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Which algorithm do you prefer?

Consider a family of algorithms that always return the right answer but vary in their
runtimes, like a set of SAT solvers. Much existing work assumes that the best

algorithm is the one with the best average runtime. But is it really?

Two Algorithms

Algorithm A1

• Solves 99 instances in 1 second.
• Runs the 100th instance for 10
days but fails to solve it.

Algorithm A2

• Runs all 100 instances for 10 days
each but fails to solve any.
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algorithm is the one with the best average runtime. But is it really?

Two Algorithms

Algorithm A1

• Solves 99 instances in 1 second.
• Runs the 100th instance for 10
days but fails to solve it.

Algorithm A2

• Runs all 100 instances for 10 days
each but fails to solve any.

Problem 1
Average runtimes are completely unconstrained by this information. Does that
mean that we don’t know enough to have any preference between the algorithms?
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Which algorithm do you prefer?

Consider a family of algorithms that always return the right answer but vary in their
runtimes, like a set of SAT solvers. Much existing work assumes that the best

algorithm is the one with the best average runtime. But is it really?

Two Algorithms

Algorithm A1

• Solves 99 instances in 1 second.
• Runs the 100th instance for 10
days but fails to solve it.

Algorithm A2

• Runs all 100 instances for 10 days
each but fails to solve any.

Problem 2
Imagine that both algorithms contain a bug, and the long runs never terminate.
Then both averages are infinite. In this case, are we indifferent between A1 and A2?
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Handling Capped Runs

• We often appear able to prefer one algorithm over another even when some
runs are stopped early (“capped”)
• But how exactly should we account for such runs?
– consider only the fraction of problems solved
– consider capped runs to have completed at the captime (PAR1)
– consider capped runs to have completed at k > 1 times the captime (PARk)

• Relative rankings between algorithms depend critically on choice of captime; k

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (2)
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Growing trend: think about algorithm designs as a hypothesis space

Machine learning
Classical approach
• Features based on expert insight
• Model family selected by hand
• Manual tuning of hyperparameters

Deep learning
• Very highly parameterized models, using
expert knowledge to identify appropriate
invariances and model biases (e.g.,
convolutional structure)
• “deep”: many layers of nodes, each
depending on the last
• Use lots of data (plus e.g. dropout
regularization) to avoid overfitting
• Computationally intensive search replaces
human design

Discrete Optimization
Classical approach
• Expert designs a heuristic algorithm
• Iteratively conducts small experiments to
improve the design

Learning in the space of algorithm designs
• Very highly parameterized algorithms
express a combinatorial space of
heuristic design choices that make sense
to an expert
• “deep”: many layers of parameters, each
depending on the last
• Use lots of data to characterize the
distribution of interest
• Computationally intensive search
replaces human design

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (3)
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Algorithm Configuration Visualized
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Algorithm Configuration Visualized
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Setup

Definitions:

• A : a set of algorithms
• A ∈ A : the distribution over possible runtimes of the corresponding algorithm

◦ accounts for both instance distribution and random seeds

• tA : a runtime sampled from A

◦ tA ∈ [0, ∞] : runtimes are non-negative and may be infinite
◦ A = δt: runs always take t

• K : a distribution over possible captimes
◦ sometimes we’re not sure how long we’ll have before we need to stop a run

• κ : a captime sampled from K

◦ K = δκ: captime is fixed and known

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (5)
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Axiomatization

The Axiomatic Method
Reason from observations about our preferences in easily understood scenarios
to derive a general rule that describes our preferences in all scenarios.

Our Axiomatization

• Draws on von Neumann & Morgenstern’s expected utility derivation
– One axiom needs nontrivial adaptation to capture our domain, though we preserve the spirit

• Additional, runtime-specific axioms
– “Faster is better”
– “We care about solving our problem”

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (6)
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Classical Axioms: Transitivity, Monotonicity, and Continuity

These axioms very closely mirror the classic VNM setup (e.g., K does not change anything here)

Axiom: Transitivity “preferences are acyclic”
If A1 �K A2 and A2 �K A3, then A1 �K A3.

An
operation

Mixing: an operation on distributions A1 and A2

The mixture distribution
[
p : A1, (1−p) : A2

]
returns a runtime sampled from A1 with proba-
bility p and from from A2 with probability 1 − p.

Axiom: Monotonicity “we prefer mixtures featuring more of a good thing”
If A1 �K A2 then for any p, q ∈ [0, 1] we have
[p : A1, (1 − p) : A2] �K [q : A1, (1 − q) : A2] if and only if p ≥ q.

Axiom: Continuity “there always exists an indifference point”
If A1 �K A2 �K A3, then there exists p ∈ [0, 1] such that A2 'K [p : A1, (1 − p) : A3].

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (7)
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Independence Axiom

If we’re indifferent between each of a set of outcome pairs, we’re also
indifferent between mixtures that equally weight respective elements of each pair.

Another
operation

Compounding: an operation on collection of distributions M(t, κ)

The compound distribution:
[
M(t, κ) | t ∼ A, κ ∼ K

] first samples t from A and κ from K ,
then returns a runtime sampled from
some given M(t, κ).

Axiom: independence “pointwise indifference extends to distributions”
If δt 'δκ M(t, κ) for all t, κ, then A 'K [M(t, κ) | t ∼ A, κ ∼ K].

If, for every t and κ, we are indifferent (given that we face captime κ) between obtaining runtime t with
certainty and sampling a runtime from some distribution M(t, κ)…

then we are also indifferent (given that we face a captime sampled from K) between the runtime distribution of
algorithm A and the runtime distribution corresponding to sampling t from A and κ from K

and then sampling a runtime from M(t, κ).
What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (8)



Comparing Runtime Distributions Formalizing Our Preferences Applying Our Framework Estimating Expected Utility from Samples

Eagerness and Relevance Axioms

Our first four1 axioms imply the existence of a utility function.

Two more runtime-specific axioms further constrain this utility function.

Axiom: Eagerness “faster is better”
For any t ≤ t′, if A’s entire support is contained in [t, t′], then δt �K A �K δt′ for all
K .

Axiom: Relevance “we strictly prefer to solve our problem”
δt �δκ δt′ for all κ and t < κ ≤ t′.

1We don’t need a “decomposability” axiom because our base outcome space consists of probability distributions rather than discrete events.

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (9)
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Main Result

Theorem.
If our preferences follow the six axioms, then for any runtime distributions A1 and
A2 and any captime distribution K , there exists2 a function u : R2 → [0, 1] such that

A1 �K A2 ⇐⇒ Et∼A1

[
Eκ∼K [u(t, κ)]

]
≥ Et∼A2

[
Eκ∼K [u(t, κ)]

]
.

Furthermore, u has the following properties:
(1) u(0, κ) = 1;
(2) u(·, κ) is (weakly) monotone decreasing;
(3) u(t, κ) > 0, for all t < κ;
(4) u(κ, t′) = 0, for all t′ ≥ κ.

2We can also show that the only such functions are positive affine transforms of the u mentioned: u′ = au + b, a > 0.
What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (10)
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Proof Sketch Part 1: Existence of u

Continuity: for every non-negative t, κ, there exists a value p(t, κ) ∈ [0, 1] as defined below.

A key
definition

Function p(t, κ)
p(t, κ) is a value that makes us indifferent between solving at time t and a gamble
between solving at time 0 (the best outcome) or timing out at κ (the worst outcome):

If t < κ, then p(t, κ) is the value that satisfies: δt 'δκ

[
p(t, κ) : δ0, (1 − p(t, κ)) : δκ

]
If t ≥ κ, then p(t, κ) = 0.

We can use the expectation of p as the score for any algorithm A:

• Construct distribution A′ =
[
[p(t, κ) : δ0 , (1 − p(t, κ)) : δκ] | t ∼ A, κ ∼ K

]
• A′ returns 0 with probability Et∼A,κ∼K [p(t, κ)], otherwise returns κ ∼ K .

• independence: A1 'K A′
1; similarly, A2 'K A′

2.
(Consider M(t, κ) = [p(t, κ) : δ0 , (1 − p(t, κ)) : δκ]. Note p was defined so that δt 'δκ

M(t, κ).)

• Monotonicity: A′
1 �K A′

2 ⇐⇒ Et∼A1,κ∼K [p(t, κ)] ≥ Et∼A2,κ∼K [p(t, κ)]

• Transitivity: A1 �K A2 ⇐⇒ A′
1 �K A′

2

A′ in words:
Sample t from A,
sample κ from K ,
return a runtime
sampled from
[p(t, κ) : δ0,

1 − p(t, κ) : δκ]

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (11)
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Proof Sketch Part 2: Structure of u

(1) u(0, κ) = 1 (by Eagerness, Monotonicity)
(2) u(t, κ) ≥ u(t′, κ) for any t ≤ t′ (by Eagerness)
(3) u(t, κ) > 0, for all t < κ (by Relevance)
(4) u(κ, t′) = 0, for all t′ ≥ κ (by definition of p)

u can look like this ...
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Concrete Example 1

Example (step-function utility, known captime)
We must find a solution to our integer program by midnight or it will be useless.

• Step-function utility (i.e., u(t, κ) = 1 for all t < κ)

• Fixed and known captime κ (i.e., K = δκ)
=⇒

maximize Prt∼A

(
t ≤ κ

)
“The best algorithm is the one most

likely to finish before the captime.”

“Which algorithm is better?”
Algorithm A1

• Solves 99 instances in 1 second.

• Runs the 100th instance for 10 days but fails to
solve it.

Algorithm A2

• Runs all 100 instances for 10 days each but fails
to solve any.

A1 preferred to A2 for any κ < 10 days.

(unknown for κ ≥ 10 days: maybe A2 will solve all problems and A1 won’t)

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (13)
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Concrete Example 2

Example (linear value for money; pay for compute)
We are risk neutral and have a linear value for money.

We face no explicit runtime cap but we have to buy our compute on Amazon EC2.

• Solving the problem is worth v

• Each hour of compute costs α

• We can avoid negative payoffs by setting
captime κ∗ = v/α

=⇒
maximize Et max(v − αt, 0)
“The best algorithm costs least on

average.”

“Which algorithm is better?”
Algorithm A1

• Solves 99 instances in 1 second.

• Runs the 100th instance for 10 days but fails to
solve it.

Algorithm A2

• Runs all 100 instances for 10 days each but fails
to solve any.

A1 preferred to A2 if v/α < 10 · 24 hours.

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (14)
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Step-Function Utility, Uncertain Captime

Now let’s consider the case of uncertain captime

• One intuitive setting where expected utility decreases with time:
– utility is a step function (I just want to solve the problem)
– I’m uncertain about exactly when I’ll need to stop the run

Step-function utilities

• Eκ∼K [u(t, κ)] = Prκ∼K(t < κ): i.e., 1 minus the CDF of K

• We’ll denote this as u(t) when K is implicit from context

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (15)
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Concrete Example 3

Example (step-function utility, unknown captime)
Our client will demand an answer at some point in the future, described by K

• Step-function utility (i.e., u(t, κ) = 1 for all t < κ)

• Unknown captime (κ ∼ K)
=⇒

maximize Et∼A

[
Prκ∼K(t ≤ κ)

]
“The best algorithm is the one most
likely to finish before the captime, in
expectation over captimes.”

“Which algorithm is better?”
Algorithm A1

• Solves 99 instances in 1 second.

• Runs the 100th instance for 10 days but fails to
solve it.

Algorithm A2

• Runs all 100 instances for 10 days each but fails
to solve any.

A1 preferred to A2 if κ is always at least 1 second and
there is even just a 1% chance that κ will be less than 10 days.

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (16)
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Constrained K: The Method of Maximum Entropy

What if we know only constraints on the distribution K?

Principle of Maximum Entropy
If we do not know which distribution to use among some set of alternatives, we
should use the one having greatest entropy, since it is the least informative and
thus incorporates no extraneous assumptions.

Maximizing entropy “spreads out” the distribution’s probability mass as much as the
conditions allow

Example (Bounded interval)
If all we know is that the distribution has support on some bounded interval, the
uniform distribution has maximum entropy because it is “flattest.”

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (17)
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Choosing K: Some examples

Example (Bounded time interval)
Our client will need a solution to their SAT problem sometime in the next 24 hours.
The maximum entropy distribution is uniform:
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(linear utility function)

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (18)
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Choosing K: Some examples

Example (Known mean)
We do not know how long the client will give us to solve their SAT problem but the expected value
of the captime distribution is 24 hours.
The maximum entropy distribution is exponential:
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Choosing K: Some examples

Example (Known expected order of magnitude)
The client will certainly give us at least one day and on the order of d days
(i.e., the expected value of the log captime will be log d).
The maximum entropy distribution is Pareto with shape parameter α = (ln d − ln 24)−1:
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And More...
κ is less than κ0 with certainty, and

less than κ1 with probability δ

(piecewise uniform distribution)

u(t) =

1 − δt
κ1

if t ≤ κ1
(1−δ)(κ0−t)

κ0−κ1
if κ1 < t < κ0

0 otherwise
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Concrete Example 4

Example (step-function utility, known order of magnitude)
Our client will give us at least 1 day and on the order of days (κ ≥ 1d, Eκ∼K [log( κ

1d )] = 1)

• Step-function utility (i.e., u(t, κ) = 1 for all t < κ)

• Captime measured in days =⇒
maximize Et∼A

[
u(t)

]
where

u(t) =

{
1 if t < 1d

1
t otherwise
(Pareto)

“Which algorithm is better?”
Algorithm A1

• Solves 99 instances in 1 second.

• Runs the 100th instance for 10 days but fails to
solve it.

Algorithm A2

• Runs all 100 instances for 10 days each but fails
to solve any.

A1 is at least 10 times better than A2 (expected utility of ≥ 99
100 vs. ≤

1
10 )

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (22)
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Concrete Example 5

Example (step-function utility, symmetric order of magnitude)
Our unreliable client says they will give us on the order of days; we consider them
equally likely to impose a captime above and below one day (Eκ∼K

[∣∣ log( κ
1d )

∣∣] = 1)

• Step-function utility (i.e., u(t, κ) = 1 for all t < κ)

• Captime measured in days
• Require smoothness at t = 1d

=⇒
maximize Et∼A

[
u(t)

]
where

u(t) =

{
1 − 1

2 t if t < 1d

1
2
( 1

t

)
otherwise

(Log Laplace)

“Which algorithm is better?”
Algorithm A1

• Solves 99 instances in 1 second.

• Runs the 100th instance for 10 days but fails to
solve it.

Algorithm A2

• Runs all 100 instances for 10 days each but fails
to solve any.

A1 is at least 20 times better than A2 (expected utility of ≥ 99
100 vs. ≤

1
20 )

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (23)
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Estimating A’s expected utility from samples

• In reality we only get to estimate A from samples {t1, . . . , tn}
– Law of large numbers: 1

n

∑n
i=1 u(ti) → E[u(A)] as n → ∞.

– But we only observe capped runtimes t̂i = min{ti, κ}

• assume u is bounded between 0 and 1
• recall that u is monotone decreasing in t

• u−1(ε) is that t for which u(t) first falls to a value ≤ ε

Comparing Runtime Distributions Formalizing Our Preferences

Conclusion

• It’s nontrivial to formalize why we
particularly in the presence of capping
– Getting this right is important if we’re going to

datasets

• We present a utility-theoretic answer
assumptions about preferences over runtime distributions

Comparing Runtime Distributions Formalizing Our Preferences Applying Our Framework

Conclusion

• It’s nontrivial to formalize why we prefer one runtime distribution to another
particularly in the presence of capping
– Getting this right is important if we’re going to learn special-purpose algorithms for given

datasets

• We present a utility-theoretic answer to this question based on axiomatic
assumptions about preferences over runtime distributions
– The result depends on the way utility decreases with time and on the captime distribution

• We describe a maximum-entropy approach to modeling captime distributions
under various realistic constraints

ε

u−1(ε)

Theorem
We can ε-estimate Et∼A[u(t)] from capped samples if and only if we sample with
captime κ ≥ u−1(ε). Worst case time cost less than u−1(ε/2) · ln(2/δ)

2

(
2−ε

ε

)2
.

• Worst-case runtime cost thus depends only on u, ε, and δ,
not on A’s runtime distribution.

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (24)
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Conclusion

• It’s nontrivial to formalize why we prefer one runtime distribution to another
particularly in the presence of capping
– Getting this right is important if we’re going to learn special-purpose algorithms for given

datasets

• We present a utility-theoretic answer to this question based on axiomatic
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Conclusion

• It’s nontrivial to formalize why we prefer one runtime distribution to another,
particularly in the presence of capping
– Getting this right is important if we’re going to learn special-purpose algorithms for given
datasets, e.g. via algorithm configuration

• We present a utility-theoretic answer to this question based on axiomatic
assumptions about preferences over runtime distributions
– The result depends on the way utility decreases with time and on the captime distribution

• We describe a maximum-entropy approach to modeling captime distributions
under various realistic constraints

• We show that A’s expected utility can be approximately estimated from samples
in time that does not depend on the captime distribution

• Key ongoing work: establishing that A1 is at least ε-better than A2 with
probability 1 − δ

What Does It Mean to Prefer the Fastest Algorithm: Graham, Leyton-Brown & Roughgarden (25)
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