Level-0 Meta-Models for Predicting Human Behavior in Games

James Wright & Kevin Leyton-Brown
University of British Columbia

June 12, 2014 (EC’14)
Behavioral Game Theory

- Many of game theory’s recommendations are counterintuitive
- Do people actually follow them?
Behavioral Game Theory

- Many of game theory’s recommendations are counterintuitive.
- Do people actually follow them?
- **Not reliably**, as demonstrated by a large body of experiments.
- **Behavioral game theory**: Aims to model actual human behavior in games.
Nash equilibrium and human subjects

- Nash equilibrium often makes **counterintuitive predictions**
 - In Traveler’s Dilemma: The vast majority of human players choose 97–100. The Nash equilibrium is 2
- Modifications to a game that don’t change Nash equilibrium predictions at all can cause large changes in how human subjects play the game [Goeree & Holt 2001]
 - In Traveler’s Dilemma: When the penalty is large, people play much closer to Nash equilibrium
 - But the size of the penalty does not affect equilibrium
Nash equilibrium and human subjects

- Nash equilibrium often makes counterintuitive predictions
 - In Traveler’s Dilemma: The vast majority of human players choose 97–100. The Nash equilibrium is 2
- Modifications to a game that don’t change Nash equilibrium predictions at all can cause large changes in how human subjects play the game [Goeree & Holt 2001]
 - In Traveler’s Dilemma: When the penalty is large, people play much closer to Nash equilibrium
 - But the size of the penalty does not affect equilibrium
- Clearly Nash equilibrium is not the whole story
- Behavioral game theory proposes a number of models to better explain human behavior
In previous work [Wright & Leyton-Brown, 2010; 2014a], we compared several behavioral models’ predictive performance.
BGT State of the art

- In previous work [Wright & Leyton-Brown, 2010; 2014a], we compared several behavioral models’ predictive performance.
- Quantal cognitive hierarchy is the current state of the art model.
Iterative reasoning

Quantal cognitive hierarchy is an iterative model:
Iterative reasoning

Quantal cognitive hierarchy is an iterative model:
Iterative reasoning

Quantal cognitive hierarchy is an iterative model:
Iterative reasoning

Quantal cognitive hierarchy is an iterative model:

Level 0

Level 1
Iterative reasoning

Quantal cognitive hierarchy is an iterative model:
Iterative reasoning

Quantal cognitive hierarchy is an iterative model:

Level 1

Level 0
Quantal cognitive hierarchy is an iterative model:

Level 0
\ldots

Level 1
\ldots

Level 2
\ldots
Quantal cognitive hierarchy (QCH)

- Agents’ levels drawn from a distribution g
- An agent of level m responds to the truncated, true distribution of levels from 0 to $m - 1$
- Agents quantally respond to their beliefs

\[
\begin{align*}
\pi_{i,0}(a_i) &= |A_i|^{-1}, \\
\pi_{i,m}(a_i) &= QBR_i(\pi_{-i,0:m-1}; \lambda) \\
\pi_{i,0:m-1} &= \frac{\sum_{\ell=0}^{m-1} \pi_{i,\ell}g(\ell)}{\sum_{\ell=0}^{m-1} g(\ell)}
\end{align*}
\]
Uniform randomization (the usual assumption) is implausible.

And yet best performing parameters for QCH suggest large numbers of level-0 agents.

Level-0 agents’ actions influence every other level.
Uniform randomization (the usual assumption) is implausible
And yet best performing parameters for QCH suggest large numbers of level-0 agents
Level-0 agents’ actions influence every other level
Take modeling level-0 behavior more seriously?
Level-0 meta-model

- Define a level-0 meta-model:
 - A mapping from an (arbitrary) game to a (potentially nonuniform) level-0 distribution over that game’s actions
 - Leverage some of what we know about how people reason nonstrategically about games
 - The meta-model can have its own parameters

- Use an existing iterative model (quantal cognitive hierarchy) on top of the improved level-0 model to make predictions

- What distinguishes level-0 from level-1?
 - Our line in the sand: no explicit beliefs about how other agents will play
Features

Five binary features of each action:

1. Minmin Unfairness
 - Does this action contribute to the least unfair outcome?

2. Maxmax payoff ("Optimistic")
 - Does this action contribute to my own highest-payoff outcome?

3. Maxmin payoff ("Pessimistic")
 - Is this action best in the (deterministic) worst case?

4. Minimax regret
 - Does this action have the lowest maximum regret?

5. Efficiency (Total payoffs)
 - Does this action contribute to the social-welfare-maximizing outcome?
Linear meta-model

We say that a feature is **informative** if it can distinguish at least one pair of actions.

For each action, compute a **sum of weights** for features that are both informative and that “fire”, plus a noise weight.

\[
prediction\text{ for } a_i \propto w_0 + \sum_{f \in F} \mathbb{I}[f \text{ is informative}] \cdot \mathbb{I}[f(a_i) = 1] \cdot w_f
\]
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100, 20</td>
<td>10, 67</td>
<td>30, 40</td>
</tr>
<tr>
<td>Y</td>
<td>40, 35</td>
<td>50, 49</td>
<td>90, 70</td>
</tr>
<tr>
<td>Z</td>
<td>41, 21</td>
<td>42, 22</td>
<td>40, 23</td>
</tr>
</tbody>
</table>

Minimax regret is not informative: 60 for all actions

E.g., Player 1 plays X; if Player 2 plays C, his regret is 60.

40, 35 is the fairest outcome, so Y is minmin unfair.

Y and Z maximize minimum payoff (40 vs. 10 for X).

Y leads to the highest sum of utilities (90 + 70 = 160).

X has the highest best-case utility (100).

Action X’s weight: \(w_0 + w_{\text{maxmax}} \)

Action Y’s weight: \(w_0 + w_{\text{minmin}} + w_{\text{total}} + w_{\text{fairness}} \)

Action Z’s weight: \(w_0 + w_{\text{minmin}} \)
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100, 20</td>
<td>10, 67</td>
<td>30, 40</td>
</tr>
<tr>
<td>Y</td>
<td>40, 35</td>
<td>50, 49</td>
<td>90, 70</td>
</tr>
<tr>
<td>Z</td>
<td>41, 21</td>
<td>42, 22</td>
<td>40, 23</td>
</tr>
</tbody>
</table>

- **Minimax regret** is not informative: 60 for all actions
 - e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100, 20</td>
<td>10, 67</td>
<td>30, 40</td>
</tr>
<tr>
<td>Y</td>
<td>40, 35</td>
<td>50, 49</td>
<td>90, 70</td>
</tr>
<tr>
<td>Z</td>
<td>41, 21</td>
<td>42, 22</td>
<td>40, 23</td>
</tr>
</tbody>
</table>

- **Minimax regret** is not informative: 60 for all actions
 - e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
 - 50, 49 is the **fairest** outcome, so Y is minmin unfair
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100, 20</td>
<td>10, 67</td>
<td>30, 40</td>
</tr>
<tr>
<td>Y</td>
<td>40, 35</td>
<td>50, 49</td>
<td>90, 70</td>
</tr>
<tr>
<td>Z</td>
<td>41, 21</td>
<td>42, 22</td>
<td>40, 23</td>
</tr>
</tbody>
</table>

- **Minimax regret** is not informative: 60 for all actions
 - e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50, 49 is the **fairest** outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100,20</td>
<td>10,67</td>
<td>30,40</td>
</tr>
<tr>
<td>Y</td>
<td>40,35</td>
<td>50,49</td>
<td>90,70</td>
</tr>
<tr>
<td>Z</td>
<td>41,21</td>
<td>42,22</td>
<td>40,23</td>
</tr>
</tbody>
</table>

- Minimax regret is not informative: 60 for all actions
 - e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50, 49 is the fairest outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
- Y leads to the highest sum of utilities (90 + 70 = 160)
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100, 20</td>
<td>10, 67</td>
<td>30, 40</td>
</tr>
<tr>
<td>Y</td>
<td>40, 35</td>
<td>50, 49</td>
<td>90, 70</td>
</tr>
<tr>
<td>Z</td>
<td>41, 21</td>
<td>42, 22</td>
<td>40, 23</td>
</tr>
</tbody>
</table>

- **Minimax regret** is not informative: 60 for all actions
 - e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50, 49 is the **fairest** outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
- Y leads to the **highest sum of utilities** (90 + 70 = 160)
- X has the **highest best-case utility** (100)
Example: Consider Player 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100,20</td>
<td>10,67</td>
<td>30,40</td>
</tr>
<tr>
<td>Y</td>
<td>40,35</td>
<td>50,49</td>
<td>90,70</td>
</tr>
<tr>
<td>Z</td>
<td>41,21</td>
<td>42,22</td>
<td>40,23</td>
</tr>
</tbody>
</table>

- **Minimax regret** is not informative: 60 for all actions
 - e.g., Player 1 plays X; if Player 2 plays C, his regret is 60
- 50, 49 is the **fairest** outcome, so Y is minmin unfair
- Y and Z maximize minimum payoff (40 vs. 10 for X)
- Y leads to the **highest sum of utilities** (90 + 70 = 160)
- X has the **highest best-case utility** (100)

Action X’s weight: \(w_0 + w_{\text{maxmax}} \)
Action Y’s weight: \(w_0 + w_{\text{minmin}} + w_{\text{total}} + w_{\text{fairness}} \)
Action Z’s weight: \(w_0 + w_{\text{minmin}} \)
Performance results

Three iterative models:
1. Quantal Cognitive Hierarchy
2. Level-κ
3. Cognitive Hierarchy

Two level-0 meta-models:
1. Uniform L0
2. Weighted Linear
Performance results

- Weighted linear meta-model for level-0 agents dramatically improved the performance of all three iterative models.
- Almost erases the difference between the models themselves.
Bayesian parameter analysis

- **Fairness** is by far the highest-weighted feature
- All the features quite **well identified**
Parameter analysis: Levels

- Weighted linear \implies much lower variance estimates
- Predicts that about half the population is level-0!
Conclusions

Weighted linear meta-model for level-0 agents dramatically improved the performance of iterative models. Strong evidence for the existence of level-0 agents. For any meta-model, including uniform!

Contrary to conventional wisdom.

Likelihood improvement over uniform

Nash w/error
Lk
Poisson-CH
QRE
QLk
QCH-sp-uniform
QCH5-uniform
Conclusions

Strong evidence for the existence of level-0 agents. Weighted linear meta-models dramatically improved the performance of iterative models. For any meta-model, including uniform! Contrary to conventional wisdom.
Conclusions

- Weighted linear meta-model for level-0 agents dramatically improved the performance of iterative models.
- Strong evidence for the existence of level-0 agents.
 - For any meta-model, including uniform!
 - Contrary to conventional wisdom.
Thanks!

- Weighted linear meta-model for level-0 agents dramatically improved the performance of iterative models.
- Strong evidence for the existence of level-0 agents.
 - For any meta-model, including uniform!
 - Contrary to conventional wisdom.