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Introduction

Recent trend: study of average/empirical 
hardness as opposed to the worst-case 
complexity (NP-Hardness) [Cheeseman et al.; 
Selman et al.]

Our proposal: predict the running time of 
an algorithm on a particular instance based 
on features of that instance
Today: 

a methodology for doing this 
its application to the combinatorial auction 
winner determination problem (WDP)
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Why?

Predict running time
for its own sake
build algorithm portfolios

Theoretical understanding of hardness
tune distributions for hardness
improve algorithms

Problem specific
WDP: design bidding rules
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Related Work
Decision problems:

phase transitions in solvability, corresponding to 
hardness spike [Cheeseman et al.; Selman et al.]

solution invariants: e.g., backbone [Gomes et al.]

Optimization problems:
experimental: 

• reduce to decision problem    [Zhang et al.]

• introduce backbone concepts [Walsh et al.]

theoretical: 
• polynomial/exponential transition in search algorithms 

[Zhang]
• predict A* nodes expanded for problem distribution [Korf, 

Reid]

Learning
dynamic restart policies [Kautz et al.]
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Combinatorial Auctions

Auctioneer sells a set of non-homogeneous items
Bidders often have complex valuations

complementarities
• e.g. V(TV & VCR) > V(TV) + V(VCR)

substitutabilities
• V(TV1 & TV2) < V(TV1) + V(TV2)

Solution: allow bids on bundles of goods
achieves a higher revenue and social welfare than 
separate auctions

Two hard problems:
Expressing valuations
Determining optimal allocation
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Winner Determination Problem

Equivalent to weighted set packing
Input: m bids
Objective: find revenue-maximizing non-
conflicting allocation

Even constant factor approximation is NP-Hard
Square-root approximation known
Polynomial in the number of bids
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WDP Case Study

Difficulty: highly parameterized, complex 
distributions
Hard to analyze theoretically

large variation in edge costs and branching 
factors throughout the search tree [Korf, Reid, Zhang]

Too many parameters to vary 
systematically [Walsh et al., Gomes et. al.]

Parameters affect expected optimum: 
difficult to transform to decision problem 
[Zhang et al.]
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Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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Methodology

1. Select algorithm: ILOG’s CPLEX 7.1
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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WDP Distributions

Legacy (7 distributions)
sample bid sizes/prices independently from 
simple statistical distributions

Combinatorial Auctions Test Suite (CATS)
Attempted to model bidder valuations to 
provide more motivated CA distributions

1. regions: real estate
2. arbitrary: complementarity described by 

weighted graph
3. matching: FAA take-off & landing auctions
4. scheduling: single resource, multiple deadlines 

for each agent [Wellman]
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Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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Problem Size

Some sources of hardness well-understood
hold these constant to focus on unknown 
sources of hardness

Common: input size
Problem size is affected by preprocessing 
techniques! (e.g. arc-consistency)
WDP: dominated bids can be removed
(raw #bids, #goods) is a very misleading
measure of size for legacy distributions

we fix size as (#non-dominated bids, #goods) 
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Raw vs. Non-Dominated Bids
(64 goods, target of 2000 non-dominated bids)
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Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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Features

No automatic way to construct features
must come from domain knowledge

We require features to be:
polynomial-time computable
distribution-independent

We identified 35 features
after using various statistical feature selection 
techniques, we were left with 25
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Features

Bid Good Graph 
(BGG)
1. Bid node degree stats
2. Good node degree stats

Price-based features
9. std. deviation
10. stdev price/#goods
11. stdev price/ √#goods

Bid Graph (BG)
3. node degree stats
4. edge density
5. clustering coef. and 

deviation
6. avg. min. path. length
7. ratio of 5 & 6
8. node eccentricity stats

LP Relaxation 
12. L1, L2, L∞ norms of 

integer slack vector
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Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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Experimental Setup

Sample parameters uniformly from range of 
acceptable values
3 separate datasets:

256 goods, 1000 non-dominated bids
144 goods, 1000 non-dominated bids
64 goods, 2000 non-dominated bids

4500 instances/dataset, from 9 distributions
Collecting data took approximately 3 years of 
CPU time! (550 MHz Xeons, Linux 2.12)
Running times varied from 0.01 sec to 22 hours 
(CPLEX capped at 130000 nodes)
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Gross Hardness (256 goods, 1000 bids)
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Methodology

1. Select algorithm
2. Select set of input distributions
3. Factor out known sources of hardness
4. Choose features
5. Generate instances
6. Compute running time, features
7. Learn a model of running time
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Learning

Classification: misleading error measure
Statistical regression: learn a continuous function 
of features that predicts log of running time
Supervised learning: data broken into 80% 
training set, 20% test set
Started with simplest technique: linear regression

find a hyperplane that minimizes root mean squared 
error (RMSE) on training data

Linear regression is useful:
as a (surprisingly good) baseline
yields a very interpretable model with understandable 
variables
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LR: Error
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LR: Subset Selection
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LR: Cost of Omission (subset size 7)
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Non-Linear Approaches

Linear regression doesn’t consider interactions 
between variables; likely to underfit data
Consider 2nd degree polynomials
Variables = pairwise products of original features

total of 325 variables
(cf. clauses/variables)

More predictability, less interpretability
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Quadratic vs Linear Regression
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QR: RMSE vs. Subset Size
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Cost of Omission (subset size 6)
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What’s Next?

Constructing algorithm portfolios
combine several uncorrelated algorithms
good initial results for WDP

Tuning distributions for hardness 
releasing new version of CATS



September 12, 2004 Constraint Programming 2002, Cornell 32

Summary

Algorithms are predictable
Empirical hardness can be studied in a disciplined way

Once again: Structure matters!
Uniform distributions aren’t the best testbeds
Constraint graphs are very useful
Hypothesis: good heuristics make good features (e.g. LP)

Our methodology is general and can be 
applied to other problems!
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