Level-0 Meta-Models for Predicting Human Behavior in Games

James Wright & Kevin Leyton-Brown University of British Columbia

June 12, 2014 (EC'14)

EC'14: June 12, 2014

James Wright & Kevin Leyton-Brown

Behavioral Game Theory

- Many of game theory's recommendations are counterintuitive
- Do people actually follow them?

Behavioral Game Theory

- Many of game theory's recommendations are counterintuitive
- Do people actually follow them?
- Not reliably, as demonstrated by a large body of experiments
- Behavioral game theory: Aims to model actual human behavior in games

Nash equilibrium and human subjects

- Nash equilibrium often makes counterintuitive predictions
 - In Traveler's Dilemma: The vast majority of human players choose 97–100. The Nash equilibrium is 2
- Modifications to a game that don't change Nash equilibrium predictions at all can cause large changes in how human subjects play the game [Goeree & Holt 2001]
 - In Traveler's Dilemma: When the penalty is large, people play much closer to Nash equilibrium
 - But the size of the penalty does not affect equilibrium

Nash equilibrium and human subjects

- Nash equilibrium often makes counterintuitive predictions
 - In Traveler's Dilemma: The vast majority of human players choose 97–100. The Nash equilibrium is 2
- Modifications to a game that don't change Nash equilibrium predictions at all can cause large changes in how human subjects play the game [Goeree & Holt 2001]
 - In Traveler's Dilemma: When the penalty is large, people play much closer to Nash equilibrium
 - But the size of the penalty does not affect equilibrium
- Clearly Nash equilibrium is not the whole story
- Behavioral game theory proposes a number of models to better explain human behavior

(4) (3) (4) (3) (4)

BGT State of the art

• In previous work [Wright & Leyton-Brown, 2010; 2014a], we compared several behavioral models' predictive performance.

EC'14: June 12. 2014

BGT State of the art

- In previous work [Wright & Leyton-Brown, 2010; 2014a], we compared several behavioral models' predictive performance.
- Quantal cognitive hierarchy is the current state of the art model.

Quantal cognitive hierarchy is an iterative model:

Quantal cognitive hierarchy is an iterative model:

-

Quantal cognitive hierarchy is an iterative model:

-

Quantal cognitive hierarchy is an iterative model:

3 N 3

Quantal cognitive hierarchy is an iterative model:

-

æ

Quantal cognitive hierarchy is an iterative model:

æ

-

Quantal cognitive hierarchy is an iterative model:

-

æ

Quantal cognitive hierarchy (QCH)

- \bullet Agents' levels drawn from a distribution g
- An agent of level m responds to the truncated, true distribution of levels from 0 to m-1
- Agents quantally respond to their beliefs

$$\pi_{i,0}(a_i) = |A_i|^{-1},$$

$$\pi_{i,m}(a_i) = QBR_i(\pi_{-i,0:m-1};\lambda)$$

$$\pi_{i,0:m-1} = \frac{\sum_{\ell=0}^{m-1} \pi_{i,\ell}g(\ell)}{\sum_{\ell=0}^{m-1} g(\ell)}$$

- Uniform randomization (the usual assumption) is implausible
- And yet best performing parameters for QCH suggest large numbers of level-0 agents
- Level-0 agents' actions influence every other level

- Uniform randomization (the usual assumption) is implausible
- And yet best performing parameters for QCH suggest large numbers of level-0 agents
- Level-0 agents' actions influence every other level
- Take modeling level-0 behavior more seriously?

Level-0 meta-model

• Define a level-0 meta-model:

- A mapping from an (arbitrary) game to a (potentially nonuniform) level-0 distribution over that game's actions
- Leverage some of what we know about how people reason nonstrategically about games
- The meta-model can have its own parameters
- Use an existing iterative model (quantal cognitive hierarchy) on top of the improved level-0 model to make predictions
- What distinguishes level-0 from level-1?
 - Our line in the sand: no explicit beliefs about how other agents will play

< ∃ >

Features

Five binary features of each action:

- Minmin Unfairness
 - Does this action contribute to the least unfair outcome?
- Maxmax payoff ("Optimistic")
 - Does this action contribute to my own highest-payoff outcome?
- Maxmin payoff ("Pessimistic")
 - Is this action best in the (deterministic) worst case?
- Minimax regret
 - Does this action have the lowest maximum regret?
- Efficiency (Total payoffs)
 - Does this action contribute to the social-welfare-maximizing outcome?

Linear meta-model

We say that a feature is informative if it can distinguish at least one pair of actions.

For each action, compute a sum of weights for features that are both informative and that "fire", plus a noise weight.

prediction for $a_i \propto w_0 + \sum_{f \in F} \mathbb{I}[f \text{ is informative}] \cdot \mathbb{I}[f(a_i) = 1] \cdot w_f$

	A	B	C
X	100, 20	10, 67	30, 40
Y	40,35	50, 49	90,70
Z	41, 21	42, 22	40, 23

EC'14: June 12, 2014

James Wright & Kevin Leyton-Brown

크

DQC

回 と く ヨ と く ヨ と

	A	B	C
X	100, 20	10, 67	30, 40
Y	40,35	50, 49	90,70
Z	41, 21	42, 22	40, 23

Minimax regret is not informative: 60 for all actions
e.g., Player 1 plays X; if Player 2 plays C, his regret is 60

	A	B	C
Χ	100, 20	10,67	30, 40
Y	40,35	50, 49	90,70
Z	41, 21	42, 22	40, 23

Minimax regret is not informative: 60 for all actions
e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
50, 49 is the fairest outcome, so Y is minmin unfair

EC'14: June 12, 2014

▲ 레 ▶ ▲ 볼 ▶ ▲ 볼 ▶ 월 → 오 ↔ James Wright & Kevin Leyton-Brown

	A	B	C
Χ	100, 20	10, 67	30, 40
Y	40, 35	50, 49	90,70
Z	41, 21	42, 22	40, 23

- Minimax regret is not informative: 60 for all actions
 e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50,49 is the fairest outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)

	A	B	C
X	100, 20	10, 67	30, 40
Y	40,35	50, 49	90,70
Z	41, 21	42, 22	40, 23

- Minimax regret is not informative: 60 for all actions
 e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50,49 is the fairest outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
- Y leads to the highest sum of utilities (90 + 70 = 160)

	A	B	C
X	100, 20	10, 67	30, 40
Y	40,35	50, 49	90,70
Z	41, 21	42, 22	40, 23

- Minimax regret is not informative: 60 for all actions
 e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50,49 is the fairest outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
- Y leads to the highest sum of utilities (90 + 70 = 160)
- X has the highest best-case utility (100)

	A	B	C
X	100, 20	10, 67	30, 40
Y	40,35	50, 49	90,70
Z	41, 21	42, 22	40, 23

- Minimax regret is not informative: 60 for all actions
 e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50,49 is the fairest outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
- Y leads to the highest sum of utilities (90 + 70 = 160)
- X has the highest best-case utility (100)

Action X's weight: $w_0 + w_{maxmax}$ Action Y's weight: $w_0 + w_{minmin} + w_{total} + w_{fairness}$ Action Z's weight: $w_0 + w_{minmin}$

EC'14: June 12, 2014

- E - E

Sac

Performance results

Three iterative models:

- Quantal Cognitive Hierarchy
- 2 Level-k
- Ognitive Hierarchy

EC'14: June 12, 2014

Two level-0 meta-models:

- Uniform L0
- 2 Weighted Linear

James Wright & Kevin Leyton-Brown

Performance results

- Weighted linear meta-model for level-0 agents dramatically improved the performance of all three iterative models.
 - Almost erases the difference between the models themselves.

Bayesian parameter analysis

• Fairness is by far the highest-weighted feature

• All the features quite well identified

EC'14: June 12, 2014

James Wright & Kevin Leyton-Brown

Parameter analysis: Levels

• Weighted linear \implies much lower variance estimates

• Predicts that about half the population is level-0!

EC'14: June 12, 2014

James Wright & Kevin Leyton-Brown

Conclusions

EC'14: June 12, 2014

James Wright & Kevin Leyton-Brown

æ

999

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Conclusions

EC'14: June 12, 2014

James Wright & Kevin Leyton-Brown

æ

990

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Conclusions

- Weighted linear meta-model for level-0 agents dramatically improved the performance of iterative models.
- Strong evidence for the existence of level-0 agents.
 - For any meta-model, including uniform!
 - Contrary to conventional wisdom.

æ

< 4 A >

- Weighted linear meta-model for level-0 agents dramatically improved the performance of iterative models.
- Strong evidence for the existence of level-0 agents.
 - For any meta-model, including uniform!
 - Contrary to conventional wisdom.

æ