legacy [Sandholm, 1999]; [Fujishima, Leyton-Brown, Shoham, 1999]
— CATS [Leyton-Brown, Pearson, Shoham, 2000]

Problem II: How can we understand why performance
varies so drastically?

— use machine learning to predict running time
[Leyton-Brown, Nudelman, Shoham, 2002]



Empirical Hardness Models

e Qur goal: emulate success in understanding the
hardness of (e.g.) satisfiability instances, but:
— we have an optimization problem
— and a very high dimensional one

e If we are nonetheless successful, we will be able to:
— go get coffee while the algorithm is running
— build algorithm portfolios
— tune distributions for hardness
— in general, gain insight into the sources of hardness

e (Case study of these models on WDP
— recent work: applied these ideas to SAT
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Empirical Hardness Methodology

Select optimization algorithm
Select set of distributions
Define problem size

Select features

(Generate instances

Compute running time, features

Learn running time model



Features

Linear Programming

L,, L,, L norms of integer slack vector

Price

stdev(prices)
stdev(avg price / num goods)
stdev(average price / sqrt(num goods))

Bid-Good graph

node degree stats (max, min, avg, stdev)

Bid graph

node degree stats

edge density

clustering coefficient (CC), stdev

avg min path length (AMPL)

ratio of CC to AMPL

eccentricity stats (max, min, avg, stdev)

™
maximize: ) zp;
i=1

subject to: ) ;<1 Vg
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Experimental Setup

Problem size: goods, undominated bids

Nine distrib

— sample par

Bid: $100

ranges

— generate 5

0 mstances/distribution: 450

Three datasets:

— 256 goods, 1000 non-dominated bids
— 144 goods, 1000 non-dominated bids
— 64 goods, 2000 non-dominated bids

Experiments:
— 32-machine cluster of 550 MHz Xeons, Linux 2.12

— collecting data took approximately 3 years of CPU time!
— running times varied from 0.01 sec to 22 hours (CPLEX capped)

per dataset




Gross Hardness (144 goods, 1000 bids)
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e Linear regression

— 1gnores interactions
between variables

e Consider 27 degree
polynomials

— variables: pairwise
products of original
features

— total of 325

e We tried various
other non-linear
approaches; none
worked better.
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Understanding Models: RMSE vs. Subset Size

0.8 -
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Cost of Omission (subset size 6)

BG edge density *
Integer slack L1 norm

Integer slack L1 norm

BGG min good degree
* Clustering Coefficient

Clustering deviation *
Integer slack L1 norm

BGG min good degree
* BGG max bid degree

Clustering coefficient *
Average min path length

0 20 40 60 80 100



Boosting as a Metaphor for Algorithm Design

[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003]

Boosting (machine learning technique):
1. Combine uncorrelated weak classifiers into aggregate

2. Train new classifiers on instances that are hard for
the aggregate

Algorithm Design with Hardness Models:

1. Hardness models can be used to select an algorithm
to run on a per-instance basis

2. Use portfolio hardness model as a PDF, to induce a
new test distribution for design of new algorithms
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Distribution Induction

* We want our test distribution to generate problems
in proportion to the time our portfolio spends on them
— D: original distribution of instances
— Hy model of portfolio runtime (h,: normalized)

* Goal: generate instances from D - h;
D is a distribution over the parameters of an instance generator

— h; depends on features of generated instance

e Use rejection sampling

Matching
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Focused Loading

Many users demand network
resources at a focal time
Example: long distance phone

— want to talk as early as
possible, minimize cost

— max utility when rates drop:
network demand spikes
Computer networks: load can be
even more focused

— sudden onset: TicketMaster
server as tickets go on sale

— deadline: IRS server just before
taxes are due

Idea: provide incentives for users
to defocus their own loads

6.0%
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5.0% -
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4.0% A
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Hour

Quarterly Trunk Calls on Weekdays in
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[Mitchell, 1978]

|[Leyton-Brown, Porter, Prabhakar, Venkataraman, Shoham, 2001; 2003]



Things you need to know from Game Theory

 (Game:
— players/agents
— actions
— strategies

— payofts

* Equilibrium
— stable strategies
— weak /strict
— mixed /pure

e Mechanism design




Our Model

Network resource: use is divided into ¢ timeslots

Each slot has a fixed usage cost m

n agents will use the network resource for one slot each
— slot sis preferred by all agents

Agent a,'s valuation for slot s is v,(s). Two cases:
1. all agents have the same v
2. mechanism designer knows bounds: v and v*

d(s) is the number of agents who choose slot s

Give agents incentive to balance load, but make
small computational demands on the network resource
— waive the usage fee for slot s with probability p(s)

— @: expected number of free slots



Mechanism Evaluation, Optimality

The mechanism designer has two goals:

1. maximize expected revenue
2. balance load caused by the agents’ selection of slots

Expressed in tradeoff function z

Optimality: A mechanism-equilibrium pair is optimal if it
maximizes z, as compared to all other equilibria in
other mechanisms (constant n, participation rational)

g-optimality: z - z ., is bounded by ne

Theorem 1: The optimal mechanism-equilibrium pair has a
weak equilibrium (complete indifference). [same v]

Theorem 2: No strict, optimal equilibrium exists



“Collective Reward”

1. The mechanism signals agents with slot numbers
— ¢(s): the number of agents given signal s

2. Each agent chooses a slot

3. The mechanism computes p, and determines which
slots will be made (retroactively) free

b @)_*{(\&@@i@@m@# 5 p(s) = { max(p*(s) +,1) if d(s) < (o)

if ¢ — < if d(s) > c(s)

Lemma 1: Assigning each agent the signal that greedily
improves z gives rise to optimal d

Lemma 2: Strict equilibrium ¢: a, chooses slot (%)
Theorem 3: (CR, @) is e-optimal [same ]

Theorem 4: (CR, @) is k-optimal, k = max(v*(s) — wH(s)) + ¢
different v]
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Computation-Friendly Game Representations

 In practice, interesting games are large;
computing equilibrium is hard

« (S agenda: compact representation, tractable computation

independencies/modularity [La Mura, 2000], [Kearns, Littman, Singh, 2001],
|Vickrey & Koller, 2002]

symmetries [Roughgarden & Tardos, 2001], [Kearns & Mansour, 2002]

« (Congestion games (slightly simplified) [Rosenthal, 1973

each agent ¢ selects an action a
D(a) is the number of agents who choose action a

F (-) are arbitrary functions for each a

a

agent i pays p;(a;, D) = Fo,(D(a;))

« Example: traffic congestion



Local Etftect Games

[Leyton-Brown & Tennenholtz, 2003]

An agent can be made to pay more because another
agent chooses a different but related action
— location problem: ice cream vendors on the beach

neigh(a) is the set of actions that locally affect agents
who choose action a

F, »(-) is the cost due to the local effect from action a

to action a’

Agent i pays pi(a;, D) = Faa,(D(a))+ Y. Fy,.(D(a)).
a’cneigh(a;)

P fh

Local Effect Graphs



Local Eftect Games

1. Compact representation
— context-specific independence between actions

— symmetry among players’ utility functions

2. What about finding equilibria?
— theoretical: exploit special properties
e pure-strategy Nash equilibrium

— computational

* myopic best-response dynamics



Main Technical Results

Definition 1 A local-effect game is a bidirectional local-effect game when
local effects are bidirectional: Ya € ANa' # a € AF, o (x) = For o).

Theorem 1 Bidirectional log~
libria if Vi, Vi # 1 F; ;(x)

&ect games hp——=<ure strategy Nash equi-

Definition 2 A local-effect game is a uniform local-effect game when lo-
cal effects are uniform: VA, B,C € A (B € neigh(4) A C € neigh(A)) —
Vo Fa(x) =Fac(x).

Theorem 2 Uniform local-é, rategy Nash equilibria

if the local-effect graph is a clique.



Main Technical Results

Theorem 3 The class of congestion games contains the class of local-effect
games for which any of the following hold:

1. the game is a bidirectional local-effect game and all local-effect func-
ttons are linear

2. the game is a uniform local-effect game and the local-effect graph is a
clique

3. the local-effect graph contains no edges
4. the local-effect graph contains fewer than three nodes

No other local-effect games are congestion games.

Theorem 4 If a local-effect game satisfies
1. VA € AVB € neigh(A),Vz, Faa(z) < Fa p(x)
2. VA, Be AV > 1, Faplx+1)— Fap(r) <Faplx) —Faplx—1),

then there exists a pure-strateqy Nash eguilibrium in which agents choose
nodes that constitute an independent set.



Computational Results
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Computational Results
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Distribution Induction

D: original distribution of instances

H : model of portfolio runtime

— hj: normalized for interpretation as a density function

Goal: generate instances from D - h,

— D is a distribution over the parameters of an instance generator

— h; depends on features of generated instance

Rejection sampling

1.

Create model of hardness H using parameters of the instance
generator as features; normalize it to create a PDF h,

H(s)
hp(S)

Generate an instance from D - hp

Keep the sample with probability proportional to
Else, goto 2
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