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Introduction

Context

@ Motivation: Predict human behavior in strategic settings.

@ Our focus: Unrepeated “initial play” in simultaneous-move,
2-player games.
@ Game theory: Studies idealized rational agents, not human
agents.
@ Behavioral game theory: Aims to extend game theory to
modeling human agents.
e There are a wide range of BGT models in the literature.
e Historically, BGT has been most concerned with explaining
behavior, often on particular games, rather than predicting it.
e No study compares a wide range of models, considers

predictive performance, or looks at such a large, heterogeneous
set of games.
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Introduction

Contribution

Our contributions:
@ Compared predictive performance of the most prominent
solution concepts for our setting:
e Nash equilibrium, plus
e Four models from behavioral game theory
...using nine experimental datasets from the literature
@ Bayesian sensitivity analysis:
o Yields new insight into existing model (Poisson-CH)

e Argues for a novel simplification of an existing model
(Quantal level-k)

September 10, 2012: OplLog Kevin Leyton-Brown



Models

Overview

© Models of Human Behavior in Simultaneous-Move Games
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Models

Example: Traveler's Dilemma

2 3 4 —— 96 97 98 99 100

e Two players pick a number (2-100) simultaneously.
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Models

Example: Traveler's Dilemma

100

2 3 4 —— 96 97 98 99 100

100

e Two players pick a number (2-100) simultaneously.

@ If they pick the same number, that is their payoff.
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Models

Example: Traveler's Dilemma

96 —2 =94
2 3 4 ~ 96 97 98 99 100
96 4+ 2 =98
e Two players pick a number (2-100) simultaneously.
@ If they pick the same number, that is their payoff.
o If they pick different numbers:

e Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.
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Models

Example: Traveler's Dilemma

2 3 4 —— 96 97 98 99 100

Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.
If they pick different numbers:

e Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.
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Models

Example: Traveler's Dilemma

100
2 3 4 - 96 97 98 99 100
100
e Two players pick a number (2-100) simultaneously.
o If they pick the same number, that is their payoff.
o If they pick different numbers:
e Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.
@ Traveler's Dilemma has a unique Nash equilibrium.
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Example: Traveler's Dilemma

99 -2 =97
2 3 4 - 96 97 98 99 100
99 +2 =101

e Two players pick a number (2-100) simultaneously.
o If they pick the same number, that is their payoff.
o If they pick different numbers:

e Lower player gets lower number, plus bonus of 2.

o Higher player gets lower number, minus penalty of 2.
@ Traveler's Dilemma has a unique Nash equilibrium.

September 10, 2012: OplLog Kevin Leyton-Brown



Models

Example: Traveler's Dilemma

98 + 2 =100

1

2 3 4 - 96 97 98 99 100

T

98 —2 =96

Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.
If they pick different numbers:

e Lower player gets lower number, plus bonus of 2.
e Higher player gets lower number, minus penalty of 2.

Traveler's Dilemma has a unique Nash equilibrium.
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Models

Example: Traveler's Dilemma
2
2 3 4
2

e Two players pick a number (2-100) simultaneously.

96 97 98 99 100

o If they pick the same number, that is their payoff.
o If they pick different numbers:

e Lower player gets lower number, plus bonus of 2.
e Higher player gets lower number, minus penalty of 2.

@ Traveler's Dilemma has a unique Nash equilibrium.
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Models

Nash equilibrium and human subjects

@ Nash equilibrium often makes counterintuitive predictions.

e In Traveler's Dilemma: The vast majority of human players
choose 97-100. The Nash equilibrium is 2.

e Modifications to a game that don't change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001].

o In Traveler's Dilemma: When the penalty is large, people play
much closer to Nash equilibrium.
e But the size of the penalty does not affect equilibrium.
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Models

Nash equilibrium and human subjects

@ Nash equilibrium often makes counterintuitive predictions.

e In Traveler's Dilemma: The vast majority of human players
choose 97-100. The Nash equilibrium is 2.

e Modifications to a game that don't change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001].

o In Traveler's Dilemma: When the penalty is large, people play
much closer to Nash equilibrium.
e But the size of the penalty does not affect equilibrium.

@ Clearly Nash equilibrium is not the whole story.

@ Behavioral game theory proposes a number of models to
better explain human behavior.
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Models

BGT model: Quantal response equilibrium (QRE)

Cost-proportional errors: Agents are less likely to make high-cost
mistakes than low-cost mistakes.

QRE model [McKelvey & Palfrey 1995]  parameter: (1))

@ Agents quantally best respond to each other.
e)\ui(ai,s_i)
ZaQEAi erulee—)

@ Precision parameter A € [0, 00) indicates how sensitive agents
are to utility differences.

e )\ = (0 means agents choose actions uniformly at random.
e As A — oo, QBR approaches best response.

QBRZ(S_I‘, )\) (az) =
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Models

Nice story—but is QRE a good model?

Let's say we pay a bunch of people to play games against each
other, and gather some data. Now we'd like to know how good a

job our QRE model does. How would we do that?

Two issues:
@ have to set the model’s parameter () to use it at all;
@ must ensure that we do this in a way that generalizes to new
play by the same people.
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Models

Scoring a model’s performance

@ We randomly partition our data into different sets:
D= Dtrain U Dtest

@ We choose parameter value(s) that maximize the likelihood of
the training data:

§* = arg max Pr(Dirain | M, 5))
7

@ a tricky non-convex optimization problem

@ We score the performance of a model by the likelihood of the
test data: N
Pr(Diest [ M, 67).

@ To reduce variance, we repeat this process multiple times with
different random partitions and average the results
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Models

BGT models: Iterative strategic reasoning

Level-0 agents choose actions non-strategically.
o In this work (and most others), uniformly at random

Level-1 agents reason about level-0 agents.

Level-2 agents reason about level-1 agents.
There's a probability distribution over levels.
e Higher-level agents are “smarter”; scarcer

Predicting the distribution of play: weighted sum of the
distributions for each level.
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Models

BGT model: Lk

Lk model [Costa-Gomes et al. 2001]  parameters: (a1, as, €1, €)
@ Each agent has one of 3 levels: level-0, level-1, or level-2.
e Distribution of level [2,1,0] agents is [ag, a1, (1 — a3 — a3)]

o Each level-k agent makes a “mistake” with prob €, or best
responds to level-(k — 1) opponent with prob 1 — €.
o Level-k agents believe all opponents are level-(k — 1).
o Level-k agents aren't aware that level-(k — 1) agents will make
“mistakes” .

IBR;y = A,

IBR; = BR;(IBR_; 1),

g (ai) = |Ai 7

Pl (as) = {(1—ek)/|IBRZ-,k| f i € IB R,
’ €r/(|Ai| — [IBR;|) otherwise.
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Models

BGT model: Cognitive hierarchy

Cognitive hierarchy model [Camerer et al. 2004]  parameter: (7)

@ An agent of level m best responds to the truncated, true
distribution of levels from 0 to m — 1.

@ Poisson-CH: Levels are assumed to have a Poisson distribution
with mean 7.

PCH —
3,0 ( Z) = |AZ| 17

-1
‘BR ( fgﬁ,{_l)‘ if a; € BR; (wfgg_l),

<PCH
’L ,m ( .
0 otherwise.
PCH > 2o WZCHPF(POisson(T) =/)
T 0om—1 —

4201 Pr(Poisson(7) = ¢)

September 10, 2012: OplLog Kevin Leyton-Brown



Models

BGT model: QLk

QLk model [Stahl & Wilson 1994]  parameters: (aq, a2, A1, A2, A1(2))
e Distribution of level [2,1,0] agents is [a2, a1, (1 — a1 — a3)]
@ Each agent quantally responds to next-lower level.

e Each QLk agent level has its own precision (Ag), and its own
beliefs about lower-level agents’ precisions (Ay))-

%’f( D) =147,
T8 = QBR;(n Zo,m
?f‘“ QBR; (%, M),
QLk_QBR( QLk ).
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Model Comparisons

Overview

© Comparing our Models in Terms of Predictive Performance
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Model Comparisons

Model comparisons: Nash equilibrium vs.
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Model Comparisons

Model comparisons: Nash equilibrium vs.
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Likelihood improvement over uniform distribution

@ Average NEE virtually always worse than every BGT model
(only exception: SW95).

o All NEE significantly worse than best BGT model in most
datasets.
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Model Comparisons

Model comparisons: Lk and CH vs. QRE
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Likelihood improvement over uniform distribution

@ Lk and Poisson-CH performance was strikingly similar.
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Model Comparisons

Model comparisons: Lk and CH vs. QRE
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@ Lk and Poisson-CH performance was strikingly similar.
@ No consistent ordering between Lk/Poisson-CH and QRE.
o lterative strategic reasoning and quantal response appear to
capture distinct phenomena.
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Model Comparisons

Model comparisons: QLk
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Likelihood improvement over uniform distribution

@ So perhaps a model with both iterative and quantal response
components would perform best?

September 10, 2012: OpLog Kevin Leyton-Brown



Model Comparisons

Model comparisons: QLk
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@ So perhaps a model with both iterative and quantal response
components would perform best?

@ In fact, on every dataset, QLk is either the best predictive
model or very similar to the best.
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Bayesian Analysis

Overview

@ Digging Deeper: Bayesian Analysis of Model Parameters
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Bayesian Analysis

Taking Stock of What We Have Done

Take-home message so far
QLk is the best of the models for prediction.
How strongly does the data argue for particular parameter values?
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Bayesian Analysis

Posterior distributions

A posterior distribution gives the probability of each possible
combination of parameter values, given the data, e.g.:

Pr(a; =0.1,0 = 0.3, A =0.1| D)

@ Maximum likelihood only tells us the most likely parameter
setting, given the data.

@ The posterior distribution over parameter settings describes
the relative probability of all possible parameter settings.

@ Individual parameters can be analyzed by inspecting the
marginal posterior distribution.

Pr(a; =0.1|D) = // Pr(a; =0.1,a9 = o, A = X' | D)dabdN

e Flat distributions indicate less important parameter values.
e Sharp distributions indicate a high degree of certainty.
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Bayesian Analysis

Warm-up: Poisson-CH

Regarding the single parameter (7) for the Poisson-CH model:

“Indeed, values of T between 1 and 2 explain empirical
results for nearly 100 games, suggesting that a T value of
1.5 could give reliable predictions for many other games
as well.” [Camerer et al. 2004]
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Bayesian Analysis

Warm-up: Poisson-CH's Posterior Distribution
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Our analysis gives 99% posterior probability that the best value of
715 0.59 or less.
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Bayesian Analysis

Refresher: QLk's Parameters

QLk has 5 different parameters:
@ «1: Proportion of level-1 agents.
@ «a: Proportion of level-2 agents.
@ \i: Precision of level-1 agents.
@ )\o: Precision of level-2 agents.
°

A1(2): Level-2 agents’ belief about level-1 agents’ precision.

?o”f(az-) = A,
" = QBRi(x9f) A )
w?fk QBR; (%5, o)
" = QBRi(l) ), ).
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Bayesian Analysis

Posterior distributions:
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Bayesian Analysis

Posterior distributions: QLk

Level proportions
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Some surprises:
Q@ 1, ao: Best fits predict more level-2 agents than level-1.
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Bayesian Analysis

Posterior distributions: QLk

Level proportions
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Some surprises:
Q@ 1, ao: Best fits predict more level-2 agents than level-1.
Q@ )1, A2 Level-2 agents have lower precision than level-1 agents.
© A1, Aq(2): Level-2 agents’ beliefs are very wrong.
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Bayesian Analysis

Maybe QLk isn't quite the right model

We constructed a family of models by systematically varying QLk:
Q Top level:
e 1,2 3,4,5,6, 7, Poisson

© Precisions: Homogeneous or inhomogeneous.
© Precision beliefs: Accurate or general.
@ Population beliefs: Lk or CH.

We evaluated all variations leading to < 8 parameters.
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Bayesian Analysis

Model variations: Efficient frontier
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Bayesian Analysis

Model variations: Efficient frontier
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o Efficient frontier: best performance for # of parameters.

e QLk (gi-QLk2) is not on the efficient frontier.

@ Best models all have accurate precision beliefs, homogeneous
precision, cognitive hierarchy population beliefs.
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Bayesian Analysis

Thinking back to QLk

Level proportions
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Recall...
@ «1, g Best fits predict more level-2 agents than level-1.
@ A1, Ag: Level-2 agents have lower precision than level-1 agents.
® A1, Aj(g): Level-2 agents’ beliefs are very wrong.
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Bayesian Analysis

ah-QCH3: Posterior distribution

Level proportions
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@ More robust model: small parameter changes less likely to
change prediction quality.
e Smooth, unimodal distributions for level proportions.
@ Distribution for A is unimodal, with narrow confidence region

@ Still more agents of type 2 than 1.
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2
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Bayesian Analysis

Proportion of L1
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@ Poisson QCH matches tabular LO proportions very closely.
@ To do so, forced to match most other proportions poorly.
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Bayesian Analysis

Marginal distributions comparison
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@ Poisson QCH matches tabular LO proportions very closely.
@ To do so, forced to match most other proportions poorly.
o If LO were treated specially, could Poisson match others?
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Bayesian Analysis

Spike-Poisson model

Spike-Poisson QCH model  parameters: (7,¢, \)
@ An ah-QCH model with precision A.

@ Proportion distribution f is a mixture of Poisson distribution
and a “spike” distribution of LO agents:

f(m) €+ (1 — e)Poisson(m;7) if m =0,
m) =
(1 — €)Poisson(m; T) otherwise.
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Bayesian Analysis

Spike-Poisson performance
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@ Spike-Poisson QCH outperforms all other ah-QCH models
except for ah-QCH5.

@ Only three parameters, fewer even than ah-QCHS3.
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Bayesian Analysis

Summary

@ Compared predictive performance of four BGT models.
e BGT models typically predict human behavior better than
Nash equilibrium-based model.
e QLk has best performance of the four.
@ Bayesian sensitivity analysis of parameters.

e Parameters for QLk are counterintuitive, hard to identify.

e Using CH beliefs and a single precision for all agents yields
more identifiable parameter values, superior predictive
performance.

e Even with fewer parameters!
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Bayesian Analysis

@ Compared predictive performance of four BGT models.
e BGT models typically predict human behavior better than
Nash equilibrium-based model.
e QLk has best performance of the four.
@ Bayesian sensitivity analysis of parameters.

e Parameters for QLk are counterintuitive, hard to identify.

e Using CH beliefs and a single precision for all agents yields
more identifiable parameter values, superior predictive
performance.

e Even with fewer parameters!
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