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Compact Game Representations

Extensive form: sequential structure

Congestion games [Rosenthal, 1973

— anonymity: agents’ payoffs depend on numbers of other agents
choosing same resources, not on individual identities;

— additivity over resources

Graphical games [Kearns et a/, 2001]
— strict utility independence holds between some pairs of agents

— leveraged for rapid computation of equilibria (e.g.) [Blum ez a/ , 2003]

Local-effect games [I-B & Tennenholtz, 2003]
— context-specific independence

— also symmetry, anonymity, monotonicity, additivity of local effects



Action-Graph Games

AGG = (N, S, S, v, u)

N = set of n agents

S = set of pure action profiles .- ___________:

So_
S; = action set of agent i S1 24
S =1[LienS;
S = set of distinct action choices N =1{1,2,3,4};S = {a,b,c}
o =Uien 5 S1 = {a,b}; o4 = {b,c}
v = neighbor relation
v S — 29 v(c) = {b,c}

u = utility function

u:SxA—R
A = set of distributions of numbers eg.,D=(1,1,2)

u(c, D) = D(c) — D(b)?

of agents over distinct actions

key property: v depends only on numbers
of agents who take neighboring actions



AGGs are Fully Expressive




Graphical Games as AGGs

GG AGG

Agent node Action set box

Edge Bipartite graphs between action sets
Local game matrix Node utility function




Constrained Location Problem

n vendors sell either chocolate or vanilla ice
cream at one of four stations along a beach

— n, chocolate (C) vendors;

— ny, vanilla (V) vendors;

— ny can sell C/V, but only on the west side.

— competition between nearby sellers of same
type; synergy between nearby different types

Notes:

— representation independent of # agents
— overlapping action sets
— context-specific independence without
strict independence
Other examples of compact AGGs:
— Role formation games
— Traffic routing games

— Product placement games

— Party affiliation games



Continuation Method for Equilibria

|Govindan & Wilson, 2003]
Vi (o) = expected payoff to agent 7 for o
playing action s,, if other agents play
according to mixed-strategy profile o
Deform payoff to obtain a game with

known equilibrium:

— add bonus, parameterized by A: V(o) + Ab%,
Strategy improvement mapping: o +— R (o + V(o))
— fixed points define equilibria
Path following:

— Initial (o, A) known

— Compute local path direction

e VYV is bottleneck computation

— Take small step along path; repeat



Payotf Jacobian

8V37’Z.(J_i) - ( \
aJi/(Si/) O s
= Z u; (s;,8;,8) Pr(S|o)
scS

*=—{i,1'})
Computational complexity:
+ O (poly(m)poly(|S]) )

Other applications of this Jacobian:
o Iterated Polymatrix Approximation (IPA)

— a quick start for the continuation method

e Gradient for policy search multiagent RL algorithms



Projection




AGG Jacobian for Arbitrary Equilibria,

* Projection captures context-specific independence and
strict independence

 Writing in terms of the distribution captures anonymity

Vi, (@)

— > u (si, D <si, si/,ﬁ(si)>> Pr (ﬁ(si)b(si)) ;

3(55)63(52‘)

Pr <ﬁ(8i)|5(8i)> — N ?(D(SAU Pr <§(3i)|5(si)>
sisi) ¢ i

«(8) = projection with respect to action s
*x = —{i,i}
S (D) = class of D, i.e. set of pure action
profiles corresponding to D




AGG Jacobian for Arbitrary Equilibria,

Theorem 1 Computation of the Jacobian for an arbitrary action-
graph game with maximum indegree T takes time that is
O ((Z + 1)"poly(m)poly (IS])).

« Exponential speedup vs. GW: O (|S\EPOZZU(5)Z90Z’U(|S |))

Corollary 1 For a graphical game encoded as an AGQG, if f
is the maximum family size and « is the maximum number
of actions available to each agent, the Jacobian can be
computed in time that is O (poly(af)poly(ﬁ)poly (|S|))

* Same exponential speedup as Blum etf. al for computing the Jacobian
for a graphical game using an explicit graphical game representation



Symmetric Equilibria,

Symmetric games are important
— AGGs are symmetric when Vi, S,.=5

Nash [1951] proved all symmetric

games have symmetric mixed-

strategy equilibria: Vi, o.=c™*

— Jacobian simplifies because elements
are agent-independent

Continuation method:

— seed with a symmetric equilibrium of
the perturbed game

— Jacobian is agent-independent

— path traces to symmetric equilibrium
of game of interest




Symmetric AGG Jacobian

e All pure action profiles giving rise to the same distribution
of agents are equally likely, so Pr (ﬁ(si)b(si)) 1S just
Pr <§(Si)|5(8i)) times the number profiles that achieve D

— number of profiles: multinomial coefficients on projected graph

e Jacobian: sum over space A9

— space of projected distributions is polynomial-sized
(number of combinatorial compositions)

Theorem 2 Computation of the Jacobian for symmetric action-
graph games takes time that is O (pOly(ﬁI ) poly(|S|)).



Speedup Results

JANNARNYA

AGG-arb

) :/ : AGG-symm

3 4 5 6 7 8 9 10 11 12 13 14 15
number of agents

Given a 1 GFLOP computer, solve Jacobian for:

10 agents: GW ~1 hr;
1 hr: GW 10 agents;



Conclusions

AGGs are a fully expressive compact representation for
games

They compactly express:
— context-specific and/or strict utility independencies

— anonymity in utility functions

We leverage the AGG representation to compute Nash
equilibria using a continuation method; guarantee
— arbitrary equilibria: exponential speedup of continuation method

— symmetric equilibria: bounded indegree implies polytime
computation of Jacobian
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