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Motivating Question 
  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 

The best available methods tend 
– to offer no interesting theoretical guarantees 
– work astoundingly well in practice 
– often exhibit exponentially varying performance  

(e.g., milliseconds to days) even on fixed-size problems 

“How hard is it to solve a given problem in practice,  
using the best available methods?” 



Our Key Finding 
  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 

I suspect that many here prefer complexity-theoretic analysis 
to statistical methods that aim “only” to work in practice 
Why I think you should still care: 
– the success of statistical methods points to patterns in 

algorithm performance that aren’t yet captured theoretically 

   Even in settings where formal analysis seems hopeless: 
–  algorithms are complex black boxes 
–  instance distributions are heterogeneous or richly structured 

…it is possible to apply rigorous statistical methods to 
answer such questions with high levels of confidence. 



 

Phase Transitions for SAT 

Pr(SAT) 

3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 
c  /  v 

0 

0.25 

0.50 

0.75 

1 

• Uniform-random 3-SAT: phase transition in probability of 
solvability at clauses / variables ≈ 4.26 
 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



 

Phase Transitions for SAT 
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• Uniform-random 3-SAT: phase transition in probability of 
solvability at clauses / variables ≈ 4.26 

• Corresponding easy–hard–less hard transitions discovered in 
the behavior of DPLL-type solvers [Cheeseman et al, 1991; Selman et al., 1996] 

– Spawned a new enthusiasm for using empirical methods  
to study algorithm performance 
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Where We Stand 

• However, lots of 
residual variance 

• There’s much more 
going on here 

Probability of solvability 
correlates strongly  

with instance hardness  
in practice 

• Idea: use machine 
learning methods to 
look for patterns 

Is it possible to make more 
accurate predictions? 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



EMPIRICAL HARDNESS MODELS: 
A Case Study on Characterizing Algorithm Performance 

Beyond the Clauses-to-Variables Ratio 

[L-B, Nudelman, Shoham, 2002; 2009] 
[Nudelman, L-B, Hoos, Devkar, Shoham, 2004]  

[Xu, Hoos, L-B, 2007] 
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Empirical Hardness Models 
• Predict how long an algorithm will take to run, given: 

– A set of instances D 
– For each instance i ∈ D, a vector xi of feature values 
– For each instance i ∈ D, a runtime observation yi 

 

• We want a mapping f(x) ↦ y that  
accurately predicts yi given xi  
– This is a regression problem 

• We’ve tried about a dozen different methods over the years 
• This choice (sometimes) matters, but features are more important 

– First, let’s consider a straightforward, tractable, and often  
very effective approach: basis function ridge regression 
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SAT Instance Features 
• Problem Size (clauses, variables, clauses/variables, …) 

• Syntactic properties (e.g., positive/negative clause ratio) 

• Statistics of various constraint graphs 
– factor graph 
– clause–clause graph 
– variable–variable graph 

• Knuth’s search space size estimate 
• Cumulative number of unit propagations at different 

depths (SATz heuristic) 

• Local search probing  
• Linear programming relaxation 
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Variable Ratio Prediction (Kcnfs) 
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Note: each point corresponds to a “test” instance not used to train the model. 
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Variable Ratio - UNSAT 
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Note: each point corresponds to a “test” instance not used to train the model. 



Variable Ratio - SAT 
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Note: each point corresponds to a “test” instance not used to train the model. 



Feature Importance – Variable Ratio 
• We can analyze a model’s features to identify problem 

parameters that most affect empirical hardness 
– problem: very high-dimensional models 
– solution: subset selection 
– caveat: other subsets could potentially achieve similar performance 

 
• Questions: 

– Do our models discover the importance of c/v? 
– If so, in what form do the models depend on this quantity? 
– What other features are important? 
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Variable Cost of 
Omission 

|c/v - 4.26| 100 

|c/v - 4.26|2 69 

(v/c)2 · SapsBestCVMean 53 

|c/v - 4.26| · SapsBestCVMean 33 

Feature Importance – Variable Ratio 
• We can analyze a model’s features to identify problem 

parameters that most affect empirical hardness 
– problem: very high-dimensional models 
– solution: subset selection 
– caveat: other subsets could potentially achieve similar performance 

 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



Variable Cost of 
Omission 

|c/v - 4.26| 100 

|c/v - 4.26|2 69 

(v/c)2 · SapsBestCVMean 53 

|c/v - 4.26| · SapsBestCVMean 33 

Feature Importance – Variable Ratio 
• We can analyze a model’s features to identify problem 

parameters that most affect empirical hardness 
– problem: very high-dimensional models 
– solution: subset selection 
– caveat: other subsets could potentially achieve similar performance 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



Variable Cost of 
Omission 

|c/v - 4.26| 100 

|c/v - 4.26|2 69 

(v/c)2 · SapsBestCVMean 53 

|c/v - 4.26| · SapsBestCVMean 33 

Feature Importance – Variable Ratio 
• We can analyze a model’s features to identify problem 

parameters that most affect empirical hardness 
– problem: very high-dimensional models 
– solution: subset selection 
– caveat: other subsets could potentially achieve similar performance 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



0.01

0.1

1

10

100

1000

3.26 3.76 4.26 4.76 5.26

Clauses-to-Variables Ratio

R
un

tim
e(

s)
Fixed Ratio Data 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



Fixed Ratio Prediction (Kcnfs) 
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Feature Importance – Fixed Ratio 

Variable Cost of 
Omission 

SapsBestSolMean2 100 

SapsBestSolMean · MeanDPLLDepth 74 

GsatBestSolCV  · MeanDPLLDepth 21 

VCGClauseMean · GsatFirstLMRatioMean 9 
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Empirical Performance of EHMs 

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio 
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Hierarchical Hardness Models 
• Conditioning on satisfiability of the instance, single-feature 

models become sufficient, clauses/variables unimportant 
– Satisfiable:  local search probing 
– Unsatisfiable:  search space size 

• Hierarchical hardness model [Xu, Hoos, Leyton-Brown, 2007]: 
1. Predict satisfiability status 
2. Use this prediction as a feature to combine the  

predictions of SAT-only and UNSAT-only models 

• Not necessarily easy: SAT-only and UNSAT-only models can make 
large errors when given wrong data 

SAT-only UNSAT-only 
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Predicting Satisfiability Status  (fixed-ratio 3-SAT) 

Classifier’s Output 
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Empirical Performance of HHMs 

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio 
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BEYOND UNIFORM-RANDOM 3-SAT 

[L-B, Nudelman, Shoham, 2002; 2009] 
[Hutter, Xu, Hoos, L-B, 2006–ongoing] 

  Motivation Empirical Hardness Models Beyond Uniform-Random 3-SAT 



Beyond Uniform-Random 3-SAT 
We’ve shown that EHMs work consistently, across: 
• 4 problem domains (with new features in each domain) 

– Combinatorial Auctions 
– Satisfiability (SAT) 
– Mixed Integer Programming (MIP) 
– Travelling Salesman Problem (TSP) 

• dozens of solvers, including: 
– state of the art solvers in each domain 
– black-box, commercial solvers 

• dozens of instance distributions, including: 
– major benchmarks (SAT competitions; MIPLIB; …) 
– real-world data (hardware verification, computational sustainability, …) 

 

We’ve also investigated different machine learning techniques. 
Overall, we recommend random forests of regression trees. 
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 Actual Runtime  Actual Runtime 

Examples: EHMs for SAT 
   IBM hardware verification data, SPEAR solver 
 Linear Regression (RMSE=0.60) Random Forest (RMSE=0.38) 

  SAT Competition (Random + Handmade + Industrial) data, MINISAT solver 
 Linear Regression (RMSE=1.01) Random Forest (RMSE=0.47) 
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Examples: EHMs for MIP 
  MIPLIB data, CPLEX 12.1 solver 
 Linear Regression (RMSE=2.68 × 108) Random Forest (RMSE=0.63) 

  Red Crested Woodpecker habitat data, CPLEX 12.1 solver 
 Linear Regression (RMSE=0.25) Random Forest (RMSE=0.02) 

 Actual Runtime  Actual Runtime 

 Actual Runtime  Actual Runtime 
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Examples: EHMs for TSP 
  PORTGEN uniform-random data, Concorde solver 
 Linear Regression (RMSE=0.41) Random Forest (RMSE=0.44) 

  PORTCGEN random clustered data, LK-H solver 
 Linear Regression (RMSE=0.78) Random Forest (RMSE=0.74) 

 Actual Runtime  Actual Runtime 

 Actual Runtime  Actual Runtime 
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Modeling Algorithm Design Spaces 
• Models can be extended to the sets of algorithms 

described by solvers with parameters that are: 
– continuous or discrete 
– ordinal or categorical 
– potentially conditional on the values of other parameters 

 

• These models are useful for: 
– understanding hardness of an instance distribution across a 

(potentially infinite) family of algorithms 
– choosing a solver design to use in practice 

• we can iterate between identifying a design with good predicted 
performance, and gathering data about this new design 

• “sequential model-based optimization” paradigm in Bayesian statistics 
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Previously Unseen Instances and Configurations 
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  SAT: IBM hardware verification data, SPEAR solver  
 Linear Regression (RMSE=0.58) Random Forest (RMSE=0.43) 

  MIP: MIPLIB data, CPLEX 12.1 solver 
 Linear Regression (RMSE > 1 × 1099) Random Forest (RMSE=0.55) 

 Actual Runtime  Actual Runtime 

 Actual Runtime  Actual Runtime 
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Summary and Applications of EHMs 
• Empirical Hardness Models 

– a statistically rigorous approach to characterizing the difficulty 
of solving a given family of problems using available methods 

– surprisingly effective in practice, across various domains 
– analysis of these models can open avenues for theoretical 

investigations beyond the worst case 
 

• EHMs are also useful for practical applications: 
– job scheduling (e.g., to minimize makespan) 

– automatic design of algorithm portfolios 
– automatic synthesis of hard benchmark distributions 
– model-based solver tuning/design 
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