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The Algorithm Selection Problem

• What is the best algorithm for a given problem?
– worst-/average-case measure doesn’t tell the whole story

– ideally, select algorithm on a per-instance basis [Rice]

• Our approach:
– Identify:

• a target distribution of problem instances, D

• a set of algorithms, where each algorithm has a significant probability 
of outperforming the others on instances drawn from D

• polytime-computable features of problem instances

– Learn per-algorithm empirical hardness models

– Use the models to construct an algorithm portfolio by choosing the 
algorithm with the best predicted runtime



Combinatorial Auction Winner Determination

• Equivalent to weighted set packing

• Input: n goods, m bids 

• Objective: find revenue-maximizing non-conflicting 
allocation



WDP: Runtime Variation

• Complete algorithms:

– CPLEX [ILOG Inc.]

– CASS [Leyton-Brown et.al], 

– GL [Gonen and Lehman]

• Gathered runtime data using 
various distributions

– randomly sampled generator’s 
parameters for each instance 

• Even holding problem size 
constant, runtimes vary by 
many orders of magnitude
across and within distributions
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WDP: Features

1. Linear Programming
– L1, L2, L∞ norms of integer slack vector

2. Price
– stdev(prices)

– stdev(avg price per good)

– stdev(average price per sqrt(good))

3. Bid-Good graph
– node degree stats (max, min, avg, stdev)

4. Bid graph
– node degree stats

– edge density

– clustering coefficient (CC), stdev

– avg min path length (AMPL)

– ratio of CC to AMPL

– eccentricity stats (max, min, avg, stdev)
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WDP: Empirical Hardness Models

• Quadratic regression can be used to learn very accurate 
models 
– predicting log10 of CPLEX runtime 

– Root mean squared error: 0.216 (test data)
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WDP: From Models to a Portfolio
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SATZilla: A Portfolio for SAT

• Algorithms in the portfolio:
– 2clseq [Bacchus] Limmat [Biere]

– OKsolver [Kullmann] relsat [Bayardo]

– Satz-Rand [Kautz, Li] SATO [Zhang]

– zChaff [Zhang] Jerusat [Nadel]

• Satzilla2 (Hors-Concours) added:
– eqsatz [Li] HeerHugo [Groote]

– AutoWalkSat [Patterson, Kautz] (preprocessing)

• Developed in just over two weeks!



SATzilla: Features
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1. Problem Size: #vars, #clauses, 
#vars/#clauses

– rest of features are normalized by these

2. Graphs: 
• Variable-Clause (VCG, bipartite)

• Variable (VG, edge whenever two 
variables occur in the same clause)

• Clause (CG, edge whenever two clauses 
share a variable with opposite sign)

— compute stats=(max, min, stdev, mean, 
entropy) over node degrees

— for VCG, both for vars and clauses

— # of unary, binary, ternary clauses

— stats of the CG clustering coefficients
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SATzilla: Features

3. Stats of #positive/#negative literals in each clause

4. Stats of #positive/#negative occurrences for each var

5. Horn clauses
– total #horn clauses

– stats of #horn occurrences for each var

6. LP relaxation features
– objective value

– stats of integer slacks

– #vars set to an integer

7. Probing features
• DPLL probing features (to depth 256)

— #unit props after reaching depths 1, 4, 16, 64, 256

• Local search probing (100 probes, each probe runs to plateau/max)
— stats of climb height (in #clauses) – stats of #steps taken

— stats of fraction of satisfied clauses – stats of break counts/#vars

• Search space size probing (5000 random search paths with unit-prop)
— average depth to contradiction, estimate log-num-nodes in search tree

k1



Slide 10

k1 # pos/# neg: should be abs(0.5 - #pos / (#pos + #neg)) so that flipping all pos and neg doesn't change the stat
kevinlb, 1/1/2004



SATzilla: Models and Portfolio

• Learned linear regression models for each algorithm
– trained on more than 20000 instances

• included 2002 competition instances

• highly skewed towards random instances

– training set preprocessed to exclude instances that were solved by 
all solvers, or by none of them

– terrible RMSE on test set

– enough predictive power to discriminate well

• On the training set, SATzilla’s choice takes on average 
92 seconds longer to run than the optimal choice
– gives SATzilla an edge over its subsolvers, especially on harder 

instances



SATzilla: SAT-2003 Competition

• 2nd in Random instances track

• 3rd in Handmade track;  2nd in Handmade track, SAT only

• Only solver with good performance in more than one track

• Success measured in #series solved, not #benchmarks solved

– Satzilla 2 solved more random instances than kcnfs



SATzilla: Areas for Improvement

• Add new algorithms to the portfolio

– SATzilla outperformed all its constituent algorithms

• Construct better models

– as we continue to study and analyze SAT data, our 
model accuracy is increasing

• Spend more development time to eliminate bugs

– LP features timed out on many industrial benchmarks
• instead of using a fallback solver (zChaff), SATzilla picked one 

essentially at random, but most don’t do well on industrial

– some “random” instances were solved but didn’t count!
• Relsat was chosen, and actually solved them, but it had an 

output bug 



Conclusions

• WDP

– models: very mature, high accuracy

– algorithms: one is dominant, limiting the size of 
possible gains from a portfolio approach

• SAT

– models: more of a proof of concept, much room for 
improvement.  However, discrimination accuracy is 
much better than prediction accuracy.

– algorithms: many are strong and correlation is fairly 
low, making this an excellent domain for future study



Conclusions

Overall, our techniques provide a quick and relatively automatic
blueprint for building algorithm portfolios, suitable when there are:
– two or more algorithms with relatively uncorrelated runtimes

– a set of good features

– lots of data
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