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Motivation

Behavioral Game Theory

@ Many of game theory's recommendations are counterintuitive

@ Do people actually follow them?
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Motivation

Behavioral Game Theory

Many of game theory’'s recommendations are counterintuitive
Do people actually follow them?
Not reliably, as demonstrated by a large body of experiments

Behavioral game theory: Aims to model actual human
behavior in games
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Motivation

Nash equilibrium and human subjects

@ Nash equilibrium often makes counterintuitive predictions
e In Traveler's Dilemma: The vast majority of human players
choose 97-100. The Nash equilibrium is 2
e Modifications to a game that don't change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001]
o In Traveler's Dilemma: When the penalty is large, people play
much closer to Nash equilibrium
e But the size of the penalty does not affect equilibrium
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Motivation

Nash equilibrium and human subjects

@ Nash equilibrium often makes counterintuitive predictions

e In Traveler's Dilemma: The vast majority of human players
choose 97-100. The Nash equilibrium is 2

e Modifications to a game that don't change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001]

o In Traveler's Dilemma: When the penalty is large, people play
much closer to Nash equilibrium
e But the size of the penalty does not affect equilibrium

@ Clearly Nash equilibrium is not the whole story

@ Behavioral game theory proposes a number of models to
better explain human behavior
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Motivation

BGT State of the art

@ In previous work [Wright & Leyton-Brown, 2010; 2014a], we
compared several behavioral models’ predictive performance.
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Motivation

BGT State of the art

@ In previous work [Wright & Leyton-Brown, 2010; 2014a], we
compared several behavioral models’ predictive performance.

@ Quantal cognitive hierarchy is the current state of the art
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lterative reasoning

Quantal cognitive hierarchy is an iterative model:
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Motivation

lterative reasoning

Quantal cognitive hierarchy is an iterative model:
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Motivation

lterative reasoning

Quantal cognitive hierarchy is an iterative model:
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Motivation

Quantal cognitive hierarchy (QCH)

@ Agents’ levels drawn from a distribution g

@ An agent of level m responds to the truncated, true
distribution of levels from 0 to m — 1

@ Agents quantally respond to their beliefs
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Level-0 Meta-Models

Level-0
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e Uniform randomization (the usual assumption) is implausible

@ And yet best performing parameters for QCH suggest large
numbers of level-0 agents

@ Level-0 agents’ actions influence every other level
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Level-0 Meta-Models

Level-0
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e Uniform randomization (the usual assumption) is implausible

@ And yet best performing parameters for QCH suggest large
numbers of level-0 agents

@ Level-0 agents’ actions influence every other level

@ Take modeling level-0 behavior more seriously?
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Level-0 Meta-Models

Level-0 meta-model

@ Define a level-0 meta-model:
o A mapping from an (arbitrary) game to a (potentially
nonuniform) level-0 distribution over that game's actions
e Leverage some of what we know about how people reason
nonstrategically about games
e The meta-model can have its own parameters
@ Use an existing iterative model (quantal cognitive hierarchy)
on top of the improved level-0 model to make predictions
e What distinguishes level-0 from level-17
@ Our line in the sand: no explicit beliefs about how other
agents will play
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Level-0 Meta-Models

Features

Five binary features of each action:
@ Minmin Unfairness
e Does this action contribute to the least unfair outcome?
@ Maxmax payoff (“Optimistic”)
e Does this action contribute to my own highest-payoff outcome?
© Maxmin payoff (“Pessimistic")
e Is this action best in the (deterministic) worst case?
@ Minimax regret
e Does this action have the lowest maximum regret?
© Efficiency (Total payoffs)

e Does this action contribute to the social-welfare-maximizing
outcome?
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Level-0 Meta-Models

Linear meta-model

We say that a feature is informative if it can distinguish at least
one pair of actions.

For each action, compute a sum of weights for features that are
both informative and that “fire", plus a noise weight.

prediction for a; o< wo + Z I[f is informative] - I[f(a;) = 1] - wy
fer
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Level-0 Meta-Models
Example: Consider Player 1

A B C
X [ 100,20 | 10,67 [ 30,40
Y | 40,35 | 50,49 | 90,70
Z [ 41,21 | 42,22 | 40,23
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@ Minimax regret is not informative: 60 for all actions
e e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
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Level-0 Meta-Models

Example: Consider Player 1

A B C
X [ 100,20 | 10,67 [ 30,40
Y | 40,35 | 50,49 | 90,70
Z [ 41,21 | 42,22 | 40,23

Minimax regret is not informative: 60 for all actions
e e.g., Player 1 plays X; if Player 2 plays C, his regret is 60

50,49 is the fairest outcome, so Y is minmin unfair

Y leads to the highest sum of utilities (90 + 70 = 160)

°
@ Y and Z maximize minimum payoff (40 vs. 10 for X)
°
@ X has the highest best-case utility (100)

Action X's weight: wg 4+ Wmaxmax
Action Y's Weighti WO + Wminmin T Wiotal + Wrairness
Action Z's weight: wg + Wminmin
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Level-0 Meta-Models

Performance results

1045
Uniform LO m====

1040 Weighted Linear
1035 =
1030
1025
1020
1015
1010

10°

Likelihood improvement over uniform

107 QCH Lk CH

Three iterative models: Two level-0 meta-models:
@ Quantal Cognitive Hierarchy @ Uniform LO
Q Level-k © Weighted Linear
© Cognitive Hierarchy
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Level-0 Meta-Models

Performance results
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Likelihood improvement over uniform

@ Weighted linear meta-model for level-0 agents dramatically
improved the performance of all three iterative models.
e Almost erases the difference between the models themselves.
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Level-0 Meta-Models

Bayesian parameter analysis
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@ Fairness is by far the highest-weighted feature

@ All the features quite well identified
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Level-0 Meta-Models

Parameter analysis: Levels
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@ Weighted linear = much lower variance estimates
@ Predicts that about half the population is level-0!
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@ Weighted linear meta-model for level-0 agents dramatically
improved the performance of iterative models.
@ Strong evidence for the existence of level-0 agents.
e For any meta-model, including uniform!
e Contrary to conventional wisdom.
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