Temporal Action-Graph Games: A New Representation for Dynamic Games

Albert Xin Jiang
University of British
Columbia

Kevin Leyton-Brown
University of British Columbia

Avi Pfeffer
Charles River
Analytics

Game Theory In One Slide ©

• A game:

- an interaction between two or more self-interested agents
- each agent independently chooses a strategy
- each agent derives utility from the resulting strategy profile

Strategies:

- simultaneous-move games: choosing from a set of actions
- dynamic games: choosing actions at multiple points in time; conditioned on observations
- can randomize over actions

Reasoning about games:

Often involves computation of solution concepts e.g. Nash equilibrium

	no utility structure
Simultaneous- move	normal form
Temporal	extensive form

	no utility structure	strict utility independence	
Simultaneous- move	normal form	Graphical Games [Kearns, Littman & Singh 2001]	
Temporal	extensive form	Multi-agent influence diagrams (MAIDs) [Koller & Milch 2001]	

	no utility structure	strict utility independence	context-specific indep., anonymity
Simultaneous- move	normal form	Graphical Games [Kearns, Littman & Singh 2001]	Action-Graph Games (AGGs) [Bhat & Leyton-Brown 2004] [Jiang & Leyton-Brown 2006]
Temporal	extensive form	Multi-agent influence diagrams (MAIDs) [Koller & Milch 2001]	

	no utility structure	strict utility independence	context-specific indep., anonymity
Simultaneous- move	normal form	Graphical Games [Kearns, Littman & Singh 2001]	Action-Graph Games (AGGs) [Bhat & Leyton-Brown 2004] [Jiang & Leyton-Brown 2006]
Temporal	extensive form	Multi-agent influence diagrams (MAIDs) [Koller & Milch 2001]	Temporal Action-Graph Games (TAGGs)

Overview

AGGs

TAGGs

Computation

Experiments

AGGs

- played on a set of action nodes
- each agent chooses an action node from a subset of action nodes
- for each action node, an action count is tallied
- utility dependence expressed by the action graph
 - utility of an agent depends only on
 - action chosen by the agent
 - action counts on the neighbors of the chosen action (configuration)
- representation is compact when action graph has small indegrees

Example: simultaneous-move tollbooth game

- tollbooth with 3 lanes
 - 5 cars arrive
 - cars choose lanes simultaneously
 - utility depends on number of cars choosing same lane
- context-specific independence (CSI): different independencies under diff context (player's own action)
- anonymity: utility depends on the numbers of agents taking certain actions, not their identities

Example: Dynamic Tollbooth Game

- tollbooth with 3 lanes
 - 20 cars arrive in 4 waves of 5 cars each
 - in each wave, cars choose lanes simultaneously
 - driver can observe number of cars in each lane
 - utility depends on number of cars choosing same lane, either before him or at the same time
- Extending AGGs to multiple time steps:
 - Action counts accumulate over time
 - Need to be able to specify agents' observations
 - Model uncertainty using chance variables

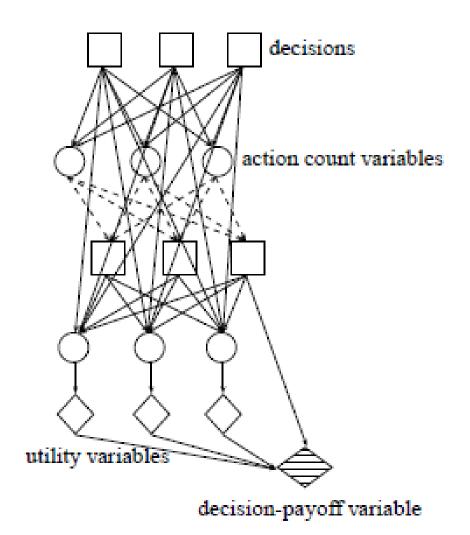
Defining TAGGs

- A TAGG is a tuple (N, T, A, X, D, U)
 - N: set of players
 - T: duration
 - set of actions
 - set of chance variables χ
 - set of decisions \mathcal{D}
 - set of utility functions U

TAGGs

- A decision D
 - Action set: a subset of \mathcal{A}
 - Observation set O[D]: of actions, decisions and chance vars
 - Set of payoff times pt(D)
- Utility function $U_A^{ au}$
 - One for each action at each time step
 - Set of parents
 - Utility depends only on its parents' instantiation at time
 - Evaluated at payoff times of decisions

Strategies


- A behavior strategy at decision D is a mapping from an instantiation of O[D] at time t(D)-1 to a distribution over its action set.
- A behavior strategy for player i is a tuple consisting of a behavior strategy for each of her decisions

 Behavior strategy profile: tuple of behavior strategies for all players

Induced Bayes Net

- Induced BN of a TAGG given a strategy profile
 - Formally describes how the TAGG is played out
 - Decisions, chance variables and utilities correspond to random variables in the BN
 - Action counts are time-dependent: we have a separate action count variable for each action at each time step
 - Decision-payoff variable u_D^{τ} utility of decision D received at payoff time
 - Expected utility of a player is the sum of the expected values of her decisions' decision-payoff variables.
 - Can similarly define induced MAID of a TAGG

Induced BN / MAID: tollbooth example

TAGGs and MAIDs

- Any TAGG is utility-equivalent to its induced MAID
 - However, induced MAID (and BN) has large indegree; exponentially larger representation size

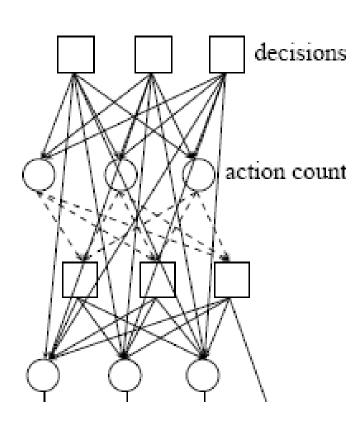
 For the other direction, any MAID can be efficiently encoded as a TAGG with same space complexity

Overview

AGGs

TAGGs

Computation

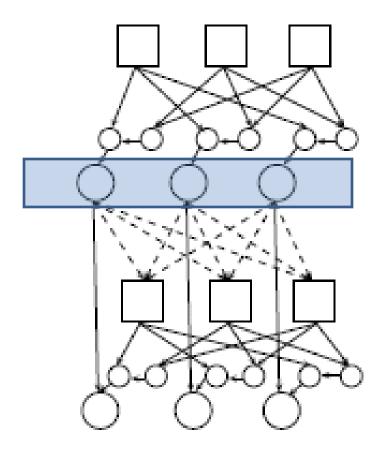

Experiments

Computing Expected Utility

- Computing expected utility of a player, given a behavior strategy profile
 - An essential step in many game-theoretic computations
- Can be cast as inference problem on the induced BN: compute expected values of u_D^{τ}
 - Can apply standard BN inference algorithm
 - TAGGs have additional structure; can be exploited to speedup computation

Exploiting anonymity

- Induced BN has large in-degree for action-count variables
 - Their CPDs are counting function
 with causal independence
 structure [Heckerman&Breese 199]
 - Can reduce in-degree by transforming the BN
 - Create nodes representing intermediate counts



Exploiting Temporal Structure

- A network satisfies the Markov property if parents of variables at time t are at t or t-1.
 - Parts of the transformed BN (action counts) satisfy MP
 - Can transform it to one satisfying MP by duplicating variables
- Adapt the interface algorithm for Dynamic BNs
 - interface: set of variables in time t that have children in time t+1
 - d-separates "past" from "future"
 - algorithm eliminates variables in the temporal order; keeping distribution over interface variables

Tollbooth example

• interface at t: the action count variables at time t

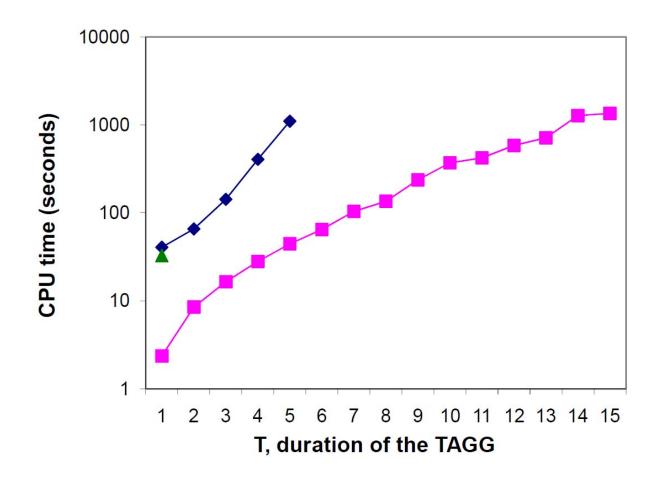
Computation, Ctd

- Further exploiting the structure of transformed BN within the same time step
- We can exploit CSI for further speedup
- Our algorithm computes EU in poly time if
 - the number of interface variables at each time are bounded
 - inference over the chance variables can be done efficiently
- Our methods an be applied to speedup computation of Nash equilibria

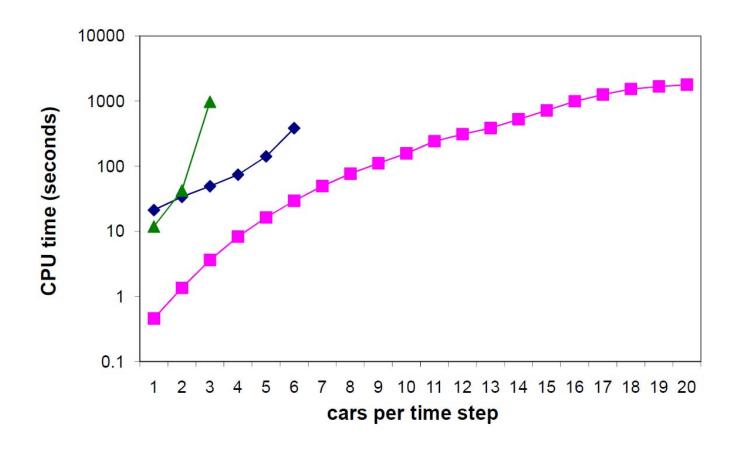
Overview

AGGs

TAGGs


Computation

Experiments


Experiments

- Compute EU for tollbooth games (3 lanes)
- Approach 1: standard clique tree algorithm on induced BN
- Approach 2: same clique tree algorithm on transformed BN
- Approach 3: our algorithm

Experiments: Tollbooth (5 cars per time step, varying T)

Experiments: Tollbooth (T=3, varying # cars per time step)

Conclusions

- Temporal Action-Graph Games (TAGGs)
 - novel compact representation for dynamic games
 - extends AGGs to dynamic setting
 - compactly express wider variety of utility structure, including CSI and anonymity
 - exploit such structure for efficient computation
 - expected utility
 - Nash equilibrium