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My Field

e Computer Science

— Hub and spokes model: CS as an enabling ingredient for a wide
variety of interdisciplinary projects

— My own interdisciplinary connections: Microeconomic Theory,
Math, Operations Research, Philosophy, Statistics, Cognitive Science

e Artificial Intelligence

— Getting computers to do things that previously,
only people could do

e Computer Science Theory

— Mathematical underpinnings of computer science, particularly in the
design and analysis of algorithms

e My own work: Algorithms for making good decisions
— Game theory: decisions depend on what other actors will do
— Empirical Algorithmics: algorithms that work well in practice
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REASONING ABOUT LARGE GAMES
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Game Theory

 Mathematical study of interaction between
self-interested, rational agents

* Game
— players/agents
— actions
— payoffs

e Strategies:
— pure strategy: picking a single action
— mixed strategy: randomizing over actions
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Analyzing Games

e TCP backoff game is a Prisoner’s Dilemma

— both players have a dominant strategy: defective
e if player 2 plays C, D is player 1’s best response C D
e if player 2 plays D, D is player 1’s best response
e likewise for player 2

. D
 Not all games are so simple to analyze |

— the best thing for one player to do can depend
on what the other player does
e rock-paper-scissors
e poker

 What can we say about such games?
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Game Theory

e Key insight:
— don’t just think about single players’ actions

— find strategy profiles where all players
simultaneously play best responses

e Such a strategy profile is called a Nash equilibrium
— at least one Nash equilibrium exists in every finite game
e as long as agents are allowed to randomize their strategies

— best known algorithms for finding Nash equilibrium
require exponential time
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The Kind of Games Often Studied

 The analysis of such 2 X 2 games has proven surprisingly
interesting, and has had a profound impact both on our
understanding of strategic situations and popular culture

— e.g., google “dark knight game theory”
or “strangelove game theory”
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The Kind of Games We’d Like to Study

When we use game theory to model real systems,
we’d like to consider games with more than i:; }_
two agents and two actions

Some examples of the kinds of questions we
would like to be able to answer:

How will heterogeneous users route their traffic in a network?
How will advertisers bid in a sponsored search auction?
Which job skills will students choose to pursue?

Where in a city will businesses choose to locate? .

Most GT work is analytic, not computational
What’s holding us back?

the size of classical game representations grows exponentially in the

& .

number of players g % et
. . . . . o S €2

* this makes all but the simplest games infeasible to write down 304 {;anﬁ
even when games can be represented, the best algorithms tend to have =~ * '-’:;j o

worst-case performance exponential in the game's size
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Compact Representations

Research program for advancing the computational analysis of games:

find representations that can encode games of interest in
exponentially-less space than the normal form

find efficient algorithms for working with these representations

Action Graph Games: compactly represent games
exhibiting context-specific independence, anonymity or
additive structure

Generalizes all major, existing compact representations of
simultaneous-move games

Fast algorithms for computing quantities of interest

— Nash equilibrium, correlated equilibrium, pure-strategy Nash
equilibrium, others...
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Experimental Results: Representation Size
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AUCTIONS AND MARKET DESIGN
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Auctions: why do computer scientists care?

e Efficient resource allocation
— a core interest of computer science

— auctions solve this problem when agents are
self interested

* They’re big (SSS)

— and the internet is changing the way they’re used
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Auctions: a key application of game theory

A broader category than often perceived
e Generally, auctions are markets in which:

— agents make binding declarations of interest in one or more resources
— these resources are allocated according to known rules
— payments to/from agents may be imposed

e Modeled using game theory. Some new wrinkles:
— infinite action space
— imperfect information about payoffs (other agents’ valuations)

e How do sellers choose the particular auctions they do?

— mechanism design (Nobel prize 2007): “inverse game theory”
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Second-Price Auctions

 An auction that might initially seem strange: second-price
1. all bidders submit sealed bids

2. the high bid wins
3. the winner pays the second-highest bid amount

e Theorem: it is a dominant strategy in a second-price auction to
bid your true value for the good.

e Proof:
— Case 1: bidding truthfully would make you the high bidder
e you can’t gain by changing your bid
— Case 2: bidding truthfully would not make you the high bidder
e you can’t gain by changing your bid
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Second-Price Auctions

e Theorem: it is a dominant strategy in a second-price
auction to bid your true value for the good.

e Case 1: bidding truthfully, you’re the high bidder
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Second-Price Auctions

e Theorem: it is a dominant strategy in a second-price
auction to bid your true value for the good.

e Case 2: bidding truthfully, you’re not the high bidder

$120
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your bid
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= no difference
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= bhid more;
1. no difference
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Bidding on eBay

eBay uses an automatic bidding system to make bidding on auctions more convenient and less time-
consuming for buyers. There is nothing you have to set up in order to bid in this way. When you bid

on an auction style listing you will be placing bids using this method. Practice bidding on eBay from
this test auction!

Here's how bidding on eBay works:

1.

When you place a bid, you enter the maximum amount you'd be willing to pay for the item.
Your maximum amount is kept confidential from other bidders and the seller.

The eBay system compares your bid to those of the other bidders.

The system places bids on your behalf, using only as much of your bid as is necessary to

maintain your high bid position (or to meet the reserve price). The system will bid up to your
maximum amount.

If another bidder has a higher maximum, you'll be outbid. BUT, if no other bidder has a higher
maximum, you win the item. And you could pay significantly less than your maximum pricel
This means you don't have to keep coming back to re-bid every time another bid is placed.
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Analyzing Ad Auctions

Search engines used different auctions over the years
— GFP: Yahoo! and Overture 1997-2002

— uGSP: Yahoo! 2002-2007

— WGSP: Google, Microsoft, Yahoo! 2007-present

Question
— |s wGSP better than GFP and uGSP?
Better by what metric:

— revenue?

— efficiency?

Answer this question by representing the ad auction
as an AGG, and computing Nash equilibria
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Analyzing Ad Auctions: Efficiency
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Analyzing Ad Auctions: Revenue
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DESIGNING ALGORITHMS TO
WORK WELL IN PRACTICE
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Empirical Algorithmics

e Many important problems are computationally hard

— circuit verification, planning, protein folding,
probabilistic inference, vehicle routing, ...

 We need to be able to solve hard problems in practice,
even if their worst-case complexity is exponential

— Luckily, many instances are easy in practice

e QOverall research agenda:
— bypass the theoretical question of worst-case hardness
— design algorithms that do well on “typical” inputs
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One Motivating Question

“How hard is it to solve a given problem in practice,

using the best available methods?”

The best available methods tend
— to offer no interesting theoretical guarantees
— work astoundingly well in practice

— often exhibit exponentially varying performance
(e.g., milliseconds to days) even on fixed-size problems
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Our Key Finding

Even in settings where formal analysis seems hopeless:
— algorithms are complex black boxes
— instance distributions are heterogeneous or richly structured

...it is possible to apply rigorous statistical methods to
answer such questions with high levels of confidence.
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Empirical Hardness Models

* Predict how long an algorithm will take to run, given:

— A set of instances D
— For each instance i € D, a vector x of feature values
— For each instance i € D, a runtime observation y,

* We want a mapping f(x) ~ y that
accurately predicts y, given x

— This is a regression problem

* The amazing thing: this works at alll
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Examples
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Design Patterns

e |t's a lot of work to design new heuristic algorithms

— Algorithms that do well on instances arising from a given
application often perform poorly elsewhere

e Solution: automatic analysis and design patterns

— general methods for predicting algorithm performance and
constructing new algorithms, based on representative sets of
“typical” problem instances

— exchange expensive human expertise for cheap computer time
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Satisfiability (SAT) Solvers

* There are many high performance SAT solvers

— indeed, for years a biannual international competition has
received >20 submissions in each of 9 categories

e However, no solver is dominant

— different solvers work well on different problems

* hence the different categories

— even within a category, the best solver varies by instance
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SATzilla

e The idea: an algorithm portfolio,
leveraging the power of all
available algorithms

e SATzilla:

— an algorithm portfolio constructed
from all available state-of-the-art
complete and incomplete SAT solvers

— it won 5 medals in each of the
2007 and 2009 SAT competitions
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e Given:
— training set of instances
performance metric
— candidate solvers
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— portfolio builder learns
empirical hardness models
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Algorithm Design Philosophies

e Traditional approach
— Hard-code various design choices
— lteratively conduct small experiments to improve the design

e Our approach

— Make all design options explicit, encoding them as parameters
e Results in a generalized, highly parameterized algorithm

e |nstantiation produces many different solvers

— Given a distribution, set the parameters using an
automatic algorithm configuration procedure
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SATenstein?

* Frankenstein’s goal:

— Create “perfect” human being from
scavenged body parts

e SATenstein’s goal:

— Create high-performance SAT solvers
using components scavenged from
existing solvers
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How does SATenstein work?

z Q e 8 * Designer creates highly-

Ay parameterized algorithm

Existi from existing components
xisting

Algorithm Components J
J P e @Given:

— training set of instances
— performance metric
— parameterized algorithm

@

Domain ; :
Expert — algorithm configurator
"l e Configure algorithm:
"’l — run configurator on
training instances
Parameterized — output is a configuration

Algorithm that optimizes metric
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How does SATenstein work?

Metric

Instance
set

Algorithm 4

Configuratoii \
VoS,
Paramet%@e/d New

Algorithm Configuration

e Designer creates highly-
parameterized algorithm
from existing components

* Given:
— training set of instances
— performance metric
— parameterized algorithm
— algorithm configurator

e Configure algorithm:

— run configurator on
training instances

— output is a configuration
that optimizes metric
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Summary of Results

e Performance summary:

— Factor of 70 - 1300 performance improvement over best
challenger on ; ,

— Factor of 1.4 - 2 performance improvement over best
challenger on SW-GCP, R3SAT and FAC

 Impact on state of the art:
— in all cases, generated the best SLS algorithm we’re aware of

— for some distributions, our new algorithm is the very best of
which we’re aware
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Advantages and Disadvantages

SATzilla SATenstein
portfolio-based algorithm selection algorithm design via automatic configuration
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Advantages and Disadvantages

o SQTIZi”?h - Exploit per-instance variation between
portiolio-based algorithm selection solvers using learned runtime models
— practical: e.g., won competition medals

— fully automated: requires only cluster
time rather than human design effort

Key drawback:

— requires a set of strong, relatively
uncorrelated candidate solvers

— can’t be applied in domains for which
such solvers do not exist
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Advantages and Disadvantages

Instead of manually exploring

a design space, build a
highly-parameterized algorithm and
then configure it automatically

Can find powerful, novel designs

But: only produces single algorithms
designed to perform well on the
entire training set

SATenstein
[KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]
algorithm design via automatic configuration
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Hydra

ra
olio synthesis

Starting from a single parameterized algorithm, automatically find a set of
uncorrelated configurations that can be used to build a strong portfolio.
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Hydra Procedure: Iteration 1
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Parameterized
Algorithm

Training Set Metric Candidate Solver Set

Algorithm  Pértfolio
Configurator aBuilder

Candidate

Solver  portfolio-Based
Algorithm Selector
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Hydra Procedure: Iteration 2

e

Parameterized
Algorithm

Training Set Metric Candidate Solver Set

Algorithm  Pértfolio
Configurator aBuilder

L™

Candidate

Solver  portfolio-Based
Algorithm Selector
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Hydra Procedure: Iteration 3

v aQ

Parameterized —= |
Algorithm Training Set Metric ~ Candidate Solver Set

Algorithm  Pértfolio
Configurator aBuilder

&

Candidate

Solver  portfolio-Based
Algorithm Selector
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Hydra Procedure: After Termination

b

Novel | Selected

Portfolio-Based Solver
Instance Algorithm Selector
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Performance Summary

Solver RAND HAND BM INDU

Best Challenger (of 17) 1128.63 2960.39 224.53 11.89

* Statistically insignificant performance difference (sign rank test).
Hydra’s performance was significantly better in all other pairings.



Introduction Reasoning about Large Games Auction Design and Analysis Empirical Algorithmics

Algorithms for Making Good Decisions

e Reasoning about Large Games: can compute equilibria (etc.)
of large game-theoretic interactions by representing them as
action-graph games.

e Auction Design and Analysis: game theory can be leveraged
to construct protocols that work even if agents aren’t
cooperative. Computational techniques can help us understand
what will happen under a new design.

e Empirical Algorithmics: algorithms that work well in practice
— Empirical hardness models: predict algorithm behavior
— SATzilla: use these models to build algorithm portfolios
— SATenstein: solve the design problem using automatic configuration
— Hydra: design portfolios from a single parameterized algorithm
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