Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection

Lin Xu, Holger H. Hoos, Kevin Leyton-Brown

Department of Computer Science
University of British Columbia
Two automated algorithm design ideas

SATzilla
[Xu, Hutter, Hoos, Leyton-Brown, 2007; 2008]
portfolio-based algorithm selection

SATenstein
[KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]
algorithm design via automatic configuration
Two automated algorithm design ideas

SATzilla
[Xu, Hutter, Hoos, Leyton-Brown, 2007; 2008]
portfolio-based algorithm selection

Exploit per-instance variation between solvers using learned runtime models

- **practical:** e.g., won 10 medals in 2007, 2009 SAT competitions
- **fully automated:** requires only cluster time rather than human design effort

Key drawback:

- requires a set of **strong, relatively uncorrelated** candidate solvers
- **can’t be applied** in domains for which such solvers do not exist

Two automated algorithm design ideas

- Instead of manually exploring a design space, build a highly-parameterized algorithm and then configure it automatically
- Can find powerful, novel designs
 - matched or outperformed existing SLS algorithms on six SAT domains
- But: only produces single algorithms designed to perform well on the entire training set

Two automated algorithm design ideas

Starting from a single parameterized algorithm, automatically find a set of uncorrelated configurations that can be used to build a strong portfolio.
Plan of This Talk

Background
- SATzilla: Portfolio-Based Algorithm Selection
- SATenstein: Algorithm Configuration as Design

Portfolio Synthesis
- Related Work
- Hydra

Experimental Results

Conclusions and Future Work

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Given:
- training set of instances
- performance metric
- candidate solvers
- portfolio builder (incl. instance features)

Training:
- collect performance data
- portfolio builder learns predictive models

At Runtime:
- predict performance
- select solver

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
SATenstein: Automated Algorithm Design

[KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]

- Designer creates highly-parameterized algorithm from existing components

- Given:
 - training set of instances
 - performance metric
 - parameterized algorithm
 - algorithm configurator

- Configure algorithm:
 - run configurator on training instances
 - output is a configuration that optimizes metric
SATenstein: Automated Algorithm Design

- Designer creates highly-parameterized algorithm from existing components
- Given:
 - training set of instances
 - performance metric
 - parameterized algorithm
 - algorithm configurator
- Configure algorithm:
 - run configurator on training instances
 - output is a configuration that optimizes metric

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Plan of This Talk

Background
– SATzilla: Portfolio-Based Algorithm Selection
– SATenstein: Algorithm Configuration as Design

Portfolio Synthesis
– Related Work
– Hydra

Experimental Results

Conclusions and Future Work

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Related Work

• Algorithm synthesis; portfolios and online algorithm selection
 [Minton 1993]; [Huberman, Lukose & Hogg 1997]; [Howe et al, 1999]; [Gomes & Selman 2001];
 [Carchrae & Beck 2005]; [Gagliolo & Schmidhuber 2006]; [Streeter, Golovin & Smith 2007];
 [Roberts & Howe, 2007]; [Gaspero & Schaerf 2007]; [Monette, Deville & van Hentenryck 2009]

• Two proposals for synthesis of selection-based portfolios:
 1. “Boosting as a Metaphor for Algorithm Design” [L-B et al., 2003; 2009]
 • partition instances into \(k \) clusters based on features
 • find best-performing algorithm for each cluster
 ⇒ assumes that all algorithms repeatedly (1) sample from a distribution over heuristics; (2) use the sampled heuristic for one search step
 ⇒ best-performing algorithms identified using a custom optimization method
 ⇒ our goal is to construct an entirely general method for portfolio synthesis

• CP-Hydra [O’Mahony, Hebrard, Holland, Nugent, & O’Sullivan, 2008]
 – selection-based portfolio for constraint programming
Core idea
- **re-weight instance distribution** to emphasize problems on which an existing portfolio P performs poorly

Interpretation as an automatic procedure:
- generate a new distribution D that is hard for P
- find a new solver **maximizing average performance** on D

We intended to implement this procedure. But:
- discovered examples in which the algorithm with best average performance **does not improve the portfolio**
- thus, the portfolio synthesis procedure can stagnate, even when other, helpful algorithms exist
Hydra: Dynamic Performance Metric

- **Avoid stagnation via a dynamic performance metric:**
 - return performance of s when s outperforms P
 - return performance of P otherwise

- **Intuitively:** s is scored for its **marginal contribution** to P

- This metric is given to an **off-the-shelf configurator**, which optimizes it to find a new configuration s^*

- **Thus, we retain the same core idea as “boosting”**
 - build a new algorithm that explicitly aims to **improve upon an existing portfolio**

- **Contrast with Stochastic Offline Programming:**
 - algorithms target **sets of instances having very different features**
 - these feature differences can be irrelevant to algorithm performance

Xu, Hoos, Leyton-Brown. *Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection*
Hydra Procedure: Iteration 1

Parameterized Algorithm

Algorithm Configurator

Training Set

Portfolio Builder

Metric

Candidate Solver Set

Candidate Solver

Portfolio-Based Algorithm Selector

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Hydra Procedure: Iteration 2

Parameterized Algorithm

Training Set

Metric

Candidate Solver Set

Algorithm Configurator

Portfolio Builder

Candidate Solver

Portfolio-Based Algorithm Selector

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Hydra Procedure: Iteration 3

Parameterized Algorithm

Training Set

Metric

Candidate Solver Set

Algorithm Configurator

Portfolio Builder

Candidate Solver

Portfolio-Based Algorithm Selector

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Hydra Procedure: After Termination

Output:

Portfolio-Based Algorithm Selector

Novel Instance → Portfolio-Based Algorithm Selector → Selected Solver

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Plan of This Talk

Background
 – SATzilla: Portfolio-Based Algorithm Selection
 – SATenstein: Algorithm Configuration as Design

Portfolio Synthesis
 – Related Work
 – Hydra

Experimental Results

Conclusions and Future Work

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Problem Domain

• Even though Hydra is most useful in other domains, we evaluated it on SAT.

• High bar for comparison
 – strong state-of-the-art solvers
 – portfolio-based solvers already successful
 ⇒ to be able to argue that Hydra does well, we want to compare to a strong portfolio

• Pragmatic benefits
 – a wide variety of interesting datasets
 – existing instance features
 – SATenstein is a suitable configuration target
Experimental Setup: Hydra’s Inputs

- **Portfolio Builder:** SATzilla framework
 [Xu, Hutter, Hoos, Leyton-Brown, 2008]

- **Parameterized Solver:** SATenstein-LS
 [KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]

- **Algorithm Configurator:** FocusedILS 2.3
 [Hutter, Hoos, Leyton-Brown, 2009]

- **Performance Metric:** Penalized average runtime (PAR)

- **Instance Sets:**
 - 2 from SATenstein paper
 [KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]
 - 2 from previous SAT competitions
Experimental Setup: Challengers

• Individual state-of-the-art solvers
 – 11 manually-crafted SLS solvers
 • all 7 SLS winners of any SAT competition 2002 – 2007
 • 4 other prominent solvers
 – 6 SATenstein solvers

• Also considered portfolios of challengers
 – used same portfolio builder (SATenstein)
Performance Summary

<table>
<thead>
<tr>
<th>Solver</th>
<th>RAND</th>
<th>HAND</th>
<th>BM</th>
<th>INDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Challenger (of 17)</td>
<td>1128.63</td>
<td>2960.39</td>
<td>224.53</td>
<td>11.89</td>
</tr>
</tbody>
</table>

* Statistically insignificant performance difference (sign rank test). Hydra’s performance was significantly better in all other pairings.
Performance Progress, RAND

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Selection Percentages After 7 Iterations, RAND

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Improvement After 7 Iterations, RAND

Xu, Hoos, Leyton-Brown. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection
Conclusions

• **Hydra**: an automatic design approach combining
 – portfolio-based algorithm selection *(here: “SATzilla”)*
 – automated algorithm configuration *(here: “SATenstein”)*

• Completely automated

• Algorithm/configurator/portfolio-builder agnostic

• Most useful in domains where few strong solvers exist

• Nevertheless met or exceeded state-of-the-art performance on SLS for SAT in 4 domains

Thank You!