
Taming the
Computational Complexity
of Combinatorial Auctions

Kevin Leyton-Brown
Yoav Shoham

Overview

1. Problem Statement1. Problem Statement
2. CASS
3. Experimental Results
4. Conclusions

Combinatorial Auctions

a Agents often desire goods more in combination with other goods
than separately
` Example: two pieces of adjacent property

a Combinatorial Auctions: mechanisms that allow agents to explicitly
indicate complementarities
`Multiple goods are auctioned simultaneously
` Bidders place as many bids as they want
` Each bid may claim any number of goods

a Agents assume less risk than in sequential auctions
` The auctioneer can hope to achieve higher revenues and/or greater

social welfare

Problem Statement

a Determine the winners of a combinatorial auction
`Given a set of bids on bundles of goods, find a subset

containing non-conflicting bids that maximizes revenue
`This procedure can be used as a building block for more

complex combinatorial auction mechanisms
⌧e.g., the Generalized Vickrey Auction mechanism

a Unfortunately, even this building block is an
NP-complete problem

a Finding optimal allocations remains desirable
`properties like truth revelation may not hold with approximation
`problems up to a certain size will be tractable

Substitutability

a Sometimes bidders will pay less for combinations of goods than the
sum of what they would pay for each good individually
` e.g., copies of the same book

a A bidder submits: ($20,{g}); ($20,{h}); ($30,{g,h})
`{g} and {h} would be the winning bids: the bidder would be charged

$40 instead of $30
a Dummy goods:

` The bidder submits: ($20, {g,d}), ($20, {h,d}), and ($30, {g,h}) where
d is a new, unique dummy good

` The first two bids now name the same good and so will never be
allocated together

Overview

1. Problem Statement
2. CASS2. CASS
3. Experimental Results
4. Conclusions

CASS: Introduction

a CASS – Combinatorial Auction Structured Search
a CASS considers fewer partial allocations than a naïve DFS:

` structure the search space: consider fewer conflicting bids
` pruning: use context from the search structure to generate close

overestimates of total revenue
` ordering heuristics: capitalize on this structure to speed searching

and improve anytime performance
a CASS has low memory demands

` only stores nodes that are part of current allocation (# goods)
`most memory is used for pruning tables
` average 10-20 MB used for problems discussed today

a Originally we proposed two algorithms, now CASS is always faster

Naïve Depth-First Search

a bids are tuples: (a binary set of goods, a price)
a nodes are partial allocations (sums of bids)
a start node: empty set (no goods, $0)
a transitions between nodes: add one bid to the partial

allocation
`only add non-conflicting bids (bids whose intersection with the

current partial allocation is empty)

a terminal node: no non-conflicting bids exist
`the terminal node with the highest revenue is the optimal

allocation

CASS Improvement #1:
Preprocessing

1. Remove dominated bids
` If there exist bids bk= (pk,Gk) and bl= (pl,Gl) such that pl ≥ pk

and Gl ⊆ Gk, then remove bk
⌧ Two bids for the same bundle of goods with different prices
⌧ One bundle is a a strict subset of another and has a higher price

2. For each good g, if there is no bid b=(x,{g}),
add a dummy bid b=(0,{g})
` This ensures that the optimal set of bids will name every good,

even if some goods are not actually allocated

CASS Improvement #2:
Bins

a Structure the search space to reduce the number of
infeasible allocations that are considered
`Partition bids into bins, Di, containing all bids b where

good i ∈ Gb and for all j < i, j ∉ Gb

`Add only one bid from each bin

124
12
134
1345

1245
14
125

23
234
24
245
2

34
35
345
3

45
4

5

1

D1 D2 D3 D4 D5

CASS Improvement #3:
Skipping Bins

aWhen considering bin Di, if good j > i is already part of
the allocation then do not consider any of the bids in Dj

`All the bids in Dj are guaranteed to conflict with our allocation

a In general, instead of considering each bin in turn, skip
to Dk where k ∉ G(F) and ∀i<k, I ∈ G(F)

124
12
134
1345

1245
14
125

23
234
24
245
2

34
35
345
3

45
5

4

1

CASS Improvement #4:
Pruning

a Backtrack when it is impossible to add bids to the
current allocation to achieve more revenue than the
current best allocation

a Revenue overestimate function o(g,i,F)
`an overestimate of the revenue that can be achieved with good

g, searching from bin i with current partial allocation F
⌧an admissible heuristic

`precompute lists for all g, i:
⌧all bids that contain good g and appear in bin i or beyond
⌧sorted in descending order of average price per bid (APPB)

`return APPB of the first bid in the list that doesn’t conflict with F
a Backtrack at any point during the search if

revenue(F) + ≤ revenue(best_allocation)∑
∉Fg

Figo),,(

CASS Improvement #5:
Good Ordering Heuristic

a Good ordering: what good will be numbered #1, #2…
a Goal: reduce branching factor at the top of the tree

`pruning will often occur before bins with a higher branching
factor are reached

a Ordering of goods:
`Sort goods in ascending order of score,

`more bids Æ more branching
`longer bids Æ shallower search

gcontainingbidsoflengthaverage
gcontainingbidsofnumbergscore =:)(

CASS Improvement #6:
Bid Ordering Heuristic

a Finding good allocations quickly:
1. Makes pruning more effective
2. Is useful if anytime performance is important

a Ordering of bids in each bin:
` Sort bids in descending order of average price per good
` More promising bids will be encountered earlier in the search

Overview

1. Problem Statement
2. CASS
3. Experimental Results3. Experimental Results
4. Conclusions

Experimental Results:
Data Distributions
a There is little or no real data available, so we drew bids

randomly from specific distributions

a Binomial:

`The probability of each good being included in a given bid is
independent of which other goods are included

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30

Bid Length

Fr
eq

ue
nc

y

2.0, == p
n!(N-n)!

N!(1-p)p
(n) f

N-nn

b

Experimental Results:
Data Distributions

a Binomial is fairly easy to analyze, but not very realistic
`in a real auction, we expect mostly short bids
`harder Æ more bids must be combined in an allocation

a Exponential: fe(n) = Ce-x/p, p = 5
`a bid for n+1 goods appears e-1/p times less often than a bid for

n goods.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30

Bid Length

Fr
eq

ue
nc

y

Experimental Results:
Data Distributions

a Distribution of prices is also very important
`pruning is done on the basis of price

a Prices of bids for n goods is uniformly distributed
between [n(1-d), n(1+d)], d = 0.5
`prices cluster around a “natural” average price per bid, and

deviate by a random amount
`if prices were completely random, the pruning algorithm would

have more of an advantage

Experimental Results:
Running Time (Binomial)

CASS Performance: Runtime vs. Number of Bids

0.1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids (Binomially Distributed)

R
un

ni
ng

 ti
m

e
(m

ed
ia

n
ov

er
 2

0
ru

ns
, s

ec
on

ds
)

200 goods 300 goods 400 goods 500 goods

Experimental Results:
Running Time (Exp.)

CASS Performance: Runtime vs. Number of Bids

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids (Exponentially Distributed)

R
un

ni
ng

 ti
m

e
(m

ed
ia

n
ov

er
 2

0
ru

ns
, s

ec
on

ds
)

30 goods 40 goods 50 goods 60 goods 70 goods

Experimental Results:
Running Time (Exp.)

CASS Performance: Runtime vs. Number of Bids

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids (Exponentially Distributed)

R
un

ni
ng

 ti
m

e
(m

ed
ia

n
ov

er
 2

0
ru

ns
, s

ec
on

ds
)

60 goods

Experimental Results:
Anytime Performance (Exp)

CASS Percentage Optimality: Elapsed Time vs. Number of Bids

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids (Always 60 Goods, Exponentially Distributed)

El
ap

se
d

tim
e

(m
ed

ia
n

ov
er

 2
0

ru
ns

, s
ec

on
ds

)

0.8 0.9 0.95 0.96 0.97 0.98 0.99 1 Completed

Sandholm’s BidTree
Algorithm

a Presents results for four different distributions:
`Random Distribution:

⌧Select the number of goods, N, in a given bid (uniform random)
⌧Uniquely choose the goods
⌧Price: uniform random between [0, 1]

`Weighted Random Distribution:
⌧Same as above, but price is [0, N]

`Uniform Distribution
⌧All bids have same length (3 goods in this case)
⌧Price: uniform random between [0, 1]

`Decay Distribution
⌧A given bid starts with one random good
⌧Keep adding random unique goods with probability α
⌧Price: uniform random between [0, N]

Experimental Results:
Random Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

0.1

1

10

100

1000

10000

500 750 1000

Number of Bids (Random Distribution)

R
un

ni
ng

 ti
m

e
(a

ve
ra

ge
 o

ve
r 2

0
ru

ns
, s

ec
on

ds
)

CASS - 100 goods CASS - 200 goods CASS - 300 goods CASS - 400 goods
BidTree - 100 goods BidTree - 200 goods BidTree - 300 goods BidTree - 400 goods

Experimental Results:
Weighted Random Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

0.1

1

10

100

1000

10000

500 1000 1500 2000

Number of Bids (Weighted Random Distribution)

R
un

ni
ng

 ti
m

e
(a

ve
ra

ge
 o

ve
r 2

0
ru

ns
, s

ec
on

ds
)

CASS - 100 goods CASS - 200 goods CASS - 300 goods CASS - 400 goods
BidTree - 100 goods Bidtree - 200 goods BidTree - 300 goods BidTree - 400 goods

Experimental Results:
Uniform Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

0.001

0.01

0.1

1

10

100

1000

10000

100000

50 100 150

Number of Bids (Uniform Distribution)

R
un

ni
ng

 ti
m

e
(a

ve
ra

ge
 o

ve
r 2

0
ru

ns
, s

ec
on

ds
)

CASS - 25 goods CASS - 50 goods CASS - 75 goods CASS - 100 goods
BidTree - 25 goods BidTree - 50 goods BidTree - 75 goods BidTree - 100 goods

Experimental Results:
Decay Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

0.001

0.01

0.1

1

10

100

1000

10000

50 100 150 200

Number of Bids (Decay Distribution)

R
un

ni
ng

 ti
m

e
(a

ve
ra

ge
 o

ve
r 2

0
ru

ns
, s

ec
on

ds
)

CASS - 50 goods CASS - 100 goods CASS - 150 goods CASS - 200 goods
BidTree - 50 goods BidTree - 100 goods BidTree - 150 goods BidTree - 200 goods

Overview

1. Problem Statement
2. CASS
3. Experimental Results
4. Conclusions4. Conclusions

Conclusions

aWe have proposed an algorithm to mitigate the
computational complexity of combinatorial auctions,
which works surprisingly well on simulated data
`determines optimal allocations in a small fraction of the time

taken by a naïve DFS approach to solve the same problem
`can find good approximate solutions quickly

Future Work

a Investigate the effects of different bin orderings and
orderings of bids within bins

a Compare to other search techniques
`integer programming
`other combinatorial auction search techniques

a Experiments with real data (FCC auctions?)
a Caching: referenced in our paper, but currently disabled
a Divisible/identical goods

`some of our work on CASS is relevant to the new problem;
much is not

	Taming the Computational Complexity of Combinatorial Auctions
	Overview
	Combinatorial Auctions
	Problem Statement
	Substitutability
	Overview
	CASS: Introduction
	Naïve Depth-First Search
	CASS Improvement #1: Preprocessing
	CASS Improvement #2: Bins
	CASS Improvement #3: Skipping Bins
	CASS Improvement #4: Pruning
	CASS Improvement #5: Good Ordering Heuristic
	CASS Improvement #6: Bid Ordering Heuristic
	Overview
	Experimental Results: Data Distributions
	Experimental Results: Data Distributions
	Experimental Results: Data Distributions
	Experimental Results:Running Time (Binomial)
	Experimental Results:Running Time (Exp.)
	Experimental Results:Running Time (Exp.)
	Experimental Results:Anytime Performance (Exp)
	Sandholm’s BidTree Algorithm
	Experimental Results:Random Distribution
	Experimental Results:Weighted Random Distribution
	Experimental Results:Uniform Distribution
	Experimental Results:Decay Distribution
	Overview
	Conclusions
	Future Work

