Modeling Human Strategic Behavior from a Machine Learning Perspective

Kevin Leyton-Brown
Professor of Computer Science
University of British Columbia
Canada CIFAR AI Chair, Alberta Machine Intelligence Institute
Thanks to my many collaborators!

• **James Wright**
 most of the projects in this talk

• **Greg d’Eon**
 loss functions

• **Sophie Greenwood**

• **Jason Hartford**
 deep learning for behavioral GT
If we didn’t have game theory, we’d need to invent it

• A general mathematical approach for reasoning about arbitrary strategic situations

• Given predictions about counterfactual play, we can design mechanisms that optimize properties of interest

• The catch: design quality depends on accuracy of the predictions

• Let’s consider a prediction that is among the strongest made by game theory: unique, dominance-solvable Nash equilibrium
Example: Beauty Contest Game

Pick a number from 0 to 100

The integer closest to two-thirds of the average of all numbers picked wins
Limitations of perfect rationality

• Many of game theory’s recommendations are *counterintuitive*

• Clearly the world is not populated only by *perfectly rational agents*

• To make good predictions about the play of unsophisticated humans (and hence, e.g., to design mechanisms they will use), we need a model of *human behavior*
Two player simultaneous-move games
Two player simultaneous-move games
Two player simultaneous-move games

<table>
<thead>
<tr>
<th>Row player’s actions</th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>2, -2</td>
</tr>
<tr>
<td>Paper</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Scissors</td>
<td>-2, 2</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- **Rock**
- **Paper**
- **Scissors**

Action count
Two player simultaneous-move games

Column player’s actions

<table>
<thead>
<tr>
<th>Row player’s actions</th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>2, -2</td>
</tr>
<tr>
<td>Paper</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Scissors</td>
<td>-2, 2</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Action count

- Rock: []
- Paper: []
- Scissors: []
Learning problem

Given a dataset of **games**, each with observed **action counts**:

...learn a model that predicts players’ **distribution** over actions
Learning problem

We will evaluate a learned model by assessing how well it predicts the distribution of play across human players from the same population on arbitrary games not previously seen when fitting the model.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>6,6</td>
<td>3,5</td>
<td>9,4</td>
</tr>
<tr>
<td>M</td>
<td>5,3</td>
<td>9,9</td>
<td>0,9</td>
</tr>
<tr>
<td>B</td>
<td>5,3</td>
<td>9,0</td>
<td>0,12</td>
</tr>
<tr>
<td>X</td>
<td>5,3</td>
<td>5,3</td>
<td>2,7</td>
</tr>
<tr>
<td>Y</td>
<td>0,-1</td>
<td>10,8</td>
<td>0,0</td>
</tr>
<tr>
<td>Z</td>
<td>7,12</td>
<td>9,8</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Predicted action count
<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Games</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW94</td>
<td>[Stahl and Wilson, 1994]</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>SW95</td>
<td>[Stahl and Wilson, 1995]</td>
<td>12</td>
<td>576</td>
</tr>
<tr>
<td>CGCB98</td>
<td>[Costa-Gomes et al., 1998]</td>
<td>18</td>
<td>1296</td>
</tr>
<tr>
<td>GH01</td>
<td>[Goeree and Holt, 2001]</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>CVH03</td>
<td>[Cooper and Van Huyck, 2003]</td>
<td>8</td>
<td>2992</td>
</tr>
<tr>
<td>RPC09</td>
<td>[Rogers et al., 2009]</td>
<td>17</td>
<td>1210</td>
</tr>
<tr>
<td>HSW01</td>
<td>[Haruvy et al., 2001]</td>
<td>15</td>
<td>869</td>
</tr>
<tr>
<td>HS07</td>
<td>[Haruvy and Stahl, 2007]</td>
<td>20</td>
<td>2940</td>
</tr>
<tr>
<td>SH08</td>
<td>[Stahl and Haruvy, 2008]</td>
<td>18</td>
<td>1288</td>
</tr>
<tr>
<td>COMBO9</td>
<td>400 samples from each</td>
<td>128</td>
<td>3600</td>
</tr>
</tbody>
</table>
Evaluating models

• We randomly partition our data into **two different data sets:**

\[D = D_{\text{train}} \cup D_{\text{test}} \]

• We choose parameter value(s) that **minimize loss** on the training data:

\[\theta^* = \arg\min_{\theta} L(D_{\text{train}}|\mathcal{M}, \theta) \]

• We score the performance of a model by its loss on the **test data:**

\[L(D_{\text{test}}|\mathcal{M}, \theta^*) \]

• To reduce variance, we **repeat this process multiple times** with different random partitions, averaging the results
Which loss function should we use?

- Many loss functions have been used in the literature:
 - negative log likelihood [e.g., McKelvey and Palfrey, 1992; Wright and Leyton-Brown, 2010+]
 - error rate [e.g., Fudenberg and Liang, 2019]
 - Brier score [e.g., Camerer, Ho, and Chong, 2004; Golman, Bhatia, and Kane, 2019]
 - squared L2 error (mean squared error) [e.g., Plonsky et al., 2019]

- Today: I’ll follow our prior work and report negative log-likelihood. Some drawbacks:
 - units are uninterpretable: scales with the number of samples and actions/game
 - no measure of how close we are to perfect prediction

- Other losses can be problematic, too
 - example: error rate is minimized by predicting probability 1 on the modal action
Can we make a **principled argument** for which loss function to use? We argue that BGT loss functions should satisfy five axioms, falling into two categories:

- **Alignment**: the loss should induce correct **preferences** over predictions
 - SPA: closer to empirical distribution \Rightarrow lower loss
 - DPA: closer to true distribution \Rightarrow lower expected loss
 (both: stronger variants of propriety axioms that work for misspecified functions)

- **Interpretability**: the loss should represent the **quality** of a prediction
 - EDS: loss independent of number or order of observations
 - CPR: empirical distribution closer to prediction \Rightarrow lower loss
 - ZM: a perfect prediction gets 0 loss
Revisiting common loss functions

<table>
<thead>
<tr>
<th>Loss</th>
<th>Alignment</th>
<th>Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP</td>
<td>SPA</td>
</tr>
<tr>
<td>Negative log-likelihood</td>
<td>✓</td>
<td>⬤</td>
</tr>
<tr>
<td>Error rate</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>L1 error (MAE)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cross-entropy</td>
<td>✓</td>
<td>⬤</td>
</tr>
<tr>
<td>KL divergence</td>
<td>✓</td>
<td>⬤</td>
</tr>
<tr>
<td>Brier score</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Squared L2 error (MSE)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- NLL satisfies alignment axioms (since our models put positive probability on every action)
 - but if we were starting our project today, we’d use **squared L2 error**

Research Question #1: choice of loss function
- Are there additional axioms that an ideal loss function should satisfy?
- How would our empirical results change if we used a different loss function?
- What more could we learn from our models by using a more interpretable loss?
A Standard Supervised Learning Problem?

• Challenges:
 – not simple classification: must return a **probability distribution**
 – not straightforward density estimation: **distribution size** varies with input
 – ...models are **mappings** from games to probability distributions

• One off-the-shelf idea: **discrete choice**
 – set of choices = row player’s actions
 – features = payoffs
 – **logistic regression:** \(P(a_i) = \frac{e^{\alpha + \sum_j \beta x_{i,j}}}{\sum_i e^{\alpha + \sum_j \beta x_{i,j}}} \)
 – **mixed logit model:** \(P(a_i) = \sum_{c=1}^{10} s^{(c)} \frac{e^{\alpha^{(c)} + \sum_j \beta^{(c)} x_{i,j}}}{\sum_i e^{\alpha^{(c)} + \sum_j \beta^{(c)} x_{i,j}}} \), \(\sum_{c=1}^{10} s^{(c)} = 1 \)
Mixed-logit performance

Is this any good?
Mixed-logit performance

Logistic regression applied to raw payoffs is worse than always predicting the uniform distribution. Mixed logit is not much better…
Lessons from behavioral economics

Behavioral Game Theory has proposed hand-tuned models based on psychological insights:

- Quantal Response Equilibrium [McKelvey & Palfrey 1995]
- Level-k [Costa-Gomes et al. 2001]
- Cognitive Hierarchy [Camerer et al. 2004]
- Noisy introspection [Goeree & Holt 2004]
- Quantal Lk, Quantal CH [Stahl & Wilson 1994; Camerer et al.]

Two key ideas underlie the best performing models [Wright, Leyton-Brown: AAAI 2010; GEB 2017]:

- **Quantal** utility maximization instead of utility maximization
- **Iterative strategic reasoning** instead of equilibrium

Research Question #2: Other Phenomena

- Are there other general psychological insights we should explore?
• **Best response**: Maximum utility action is always played
• **Quantal (“softmax”) response**: High-utility actions played often, low-utility actions played rarely
Iterative Strategic Reasoning

- **Level-0**: Some nonstrategic distribution of play (often uniform distribution)
- **Level-1**: Respond to level-0 players
- **Level-2**: Respond to level-1, or levels 0, 1
-
-
-
- **Level-\(k\)**: Respond to level \(k-1\), or levels \(\{0, \ldots, k-1\}\)
Behavioral model performance
Level-0 agents

- **Bayesian analysis of parameters** [Wright, Leyton-Brown: AAMAS 2012] shows something strange:

![Graph showing estimated frequency](image)

- Best performing models quite certain that many players **randomize uniformly** – evidence of a misspecified model?

- **Research Question #3**: Can we fit models in a way that better constrains parameters to their **intended interpretations**?
Let’s model Level-0 behavior explicitly

Four binary features:

• **Maxmin payoff (“Pessimistic”):** Is this action best in the (deterministic) worst case?

• **Maxmax payoff (“Optimistic”):** Does this action contribute to my own highest-payoff outcome?

• **Fairness:** Does this action contribute to the least unfair outcome?

• **Symmetry:** In symmetric games, would this action be best if my opponents copied my strategy?
A feature f is **informative for game G** if f can distinguish at least one pair of actions in G.

For each action, compute a **sum of weights for features that are both informative and that “fire”**, plus a noise weight.

$$\text{prediction for } a_i \propto w_0 + \sum_{f \in F} \mathbb{I}[f \text{ is informative}] \cdot \mathbb{I}[f(a_i) = 1] \cdot w_f$$
Effect of modeling nonstrategic play

About 10^{20} x likelihood improvement
Beyond Feature Engineering

• A better model of nonstrategic play made a big difference
• But, it’s hard to know if we’ve got the model right:
 – have we included the right features?
 – do our models have the right functional form?

Research Question #4: We proposed a pretty arbitrary level-0 model. Is there a more principled way to find good level-0 models?

• Deep learning has demonstrated the possibility of stunning predictive performance via learning features
• Could we automatically search for behavioral models?
Game-Theoretic Wish List

1. Invariance to game permutations
2. Variable-size output: a probability distribution over player 1’s action space
3. Rich enough to model iterative strategic reasoning
Deep Learning for BGT

• Our solution: a novel neural network architecture
 – nodes compute relu of element-wise weighted sum of input matrices, output new matrices
 – interaction across elements via “max pooling” across rows and columns
 – permutation-equivariant
 – today, the same ideas could be implemented off-the-shelf using graph convolution

• explicit action-response layers to capture QCH
Performance

Test Set

Training Set

Graphs showing the negative log likelihood for different numbers of hidden units in the test and training sets. The graphs compare the performance of QCH with uniform and linear 4 distributions.
Overall performance

Test Set

Training Set

Large **improvement** in performance over previous **state of the art** despite no hand-crafted features.

Research Question #5: Are our action response layers **helpful**? (Maybe only with more data?)
• **Research Question #6:** At what point does L0 behavior get so complex that it ought to be considered strategic?

 – Typical answer: if the behavior involves **modeling other agents**
 – But, hard to know if apparently nonstrategic behavior can be **rephrased in strategic terms**
 * weighted linear combinations of our four hand-crafted L0 features?
 * the L0 model learned by a deep network?

• A new, formal characterization of nonstrategic behavior
 [Wright, Leyton-Brown: EC 2020; R&R@JET] that satisfies two properties:
 1. general enough to capture all **existing “nonstrategic” decision rules**
 2. behavior we characterize is **distinct from strategic** in a precise sense

• Permits e.g. optimizing over the space of nonstrategic behaviors
Elementary Behavioral Models

• How an elementary model works:
 - Given a game \(G = (N, A, u) \), for each action profile \(a \in A \), apply the same “no-smuggling” function \(\varphi \) to the \(|N| \)-tuple of real values \(\langle u_1(a), \ldots, u_{|N|}(a) \rangle \), producing a real-valued “potential matrix” \(\Phi \)
 - Apply any arbitrary \(h \) to \(\Phi \), producing a probability distribution over \(A_i \)

• We prove that
 - no existing strategic decision rule (Nash, QRE, QCH, etc) is elementary
 - no elementary model is strategic (i.e., both “other responsive” and “dominance responsive”)
 - neither is any function of the predictions of finitely many elementary models
 • Linear4 is nonstrategic
 - GameNet is not nonstrategic (perhaps why action response layers didn’t help us)

• Research Question #7: identify nonstrategic deep learning architectures
Conclusions and Future Directions

- **Behavioral game theory** does a much better job than traditional game theory for modeling human behavior.

- The best models (e.g., quantal cognitive hierarchy) depend on a specification of **nonstrategic “level-0” behavior**
 - performance can be improved by modeling this richly
 - and can be even further improved with fancy deep learning

- **Directions for further research** (in many cases, with preliminary answers):
 1. What difference does it make to use a **better motivated loss function** than log likelihood?
 2. Should we explicitly model **further behavioral phenomena**?
 3. Can we fit models to better conform to their **intended interpretations**?
 4. Is there a more principled way to model **level-0 behavior**?
 5. Does it help to combine **deep learning with cognitive hierarchy**?
 6. How should we define **(non)strategic behavior**?
 7. Can we find **nonstrategic deep learning architectures**?