
Learning the Empirical Hardness
of Combinatorial Auctions

Kevin Leyton-Brown
Eugene Nudelman
Yoav Shoham

Computer Science
Stanford University

Thanks to:
Carla Gomes, Bart Selman, Rámon Béjar
Ioannis Vetsikas, and Henry Kautz

September 12, 2004 Constraint Programming 2002, Cornell 2

Introduction

Recent trend: study of average/empirical
hardness as opposed to the worst-case
complexity (NP-Hardness) [Cheeseman et al.;
Selman et al.]

Our proposal: predict the running time of
an algorithm on a particular instance based
on features of that instance
Today:

a methodology for doing this
its application to the combinatorial auction
winner determination problem (WDP)

September 12, 2004 Constraint Programming 2002, Cornell 3

Why?

Predict running time
for its own sake
build algorithm portfolios

Theoretical understanding of hardness
tune distributions for hardness
improve algorithms

Problem specific
WDP: design bidding rules

September 12, 2004 Constraint Programming 2002, Cornell 4

Related Work
Decision problems:

phase transitions in solvability, corresponding to
hardness spike [Cheeseman et al.; Selman et al.]

solution invariants: e.g., backbone [Gomes et al.]

Optimization problems:
experimental:

• reduce to decision problem [Zhang et al.]

• introduce backbone concepts [Walsh et al.]

theoretical:
• polynomial/exponential transition in search algorithms

[Zhang]
• predict A* nodes expanded for problem distribution [Korf,

Reid]

Learning
dynamic restart policies [Kautz et al.]

September 12, 2004 Constraint Programming 2002, Cornell 5

Combinatorial Auctions

Auctioneer sells a set of non-homogeneous items
Bidders often have complex valuations

complementarities
• e.g. V(TV & VCR) > V(TV) + V(VCR)

substitutabilities
• V(TV1 & TV2) < V(TV1) + V(TV2)

Solution: allow bids on bundles of goods
achieves a higher revenue and social welfare than
separate auctions

Two hard problems:
Expressing valuations
Determining optimal allocation

September 12, 2004 Constraint Programming 2002, Cornell 6

Winner Determination Problem

Equivalent to weighted set packing
Input: m bids
Objective: find revenue-maximizing non-
conflicting allocation

Even constant factor approximation is NP-Hard
Square-root approximation known
Polynomial in the number of bids

September 12, 2004 Constraint Programming 2002, Cornell 7

WDP Case Study

Difficulty: highly parameterized, complex
distributions
Hard to analyze theoretically

large variation in edge costs and branching
factors throughout the search tree [Korf, Reid, Zhang]

Too many parameters to vary
systematically [Walsh et al., Gomes et. al.]

Parameters affect expected optimum:
difficult to transform to decision problem
[Zhang et al.]

September 12, 2004 Constraint Programming 2002, Cornell 8

Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 9

Methodology

1. Select algorithm: ILOG’s CPLEX 7.1
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 10

Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 11

WDP Distributions

Legacy (7 distributions)
sample bid sizes/prices independently from
simple statistical distributions

Combinatorial Auctions Test Suite (CATS)
Attempted to model bidder valuations to
provide more motivated CA distributions

1. regions: real estate
2. arbitrary: complementarity described by

weighted graph
3. matching: FAA take-off & landing auctions
4. scheduling: single resource, multiple deadlines

for each agent [Wellman]

September 12, 2004 Constraint Programming 2002, Cornell 12

Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 13

Problem Size

Some sources of hardness well-understood
hold these constant to focus on unknown
sources of hardness

Common: input size
Problem size is affected by preprocessing
techniques! (e.g. arc-consistency)
WDP: dominated bids can be removed
(raw #bids, #goods) is a very misleading
measure of size for legacy distributions

we fix size as (#non-dominated bids, #goods)

September 12, 2004 Constraint Programming 2002, Cornell 14

Raw vs. Non-Dominated Bids
(64 goods, target of 2000 non-dominated bids)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000
Raw Number of Bids

N
um

be
r

of
 N

on
-D

om
in

at
ed

 B
id

s
(a

ve
ra

ge
 o

ve
r

20
 r

un
s)

L1 L2 L3 L4 L5 L6 L7

L1: Uniform Random

L4: Decay

L5: Normal

L6: Exponential
L2: Weighted Random

L7: Binomial
L3: Uniform

September 12, 2004 Constraint Programming 2002, Cornell 15

Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 16

Features

No automatic way to construct features
must come from domain knowledge

We require features to be:
polynomial-time computable
distribution-independent

We identified 35 features
after using various statistical feature selection
techniques, we were left with 25

September 12, 2004 Constraint Programming 2002, Cornell 17

Features

Bid Good Graph
(BGG)
1. Bid node degree stats
2. Good node degree stats

Price-based features
9. std. deviation
10. stdev price/#goods
11. stdev price/ √#goods

Bid Graph (BG)
3. node degree stats
4. edge density
5. clustering coef. and

deviation
6. avg. min. path. length
7. ratio of 5 & 6
8. node eccentricity stats

LP Relaxation
12. L1, L2, L∞ norms of

integer slack vector

September 12, 2004 Constraint Programming 2002, Cornell 18

Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 19

Experimental Setup

Sample parameters uniformly from range of
acceptable values
3 separate datasets:

256 goods, 1000 non-dominated bids
144 goods, 1000 non-dominated bids
64 goods, 2000 non-dominated bids

4500 instances/dataset, from 9 distributions
Collecting data took approximately 3 years of
CPU time! (550 MHz Xeons, Linux 2.12)
Running times varied from 0.01 sec to 22 hours
(CPLEX capped at 130000 nodes)

September 12, 2004 Constraint Programming 2002, Cornell 20

Gross Hardness (256 goods, 1000 bids)

-1
0

1
2

3
4

5 Matching

Paths

Scheduling

L6
L2

Regions

L4
Arbitrary

L7
L3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Running Time
log10(sec)

Distribution
500 instances

in each

September 12, 2004 Constraint Programming 2002, Cornell 21

Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time

September 12, 2004 Constraint Programming 2002, Cornell 22

Learning

Classification: misleading error measure
Statistical regression: learn a continuous function
of features that predicts log of running time
Supervised learning: data broken into 80%
training set, 20% test set
Started with simplest technique: linear regression

find a hyperplane that minimizes root mean squared
error (RMSE) on training data

Linear regression is useful:
as a (surprisingly good) baseline
yields a very interpretable model with understandable
variables

September 12, 2004 Constraint Programming 2002, Cornell 23

LR: Error

0

20

40

60

80

100

120

140

160

C
ou

nt

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Absolute Error

Dataset RMSE MAE

1000 Bids, 256 Goods 0.581 0.436

1

September 12, 2004 Constraint Programming 2002, Cornell 24

LR: Subset Selection

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25
Subset Size

R
M

SE

7

September 12, 2004 Constraint Programming 2002, Cornell 25

LR: Cost of Omission (subset size 7)

0 10 20 30 40 50 60 70 80 90 100

Cost of Omission

BG: Edge Density

BG: Clustering Coefficient

BGG: Avg Good Degree

BGG: Min Good Degree

LP: L1 Norm

BG: Degree Deviation

BGG: Min Bid Degree

September 12, 2004 Constraint Programming 2002, Cornell 26

Non-Linear Approaches

Linear regression doesn’t consider interactions
between variables; likely to underfit data
Consider 2nd degree polynomials
Variables = pairwise products of original features

total of 325 variables
(cf. clauses/variables)

More predictability, less interpretability

September 12, 2004 Constraint Programming 2002, Cornell 27

Quadratic vs Linear Regression

0.436

0.216

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1000 Bids 256 Goods

Linear
Quadratic

September 12, 2004 Constraint Programming 2002, Cornell 28

0

50

100

150

200

250

300

350

C
ou

nt

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Absolute Error

Linear
Quadratic

Quadratic vs Linear Regression

1

September 12, 2004 Constraint Programming 2002, Cornell 29

QR: RMSE vs. Subset Size

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

RMSE of the complete model

RMSE of the linear model

September 12, 2004 Constraint Programming 2002, Cornell 30

Cost of Omission (subset size 6)

0 10 20 30 40 50 60 70 80 90 100

Clustering coefficient *
Average minimum path

length

BGG min good degree *
BGG max bid degree

Clustering deviation *
Integer slack L1 norm

BGG min good degree *
Clustering coefficient

Integer slack L1 norm

BG edge density * Integer
slack L1 norm

September 12, 2004 Constraint Programming 2002, Cornell 31

What’s Next?

Constructing algorithm portfolios
combine several uncorrelated algorithms
good initial results for WDP

Tuning distributions for hardness
releasing new version of CATS

September 12, 2004 Constraint Programming 2002, Cornell 32

Summary

Algorithms are predictable
Empirical hardness can be studied in a disciplined way

Once again: Structure matters!
Uniform distributions aren’t the best testbeds
Constraint graphs are very useful
Hypothesis: good heuristics make good features (e.g. LP)

Our methodology is general and can be
applied to other problems!

	Learning the Empirical Hardness of Combinatorial Auctions
	Introduction
	Why?
	Related Work
	Combinatorial Auctions
	Winner Determination Problem
	WDP Case Study
	Methodology
	Methodology
	Methodology
	WDP Distributions
	Methodology
	Problem Size
	Raw vs. Non-Dominated Bids(64 goods, target of 2000 non-dominated bids)
	Methodology
	Features
	Features
	Methodology
	Experimental Setup
	Gross Hardness (256 goods, 1000 bids)
	Methodology
	Learning
	LR: Error
	LR: Subset Selection
	LR: Cost of Omission (subset size 7)
	Non-Linear Approaches
	Quadratic vs Linear Regression
	Quadratic vs Linear Regression
	QR: RMSE vs. Subset Size
	Cost of Omission (subset size 6)
	What’s Next?
	Summary

