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Causal inference with unobserved confounding

Deep IV: A Flexible Approach for Counterfactual Prediction

Jason Hartford ' Greg Lewis

Abstract

Counterfactual prediction requires understanding
causal relationships between so-called treatment
and outcome variables. This paper provides a
recipe for augmenting deep learning methods to
accurately characterize such relationships in the
presence of instrument variables ( [Vs)—sources
of treatment randomization that are conditionally
independent from the outcomes. Our IV specifi-
cation resolves 1nto tWo prediction tasks that can
be solved with deep neural nets: a first-stage net-
work for treatment prediction and a second-stage

network whose loss function involves integration
over the conditional treatment distribution. This

Noon TV Framp‘vnrlzl allawe ne fo talte advantaoce

2 Kevin Leyton-Brown ' Matt Taddy °

data to optimize the prices it charges its customers: in this
case, price is the reatment variable and the customer’s deci-
sion about whether to buy a ticket 15 the outcome. There are
two ways that a naive analysis could lead to incorrect coun-
terfactual predictions. First, imagine that price varies in the
training data because the airline gradually increases prices
as a plane fills. Around holidays, morc people want 0 fly
and hence planes become fuller leading to higher prices. S0,
in our training set We observe examples with high prices and
high sales. A direct ML approach might incorrectly predict
that if the airline were 10 increase prices at other times in the
year they would also observe increased sales, whereas the
true relationship between price and sales is surely negative.
Typically we can observe holidays, and include them in the
model, so that we can correct for their effects. This case
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Abstract

Instrumental variable (IV) regression is a strategy for learning causal relationships
.1 observational data. If measurements of input X and output Y are confounded,
the causal relationship can nonetheless be identified 1f an instrumental variable
7 is available that influences X directly, but 1s conditionally independent of Y
given X and the unmeasured confounder. The classic two-stage least squares al-
gorithm (2SLS) simplifies the estimation problem by modeling all relationships
as linear functions. We propose kernel instrumental variable regression (KIV), a
nonparametric generalization of 2SLS, modeling relations among X.Y,and Z as
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We develop an approach for estimating models described via conditional moment
restrictions, with a prototypical application being non-parametric instrumental
variable regression. We introduce a min-max criterion function, under which the
estimation problem can be thought of as solving a zero-sum game between d mod-
eler who 18 optimizing OVel the hypothesis Space of the target model and an ad-
versary who - dentifies violating moments over a (est function space. We analyze
the statistical estimation rate of the resulting estimator for arbitrary hypothesis
spaces, with respect 10 an appropriate analogue of the mean squared error metric,
for ill-posed INVerse problems. We show that when the minimax criterion 18 r€g-
ularized with 2 second moment penalty on the test function and the test function
space 18 cufficientlv rich. then the estimation rate scales with the critical radius
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Example: Mendelian randomization
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See Davey Smith & Hemani 2014 for a review
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Theorem: If each estimator is consistent and
modal validity hold, ModelV is a consistent

estimator for the true effect E[y | do(p), X]



Results summary

Theorem 2. For some test point (t,x), let Z =

{B1,..., Bk} be k estimates of the causal effect of t at x.
Assume,

[Bounded estimates| Each estimate is bounded by some
constants, |a;, b;]

M 0 d e |v [Convergent estimators | l:?ach estimator clor.zverges ir.z mean
" squared error at a rate n~" (where r = 5 if the estimator
achieves the parametric rate), and hence each estimator has

finite variance, Var(j3;) = ~Z4 for some o;.

® Performs well in finite sample simulations. Then, if 0 = maxey o; there exists a, C, such that
+ 1 ; E[(ModelV(2) - §)* — (% > ey Bi—B)?] < 9kCon™".

Successfully removes most of the bias
introduced by invalid instruments.

1.4 = 100 - =@= DeeplV-opt

® Converges at the same rate as the e —
underlying estimators, even on worst case
distributions. 1o 45 50

3.00 =
2.75 =
2.25 =
| | | 1072 = | | |
4.0 4.5 5.0 1 2 3 4
m— MODE-IV DeepIV-(opt) m—= Target

Bias (3/8 invalid)
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Summary

® |[nstrumental variable approaches allow you to estimate causal effects with
unobserved confounding.

e NModelV is the first nonparametric procedure that is robust to invalid
iINnstruments & Is a simple black box procedure.
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