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My Field 
• Computer Science 

– Hub and spokes model: CS as an enabling ingredient for a wide 
variety of interdisciplinary projects 

– My own interdisciplinary connections: Microeconomic Theory, 
Math, Operations Research, Philosophy, Statistics, Cognitive Science 

 

• Artificial Intelligence 
– Getting computers to do things that previously,  

only people could do 
• Computer Science Theory 

– Mathematical underpinnings of computer science, particularly in the 
design and analysis of algorithms 
 

• My own work: Algorithms for making good decisions 
– Game theory: decisions depend on what other actors will do 
– Empirical Algorithmics: algorithms that work well in practice 
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REASONING ABOUT LARGE GAMES 
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Game Theory 
• Mathematical study of interaction between  

 self-interested, rational agents 
 

• Game 
– players/agents 
– actions 
– payoffs 

 

• Strategies: 
– pure strategy: picking a single action 
– mixed strategy: randomizing over actions 
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• Consider this situation as a two-player game: 
– both use a correct implementation: both get 1 ms delay 
– one correct, one defective: 4 ms delay for correct, 0 ms for defective 
– both defective: both get a 3 ms delay. 

 Should you send your packets using correctly-implemented TCP (which has a 
“backoff” mechanism) or using a defective implementation (which doesn’t)? 

 

Analyzing Games Game Theory 
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Analyzing Games 
• TCP backoff game is a Prisoner’s Dilemma 

– both players have a dominant strategy: defective 
• if player 2 plays C, D is player 1’s best response 
• if player 2 plays D, D is player 1’s best response 
• likewise for player 2 

 

• Not all games are so simple to analyze 
– the best thing for one player to do can depend 

on what the other player does 
• rock-paper-scissors 
• poker 

 

• What can we say about such games? 
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Game Theory 
• Key insight: 

– don’t just think about single players’ actions 
– find strategy profiles where all players  

simultaneously play best responses 
 

• Such a strategy profile is called a Nash equilibrium 
– at least one Nash equilibrium exists in every finite game 

• as long as agents are allowed to randomize their strategies 

– best known algorithms for finding Nash equilibrium  
require exponential time 
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The Kind of Games Often Studied 
• The analysis of such 2 x 2 games has proven surprisingly 

interesting, and has had a profound impact both on our 
understanding of strategic situations and popular culture 
– e.g., google “dark knight game theory”  

                 or “strangelove game theory” 
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The Kind of Games We’d Like to Study 
• When we use game theory to model real systems, 

we’d like to consider games with more than  
two agents and two actions 

 

• Some examples of the kinds of questions we 
would like to be able to answer: 
– How will heterogeneous users route their traffic in a network? 
– How will advertisers bid in a sponsored search auction? 
– Which job skills will students choose to pursue? 
– Where in a city will businesses choose to locate? 

 

• Most GT work is analytic, not computational 
• What’s holding us back? 

– the size of classical game representations grows exponentially in the 
number of players 

• this makes all but the simplest games infeasible to write down 
– even when games can be represented, the best algorithms tend to have 

worst-case performance exponential in the game's size 
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Compact Representations 
Research program for advancing the computational analysis of games: 
1. find representations that can encode games of interest in 

exponentially-less space than the normal form 
2. find efficient algorithms for working with these representations 

 
• Action Graph Games: compactly represent games 

exhibiting context-specific independence, anonymity or 
additive structure 

 

• Generalizes all major, existing compact representations of 
simultaneous-move games 

 

• Fast algorithms for computing quantities of interest 
– Nash equilibrium, correlated equilibrium, pure-strategy Nash 

equilibrium, others… 
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Coffee Shop Game 
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 set of players: want to open 
coffee shops 
 

 actions: locations where a 
shop could  
be opened 
 

 utility: profitability of  
a location  
 depends only on 

number of other 
players who choose 
same or adjacent 
location 

Action-Graph Games 
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Experimental Results: Representation Size 

Coffee shop game, 5 x 5 grid 
NF grows exponentially; AGG grows polynomially 
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Experimental Results: Expected Payoff 

Coffee Shop Game, 5 x 5 grid, 1000 random strategy profiles 
NF grows exponentially; AGG grows polynomially 

(largest NF game we 
  could fit in memory) 
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AUCTIONS AND MARKET DESIGN 

  Introduction Reasoning about Large Games Auction Design and Analysis Empirical Algorithmics 



Auctions: why do computer scientists care? 

 
• Efficient resource allocation 

– a core interest of computer science 
– auctions solve this problem when agents are  

self interested 
 

• They’re big ($$$) 
– and the internet is changing the way they’re used 
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Auctions: a key application of game theory 
• A broader category than often perceived 
• Generally, auctions are markets in which: 

– agents make binding declarations of interest in one or more resources 
– these resources are allocated according to known rules 
– payments to/from agents may be imposed 

 

• Modeled using game theory. Some new wrinkles: 
– infinite action space 
– imperfect information about payoffs (other agents’ valuations) 

 

• How do sellers choose the particular auctions they do? 
– mechanism design (Nobel prize 2007): “inverse game theory” 
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Second-Price Auctions 
• An auction that might initially seem strange: second-price 

1. all bidders submit sealed bids 
2. the high bid wins 
3. the winner pays the second-highest bid amount 
 

• Theorem: it is a dominant strategy in a second-price auction to 
bid your true value for the good. 

• Proof: 
– Case 1: bidding truthfully would make you the high bidder 

• you can’t gain by changing your bid 
– Case 2: bidding truthfully would not make you the high bidder 

• you can’t gain by changing your bid 
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Second-Price Auctions 
• Theorem: it is a dominant strategy in a second-price 

auction to bid your true value for the good. 
 

• Case 1: bidding truthfully, you’re the high bidder 

 bid more:  
 no difference 

(still win, pay same) 
 

 bid less: 
1. no difference 
2. you lose 
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you pay 

true value 

winner pays 

winner winner 
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Second-Price Auctions 
• Theorem: it is a dominant strategy in a second-price 

auction to bid your true value for the good. 
 

• Case 2: bidding truthfully, you’re not the high bidder 

 bid less:  
 no difference 

(still lose, pay nothing) 
 

 bid more: 
1. no difference 
2. you win, pay too much 
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 Ranking: descending by (quality score) x (bid amount) 
 quality score is click-through rate plus other measures 

of advertisement relevance 
 

 “The AdWords Discounter will charge you the lowest CPC 
you can be charged while still maintaining your position” 
 



Analyzing Ad Auctions 
• Search engines used different auctions over the years 

– GFP: Yahoo! and Overture 1997-2002 
– uGSP: Yahoo! 2002-2007 
– wGSP: Google, Microsoft, Yahoo! 2007-present 

• Question 
– Is wGSP better than GFP and uGSP? 

• Better by what metric: 
– revenue? 
– efficiency? 

 

• Answer this question by representing the ad auction  
as an AGG, and computing Nash equilibria 
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Analyzing Ad Auctions: Efficiency 
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Analyzing Ad Auctions: Revenue 
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DESIGNING ALGORITHMS TO  
WORK WELL IN PRACTICE 
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Empirical Algorithmics 
• Many important problems are computationally hard 

– circuit verification, planning, protein folding,  
probabilistic inference, vehicle routing, ... 

 

• We need to be able to solve hard problems in practice, 
even if their worst-case complexity is exponential 
– Luckily, many instances are easy in practice 

 

• Overall research agenda: 
– bypass the theoretical question of worst-case hardness 
– design algorithms that do well on “typical” inputs 
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One Motivating Question 

The best available methods tend 
– to offer no interesting theoretical guarantees 
– work astoundingly well in practice 
– often exhibit exponentially varying performance  

(e.g., milliseconds to days) even on fixed-size problems 

“How hard is it to solve a given problem in practice,  
using the best available methods?” 
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Our Key Finding 

   Even in settings where formal analysis seems hopeless: 
–  algorithms are complex black boxes 
–  instance distributions are heterogeneous or richly structured 

…it is possible to apply rigorous statistical methods to 
answer such questions with high levels of confidence. 

  Introduction Reasoning about Large Games Auction Design and Analysis Empirical Algorithmics 



Empirical Hardness Models 
• Predict how long an algorithm will take to run, given: 

– A set of instances D 
– For each instance i ∈ D, a vector xi of feature values 
– For each instance i ∈ D, a runtime observation yi 

 

• We want a mapping f(x) ↦ y that  
accurately predicts yi given xi  
– This is a regression problem 

 

• The amazing thing: this works at all! 
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Examples 

 Circuit Verification, SPEAR MIPLIB, CPLEX 

 Red Cockaded Woodpecker Habitat, CPLEX Travelling Salesperson, Concorde 
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Design Patterns 
 

• It’s a lot of work to design new heuristic algorithms 
– Algorithms that do well on instances arising from a given 

application often perform poorly elsewhere 
 

• Solution: automatic analysis and design patterns 
– general methods for predicting algorithm performance and 

constructing new algorithms, based on representative sets of 
“typical” problem instances 

– exchange expensive human expertise for cheap computer time 
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Satisfiability (SAT) Solvers 
• There are many high performance SAT solvers 

– indeed, for years a biannual international competition has 
received >20 submissions in each of 9 categories 
 

• However, no solver is dominant 
– different solvers work well on different problems 

• hence the different categories 

– even within a category, the best solver varies by instance 
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SATzilla 
• The idea: an algorithm portfolio,  

leveraging the power of all  
available algorithms 
 

• SATzilla: 
– an algorithm portfolio constructed  

from all available state-of-the-art  
complete and incomplete SAT solvers 

– it won 5 medals in each of the  
2007 and 2009 SAT competitions 
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• Given: 
– training set of instances 
– performance metric 
– candidate solvers 
– portfolio builder  

(incl. instance features) 
 

• Training: 
– collect performance data 
– portfolio builder learns 

empirical hardness models 
 

• At Runtime: 
– predict performance 
– select solver 

Metric  

Portfolio Builder  

Training Set 

 

Novel 
Instance Portfolio-Based 

Algorithm Selector 

Candidate Solvers  

Selected 
Solver 

SATzilla 
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Algorithm Design Philosophies 
• Traditional approach 

– Hard-code various design choices 
– Iteratively conduct small experiments to improve the design 

 

• Our approach 
– Make all design options explicit, encoding them as parameters  

• Results in a generalized, highly parameterized algorithm 
• Instantiation produces many different solvers 

– Given a distribution, set the parameters using an  
automatic algorithm configuration procedure 
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SATenstein? 
• Frankenstein’s goal: 

– Create “perfect” human being from 
scavenged body parts 

 

• SATenstein’s goal: 
– Create high-performance SAT solvers 

using components scavenged from 
existing solvers 
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• Designer creates highly-
parameterized algorithm 
from existing components 

 

• Given: 
– training set of instances 
– performance metric 
– parameterized algorithm 
– algorithm configurator 

 

• Configure algorithm: 
– run configurator on 

training instances 
– output is a configuration 

that optimizes metric 
Parameterized 

Algorithm 

Existing 
Algorithm Components 

Domain 
Expert 

How does SATenstein work? 
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Algorithm 
Configurator 

Metric  

New 
Configuration 

Instance 
set 

• Designer creates highly-
parameterized algorithm 
from existing components 

 

• Given: 
– training set of instances 
– performance metric 
– parameterized algorithm 
– algorithm configurator 

 

• Configure algorithm: 
– run configurator on 

training instances 
– output is a configuration 

that optimizes metric 
Parameterized 

Algorithm 

How does SATenstein work? 
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Summary of Results 
• Performance summary: 

– Factor of 70 - 1300 performance improvement over best 
challenger on QCP, HGEN, CBMC-SE 

– Factor of 1.4 - 2 performance improvement over best 
challenger on SW-GCP, R3SAT and FAC 

 

• Impact on state of the art: 
– in all cases, generated the best SLS algorithm we’re aware of 
– for some distributions, our new algorithm is the very best of 

which we’re aware 
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SATzilla 
 portfolio-based algorithm selection 

SATenstein 
 algorithm design via automatic configuration 

Advantages and Disadvantages 
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 Exploit per-instance variation between 
solvers using learned runtime models 
– practical: e.g., won competition medals  
– fully automated: requires only cluster 

time rather than human design effort 
 

 Key drawback: 
– requires a set of strong, relatively 

uncorrelated candidate solvers 
– can’t be applied in domains for which 

such solvers do not exist 
 

SATzilla 
 portfolio-based algorithm selection 

Advantages and Disadvantages 
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• Instead of manually exploring  

a design space, build a  
highly-parameterized algorithm and 
then configure it automatically 

• Can find powerful, novel designs 
• But: only produces single algorithms 

designed to perform well on the  
entire training set 

SATenstein 
 [KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009] 

algorithm design via automatic configuration 

Advantages and Disadvantages 
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Hydra 
automatic portfolio synthesis 

Starting from a single parameterized algorithm, automatically find a set of 
uncorrelated configurations that can be used to build a strong portfolio. 

Hydra 
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Algorithm 
Configurator 

Metric  Training Set 

Portfolio-Based 
Algorithm Selector 

Candidate Solver Set  

Candidate 
Solver 

Parameterized 
Algorithm 

Portfolio 
Builder  

Hydra Procedure: Iteration 1 
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Algorithm 
Configurator 

Metric  Training Set 

Portfolio-Based 
Algorithm Selector 

Candidate Solver Set  

Candidate 
Solver 

Parameterized 
Algorithm 

Portfolio 
Builder  

Hydra Procedure: Iteration 2 
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Algorithm 
Configurator 

Metric  Training Set 

Portfolio-Based 
Algorithm Selector 

Candidate Solver Set  

Candidate 
Solver 

Parameterized 
Algorithm 

Portfolio 
Builder  

Hydra Procedure: Iteration 3 
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Output: 
 
 
 
 
 
 
 
 

Portfolio-Based 
Algorithm Selector 

 

Novel 
Instance 

Selected 
Solver 

Hydra Procedure: After Termination 
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Solver RAND HAND BM INDU 

Best Challenger (of 17) 1128.63 2960.39 224.53 11.89 

Portfolio of 11 Challengers 897.37 2670.22 54.04 135.84 

Portfolio of 17 Challengers 813.72 2597.71 3.06* 7.74* 

Hydra (7 iterations) 631.35 2495.06 3.06 7.77 

* Statistically insignificant performance difference (sign rank test).  
Hydra’s performance was significantly better in all other pairings. 

  

Performance Summary 
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• Reasoning about Large Games: can compute equilibria (etc.) 
of large game-theoretic interactions by representing them as 
action-graph games. 

 

• Auction Design and Analysis: game theory can be leveraged 
to construct protocols that work even if agents aren’t 
cooperative. Computational techniques can help us understand 
what will happen under a new design. 

 

• Empirical Algorithmics: algorithms that work well in practice 
– Empirical hardness models: predict algorithm behavior 
– SATzilla: use these models to build algorithm portfolios 
– SATenstein: solve the design problem using automatic configuration 
– Hydra: design portfolios from a single parameterized algorithm 

 

Algorithms for Making Good Decisions 
  Introduction Reasoning about Large Games Auction Design and Analysis Empirical Algorithmics 


	My Research:� �Algorithms for Making Good Decisions
	My Field
	Reasoning about Large Games
	Game Theory
	Game Theory
	Analyzing Games
	Game Theory
	The Kind of Games Often Studied
	The Kind of Games We’d Like to Study
	Compact Representations
	Coffee Shop Game
	Slide Number 12
	Experimental Results: Representation Size
	Experimental Results: Expected Payoff
	Auctions and Market Design
	Auctions: why do computer scientists care?
	Slide Number 17
	Auctions: a key application of game theory
	Second-Price Auctions
	Second-Price Auctions
	Second-Price Auctions
	Slide Number 22
	Slide Number 23
	Analyzing Ad Auctions
	Analyzing Ad Auctions: Efficiency
	Analyzing Ad Auctions: Revenue
	Designing Algorithms to �Work Well in Practice
	Empirical Algorithmics
	One Motivating Question
	Our Key Finding
	Empirical Hardness Models
	Examples
	Design Patterns
	Satisfiability (SAT) Solvers
	SATzilla
	SATzilla
	Algorithm Design Philosophies
	SATenstein?
	How does SATenstein work?
	How does SATenstein work?
	Summary of Results
	Advantages and Disadvantages
	Advantages and Disadvantages
	Advantages and Disadvantages
	Hydra
	Hydra Procedure: Iteration 1
	Hydra Procedure: Iteration 2
	Hydra Procedure: Iteration 3
	Hydra Procedure: After Termination
	Performance Summary
	Algorithms for Making Good Decisions

