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Plan of this Tutorial

This tutorial provides a broad introduction to the recent
literature on the computation of equilibria of
simultaneous-move games, weaving together both theoretical
and applied viewpoints.

It aims to explain recent results on:
the complexity of equilibrium computation;
representation and reasoning methods for
compactly represented games.

It also aims to be accessible to those having little experience
with game theory.

Our focus: the computational problem of identifying a Nash
equilibrium in different game models.

We will also more briefly consider ε-equilibria, correlated
equilibria, pure-strategy Nash equilibria, and equilibria of
two-player zero-sum games.
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Part 1: Normal-Form Games (2:00 PM – 3:30 PM)

Part 1a: Game theory intro (Kevin)

Game theory refresher; motivation

Game theoretic solution concepts

Fundamental computational results on solution concept
computation

Part 1b: Complexity of equilibrium computation (Costis)

Key result: the problem of computing a Nash equilibrium is
PPAD-complete

The complexity of approximately solving this problem
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Part 2: Compact Game Representations (4:00 PM – 5:30 PM)

Part 2a: Introducing compact representations (Costis)

Foundational theoretical results about the importance and
challenges of compact representation

Symmetric games

Anonymous games

Part 2b: Richer compact representations (Kevin)

Congestion games

Graphical games

Action-graph games
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Normal-Form Games

Normal-form games model simultaneous, perfect-information
interactions between a set of agents.

Definition (Normal-Form Game)

A finite, n-person game 〈N,A, u〉 is defined by:

N : a finite set of n players, indexed by i;

A = 〈A1, . . . , An〉: a tuple of action sets for each player i;

a ∈ A is an action profile

u = 〈u1, . . . , un〉: a utility function for each player, where
ui : A 7→ R.

In a sense, the normal form is the most fundamental representation
in game theory, because all other representations of finite games
(e.g., extensive form, Bayesian) can be encoded in it.
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Example Games

58 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Definition 3.2.3 (Constant-sum game)A two-player normal-form game isconstant-
sumif there exists a constantc such that for each strategy profilea ∈ A1 × A2 it
is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will
always assume thatc = 0, that is, that we have a zero-sum game. If common-
payoff games represent situations of pure coordination, zero-sum games represent
situations of pure competition; one player’s gain must come at the expense of the
other player. This property requires that there be exactly two agents. Indeed, if
you allow more agents, any game can be turned into a zero-sum game by adding
a dummy player whose actions do not impact the payoffs to the other agents, and
whose own payoffs are chosen to make the payoffs in each outcome sum to zero.

A classical example of a zero-sum game is the game ofMatching Pennies. In thisMatching
Pennies game game, each of the two players has a penny and independently chooses to display

either heads or tails. The two players then compare their pennies. If they are the
same then player 1 pockets both, and otherwise player 2 pockets them. The payoff
matrix is shown in Figure 3.6.

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Figure 3.6: Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rocham-
beau, provides a three-strategy generalization of the matching-pennies game. The
payoff matrix of this zero-sum game is shown in Figure 3.7. In this game, each of
the two players can choose either rock, paper, or scissors. If both players choose
the same action, there is no winner and the utilities are zero. Otherwise, each of the
actions wins over one of the other actions and loses to the other remaining action.

Battle of the Sexes

In general, games can include elements of both coordination and competition. Pris-
oner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, aBattle of the

Sexes game husband and wife wish to go to the movies, and they can select among two movies:
“Lethal Weapon (LW)” and “Wondrous Love (WL).” They much prefer to go to-
gether rather than to separate movies, but while the wife (player 1) prefers LW, the
husband (player 2) prefers WL. The payoff matrix is shown in Figure 3.8. We will
return to this game shortly.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
© Shoham & Leyton-Brown, 2009.

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

Matching Pennies:

agents choose heads and tails;
one agent wants to match and one wants to mismatch.

Battle of the Sexes:

husband likes ballet better than football
wife likes football better than ballet
both prefer to be together
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Mixed Strategies

In some games (e.g., matching pennies) any deterministic
strategy can easily be exploited

Idea: confuse the opponent by playing randomly

Define a strategy si for agent i as any probability distribution
over the actions Ai.

pure strategy: only one action is played with positive
probability
mixed strategy: more than one action is played with positive
probability

these actions are called the support of the mixed strategy

Let the set of all strategies for i be Si

Let the set of all strategy profiles be S = S1 × . . .× Sn.
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Expected Utility and Best Response

Expected utility under a given mixed strategy profile s ∈ S:

ui(s) =
∑
a∈A

ui(a)Pr(a|s)

Pr(a|s) =
∏
j∈N

sj(aj)

If you knew what everyone else was going to do, it would be
easy to pick your own action

Let s−i = 〈s1, . . . , si−1, si+1, . . . , sn〉; now s = (s−i, si)

Definition (Best Response)

s∗i ∈ BR(s−i) iff ∀si ∈ Si, ui(s∗i , s−i) ≥ ui(si, s−i).
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Nash Equilibrium

In general no agent knows what the others will do.

What strategy profiles are “sensible”?

Idea: look for stable strategy profiles.

Definition (Nash Equilibrium)

s = 〈s1, . . . , sn〉 is a Nash equilibrium iff ∀i, si ∈ BR(s−i).

Theorem (Nash, 1951)

Every finite game has at least one Nash equilibrium.
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Why study equilibrium computation?

Because the concept of Nash equilibrium has proven important in
many application areas.

While it has limitations, Nash equilibrium is one of the key
models of what behavior will emerge in noncooperative,
multiagent interactions
It is widely applied in economics, management science,
operations research and finance, often with great success

recognized most prominently in Nash’s Nobel prize

Equilibrium and related concepts (e.g., ESS) are commonly
used to study evolutionary biology and zoology
It has also had substantial impact on government policy, and
even on popular culture

For examples of the latter—and, to some extent, the
former—Google “strangelove game theory” or “dark knight
game theory”
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Why study equilibrium computation?

...Because characterizing the complexity of equilibrium
computation helps us to see how reasonable it is as a way of
understanding games.

“If your laptop can’t find the equilibrium, then neither can the
market.”
— Kamal Jain

...Because we need practical algorithms for computing equilibrium.

“[Due to the non-existence of efficient algorithms for computing
equilibria], general equilibrium analysis has remained at a level of
abstraction and mathematical theoretizing far removed from its
ultimate purpose as a method for the evaluation of economic
policy.”
— Herbert Scarf (in his 1973 monograph on “The Computation of

Economic Equilibria”)
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Beyond 2× 2 Games

When we use game theory to model real systems, we’d like to
consider games with more than two agents and two actions

Some examples of the kinds of questions we would like to be
able to answer:

How will heterogeneous users route their traffic in a network?
How will advertisers bid in a sponsored search auction?
Which job skills will students choose to pursue?
Where in a city will businesses choose to locate?

Most GT work is analytic, not computational. What’s holding
us back?

a lack of game representations that can model interesting
interactions in a reasonable amount of space
a lack of algorithms that can answer game-theoretic questions
about these games in a reasonable amount of time

In the past decade, substantial progress on both fronts
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More Solution Concepts

Solution concepts are rules that designate certain outcomes of
a game as special or important

We’ve already seen Nash equilibrium: strategy profiles in
which all agents simultaneously best respond

Nash equilibrium has advantages:

stability: given correct beliefs, no agent would change strategy
existence in all games

It also has disadvantages:

may require agents to play mixed strategies
not prescriptive: only (necessarily) the right thing to do if
other agents also play equilibrium strategies
doesn’t account for stochastic information agents may share in
common
assumes agents are perfect best responders

Other solution concepts address these concerns...
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Pure-Strategy Nash Equilibrium

What if we don’t believe that agents would play mixed strategies?

Definition (Pure-Strategy Nash Equilibrium)

a = 〈a1, . . . , an〉 is a Pure-Strategy Nash equilibrium iff
∀i, ai ∈ BR(a−i).

This is just like Nash equilibrium, but it requires all agents to
play pure strategies

Pure-strategy Nash equilibria are (arguably) more compelling
than Nash equilibria, but not guaranteed to exist
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Maxmin and Minmax

Definition (Maxmin)

In a two-player game, the maxmin strategy for player i is
arg maxsi mins−i ui(s1, s2), and the maxmin value for player i is
maxsi mins−i ui(s1, s2).

This is the most that agent i can guarantee himself, without
making any assumptions about −i’s behavior.

Definition (Minmax)

In a two-player game, the minmax strategy for player i against
player −i is arg minsi

maxs−i u−i(si, s−i), and player −i’s minmax
value is minsi maxs−i u−i(si, s−i).

This is the least that agent i can guarantee that −i will
receive, ignoring his own payoffs.
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A Special Case: Zero-Sum Games

In two-player zero-sum games, the Nash equilibrium has
more prescriptive force than in the general case.

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

Consequences:

1 Each player’s maxmin value is equal to his minmax value.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Thus, all Nash equilibria have the same payoff vector.
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Saddle Point: Matching Pennies

Equilibrium Computation in Normal Form Games Costis Daskalakis & Kevin Leyton-Brown, Slide 20



Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations

Correlated Equilibrium

What if agents observe correlated random variables?

Consider again Battle of the Sexes.

Intuitively, the best outcome seems a 50-50 split between
(F, F ) and (B,B).
But there’s no way to achieve this, so either someone loses out
(unfair) or both players often miscoordinate

Another classic example: traffic game
go wait

go −100,−100 10, 0
B 0, 10 −10,−10
What is the natural solution here?

A traffic light: fair randomizing devices that tell one of the
agents to go and the other to wait.
the negative payoff outcomes are completely avoided
fairness is achieved
the sum of social welfare exceeds that of any Nash equilibrium
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Correlated Equilibrium: Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N,A, u), a correlated equilibrium is
a tuple (v, π, σ), where v is a tuple of random variables
v = (v1, . . . , vn) with respective domains D = (D1, . . . , Dn), π is
a joint distribution over v, σ = (σ1, . . . , σn) is a vector of
mappings σi : Di 7→ Ai, and for each agent i and every mapping
σ′i : Di 7→ Ai it is the case that∑

d∈D

π(d)ui (σi(di), σ−i(d−i)) ≥
∑
d∈D

π(d)ui

(
σ′i(di), σ−i(d−i)

)
.

Theorem

For every Nash equilibrium σ∗ there exists a corresponding
correlated equilibrium σ. Thus, correlated equilibria always exist.
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ε-Equilibrium

What if agents aren’t perfect best responders?

Definition (ε-Nash, additive version)

Fix ε > 0. A strategy profile s is an ε-Nash equilibrium (in the
additive sense) if, for all agents i and for all strategies s′i 6= si,
ui(si, s−i) ≥ ui(s′i, s−i)− ε.

Definition (ε-Nash, relative version)

Fix ε > 0. A strategy profile s is an ε-Nash equilibrium (in the
relative sense) if, for all agents i and for all strategies s′i 6= si,
ui(si, s−i) ≥ (1− ε)ui(s′i, s−i).
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ε-Equilibrium

Advantages of these solution concepts:

Every Nash equilibrium is surrounded by a region of ε-Nash
equilibria for any ε > 0.

Seems convincing that agents should be indifferent to
sufficiently small gains

Methods for the “exact” computation of Nash equilibria that
rely on floating point actually find only ε-equilibria (in the
additive sense), where ε is roughly 10−16.
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ε-Equilibrium

Drawbacks of these solution concepts (both variants):

ε-Nash equilibria are not necessarily close to any Nash
equilibrium.

This undermines the sense in which ε-Nash equilibria can be
understood as approximations of Nash equilibria.

ε-Nash equilibria can have payoffs arbitrarily lower than those
of any Nash equilibrium

ε-Nash equilibria can even involve dominated strategies.
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Overview

1 Plan of this Tutorial

2 Getting Our Bearings: A Quick Game Theory Refresher

3 Solution Concepts

4 Computational Formulations
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Computing Mixed Nash Equilibria: Battle of the Sexes

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

For Battle of the Sexes, let’s look for an equilibrium where all
actions are part of the support
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of mixed strategies is critical. We will return to this when we discuss solution concepts
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We define a mixed strategy for a normal form game as follows.
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setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
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profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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Let player 2 play B with p, F with 1− p.

If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F and B

u1(B) = u1(F )
2p+ 0(1− p) = 0p+ 1(1− p)

p =
1
3
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Computing Mixed Nash Equilibria: Battle of the Sexes
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another, less obvious type of strategy; a player can choose to randomize over the set of
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introduce randomness into his choice of action, in fact in a multi-agent setting the role
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setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
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profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.
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Likewise, player 1 must randomize to make player 2
indifferent.

Let player 1 play B with q, F with 1− q.

u2(B) = u2(F )
q + 0(1− q) = 0q + 2(1− q)

q =
2
3

Thus the strategies (2
3 ,

1
3), (1

3 ,
2
3) are a Nash equilibrium.
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Computing Mixed Nash Equilibria: Battle of the Sexes

Advantages of this approach:

At least for a 2× 2 game, this was computationally feasible

in general, when checking non-full supports, it’s a linear
program, because we have to ensure that actions outside the
support aren’t better

Disadvantages of this approach:

We had to start by correctly guessing the support

There are
∏

i∈N 2|Ai| supports that we’d have to check

This method is going to have pretty awful worst-case performance
as games get much larger than 2× 2.1
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Computing Mixed Nash Equilibria: Battle of the Sexes

Advantages of this approach:

At least for a 2× 2 game, this was computationally feasible

in general, when checking non-full supports, it’s a linear
program, because we have to ensure that actions outside the
support aren’t better

Disadvantages of this approach:

We had to start by correctly guessing the support

There are
∏

i∈N 2|Ai| supports that we’d have to check

This method is going to have pretty awful worst-case performance
as games get much larger than 2× 2.1

1Interesting caveat: in fact, if combined with the right heuristics, support

enumeration can be a competitive approach for finding equilibria. See [Porter,

Nudelman & Shoham, 2004].
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Computational Formulations

Now we’ll look at the computational problems of identifying

pure-strategy Nash equilibria
correlated equilibria
Nash equilibria of two-player, zero-sum games

In each case, we’ll consider how the problem differs from that
of computing NE of general-sum games (NASH)

Ultimately, we aim to illustrate why the NASH problem is so
different from these other problems, and why its complexity
was so tricky to characterize.
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Computing Pure-Strategy Nash Equilibrium

Constraint Satisfaction Problem

Find a ∈ A such that ∀i, ai ∈ BR(a−i).

This is an easy problem to solve:

note that the input size is O(n|A|)
checking whether a given a ∈ A involves a BR for player i
requires O(|Ai|) time, which is O(|A|)
there are |A| strategy profiles to check
thus, we can solve the problem in O(|A|2) time

However, we won’t be able to find (general) Nash equilibria by
enumerating them

Thus, this result seems unlikely to carry over
straightforwardly...
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Computing Correlated Equilibrium

Linear Feasibility Program∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|ai∈a

p(a)ui(a′i, a−i) ∀i ∈ N, ∀ai, a
′
i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

variables: p(a); constants: ui(a)

we could find the social-welfare maximizing CE by adding an
objective function

maximize:
∑
a∈A

p(a)
∑
i∈N

ui(a).
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Computing Correlated Equilibrium

Linear Feasibility Program∑
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variables: p(a); constants: ui(a)
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Computing Correlated Equilibrium

Linear Feasibility Program∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|a′
i∈a

p(a)ui(a′i, a−i) ∀i ∈ N, ∀ai, a
′
i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

Why can’t we compute NE like we did CE?

intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

To find NE, the first constraint would have to be nonlinear:∑
a∈A

ui(a)
∏
j∈N

pj(aj) ≥
∑
a∈A

ui(a′i, a−i)
∏

j∈N\{i}

pj(aj) ∀i ∈ N, ∀a′i ∈ Ai.
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Computing Equilibria of Zero-Sum Games

Linear Program

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

First, identify the variables:

U∗1 is the expected utility for player 1
sa2
2 is player 2’s probability of playing action a2 under his

mixed strategy

each u1(a1, a2) is a constant.
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Computing Equilibria of Zero-Sum Games

Now let’s interpret the LP:

Linear Program

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

s2 is a valid probability distribution.
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Computing Equilibria of Zero-Sum Games

Now let’s interpret the LP:

Linear Program

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

U∗1 is as small as possible.
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Computing Equilibria of Zero-Sum Games

Now let’s interpret the LP:

Linear Program

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

Player 1’s expected utility for playing each of his actions under
player 2’s mixed strategy is no more than U∗1 .

Because U∗1 is minimized, this constraint will be tight for some
actions: the support of player 1’s mixed strategy.
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Computing Equilibria of Zero-Sum Games

Linear Program

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

This formulation gives us the minmax strategy for player 2.

To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Computing Equilibria of Zero-Sum Games

We can reformulate the LP using slack variables, as follows:

Linear Program

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

ra1
1 ≥ 0 ∀a1 ∈ A1

All we’ve done is change the weak inequality into an equality by
adding a nonnegative variable.
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Computing Nash Equilibria of General, Two-Player Games

We can generalize the previous LP to derive a formulation for computing
a NE of a general-sum, two-player game.

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

Note a strong resemblance to the previous LP with slack variables, but

the absence of an objective function.
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Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

These are the same constraints as before.
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Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

Now we also add corresponding constraints for player 2.
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Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

Standard constraints on probabilities and slack variables.
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Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

With all of this, we’d have an LP, but the slack variables—and hence U∗1
and U∗2 —would be allowed to take unboundedly large values.
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Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

Complementary slackness condition: whenever an action is in the support

of a given player’s mixed strategy then the corresponding slack variable

must be zero (i.e., the constraint must be tight).

Equilibrium Computation in Normal Form Games Costis Daskalakis & Kevin Leyton-Brown, Slide 34



Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations

Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

Each slack variable can be viewed as the player’s incentive to deviate

from the corresponding action. Thus, in equilibrium, all strategies that

are played with positive probability must yield the same expected payoff,

while all strategies that lead to lower expected payoffs are not played.
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Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations

Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

We are left with the requirement that each player plays a best response to

the other player’s mixed strategy: the definition of a Nash equilibrium.
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Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations

Computing Nash Equilibria of General, Two-Player Games

Linear Complementarity Problem∑
a2∈A2

u1(a1, a2) · sa2
2 + ra1

1 = U∗1 ∀a1 ∈ A1∑
a1∈A1

u2(a1, a2) · sa1
1 + ra2

2 = U∗2 ∀a2 ∈ A2∑
a1∈A1

sa1
1 = 1,

∑
a2∈A2

sa2
2 = 1

sa1
1 ≥ 0, sa2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 ≥ 0, ra2

2 ≥ 0 ∀a1 ∈ A1, ∀a2 ∈ A2

ra1
1 · sa1

1 = 0, ra2
2 · sa2

2 = 0 ∀a1 ∈ A1, ∀a2 ∈ A2

Unfortunately, this LCP formulation doesn’t imply polynomial time
complexity the way an LP formulation does.

However, it will be useful in what follows.
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Complexity of NASH

We’ve seen how to compute:

Pure-strategy Nash equilibria

Correlated equilibria

Equilibria of zero-sum, two-player games

In each case, we’ve seen evidence that the NASH problem is
fundamentally different, even in its two-player variant.

Now Costis will take over, and investigate this question in more
detail...
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Equilibrium Computation in Normal Form Games

Costis Daskalakis & Kevin Leyton-Brown

Part 1(b)



Overview

- A brief history of the Nash Equilibrium.

- The complexity landscape between P and NP. 

- The Complexity of the Nash Equilibrium.



The first computational thoughts

1891 Irving Fisher:

- Hydraulic apparatus for 

calculating the equilibrium 

of a related, market model.

- No existence proof for the 

general setting; but the 

machine would work for 3 

traders and 3 commodities.



no efficient algorithm is known after 50+ years of research.

1950 Nash: existence of Equilibrium in multiplayer, general-sum games

1928 Neumann: existence of Equilibrium in 2-player, zero-sum games

History (cont.)

proof uses Brouwer‟s fixed point theorem;

+ Danzig ‟57: equivalent to LP duality;

+ Khachiyan‟79: polynomial-time solvable.

proof also uses Brouwer‟s fixed point theorem;

intense effort for equilibrium algorithms:

Kuhn ‟61, Mangasarian ‟64, Lemke-Howson ‟64, 

Rosenmüller ‟71, Wilson ‟71, Scarf ‟67, Eaves ‟72, 

Laan-Talman ‟79, and others…

Lemke-Howson: simplex-like, works with LCP formulation;  



“Is it NP-complete to find a Nash equilibrium?”

the Pavlovian reaction

1. probably not, since a solution is guaranteed to exist…

2. it is NP-complete to find a “tiny” bit more info than “just” 

a Nash equilibrium; e.g., the following are NP-complete:

- find a Nash equilibrium whose third bit is one, if any

- find two Nash equilibria, if more than one exist

[Gilboa, Zemel ‟89; Conitzer, Sandholm ‟03]

two answers



- the theory of NP-completeness does not seem 

appropriate;

what about a single equilibrium?

- in fact, NASH seems to lie below NP;

- making Nash‟s theorem constructive… 

NP

NP-

complete

P



The Non-Constructive Step

a directed graph with an unbalanced node (a node 

with indegree  outdegree) must have another.

an easy parity lemma:

but, why is this non-constructive?

given a directed graph and an unbalanced node, isn’t 

it trivial to find another unbalanced node?

the graph may be exponentially large, but have a succinct 

description… (more on this soon)



Sperner‟s Lemma



Sperner‟s Lemma



Lemma: No matter how the internal nodes are colored there exists a 

tri-chromatic triangle. In fact, an odd number of them.
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Lemma: No matter how the internal nodes are colored there exists a 

tri-chromatic triangle. In fact, an odd number of them.
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Lemma: No matter how the internal nodes are colored there exists a 

tri-chromatic triangle. In fact, an odd number of them.

Sperner‟s Lemma



Lemma: No matter how the internal nodes are colored there exists a 

tri-chromatic triangle. In fact, an odd number of them.

Sperner‟s Lemma



The SPERNER problem

y

2n

2n x
C

SPERNER: Given C, find a trichromatic triangle. 



Solving SPERNER



Lemma: No matter how the internal nodes are colored there exists a 

tri-chromatic triangle. In fact, an odd number of them.

Transition Rule: If   red - yellow door 

cross it with yellow on 

your left hand
?

Space of 

Triangles

1

2

(Abstract) Proof of Sperner‟s Lemma



Space of 

Triangles

...

Bottom left 

Triangle

(Abstract) Proof of Sperner‟s Lemma



{0,1}n

exponential 

space

(Abstract) SPERNER Problem

...
00…000

Given:

efficiently computable functions for finding next and previous

Find:

any terminal point different than 00…000



The PPAD Class [Papadimitriou ’94]

The class of all problems with guaranteed solution by dint of the 
following graph-theoretic lemma

A directed graph with an unbalanced node (node with indegree 

 outdegree) must have another.

Formally: a large graph is described by two circuits:

P

N

node id

node id

node id

node id

PPAD: Given P and N, if 0n is an unbalanced node, find another 

unbalanced node.



Where is PPAD?

P

e.g.: linear programming

e.g.2: zero-sum games

Solutions can be found 

in polynomial time

NP

NP-

complete

The hardest problems in NP

e.g.: quadratic programming

e.g.2: traveling salesman problem

PPAD



Problems in PPAD

find an (approximately) fixed point of a continuous 
function from the unit cube to itself

BROUWER is PPAD-Complete [Papadimitriou ’94]

SPERNER     PPAD

BROUWER     PPAD

SPERNER is PPAD-Complete [Papadimitriou ’94] 

[for 2D: Chen-Deng ’05]

[Previous Slides] 

[By Reduction to SPERNER-Scarf ’67] 



The Complexity of the Nash Equilibrium

- for games with ≥4 players;

[Daskalakis, Goldberg, Papadimitriou ‟05]

Theorem: 

Computing a Nash equilibrium is PPAD-complete…

- for games with 3 players;

[Chen, Deng ’05] & [Daskalakis, Papadimitriou ‟05]

- for games with 2 players.

[Chen, Deng ’06]



in 2-player games …

Explaining the result

in ≥3-player games …

- there always exists a Nash eq. in 

rational numbers (why?)

- Lemke-Howson‟s 

algorithm 1964

2-NASH  PPAD

- there exists a 3-player game with only 

irrational Nash equilibria [Nash ‟51]

Computationally Meaningful NASH:

Given game     and   , find an   -Nash equilibrium of     .



The Complexity of the Nash Equilibrium

- for games with ≥4 players,                ; n=#strategies;

[Daskalakis, Goldberg, Papadimitriou ‟05]

Theorem: 

Computing an    -Nash equilibrium is PPAD-complete…

- for games with 3 players,                ; n=#strategies;

[Chen, Deng ’05] & [Daskalakis, Papadimitriou ‟05]

- for games with 2 players,           ;

[Chen, Deng ’06]



: [0,1]2[0,1]2, cont.

such that

fixed point  Nash eq.

Nash              Brouwer

Kick

Dive
Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1

Nash‟s Theorem “” NASH  PPAD

Penalty Shot Game
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: [0,1]2[0,1]2, cont.

such that

fixed point  Nash eq.

Nash              Brouwer

Kick

Dive
Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1

Nash‟s Theorem “” NASH  PPAD

½½

½

½

Penalty Shot Game

0 1
0

1

Pr[Right]

P
r[

R
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h
t]

- fixed point



PPAD-hardness of NASH

...

0n

Generic PPAD

Embedded 

PPAD

SPERNER

p.w. linear 

BROUWER
multi-player

NASH

4-player

NASH

3-player

NASH

2-player

NASH

[Pap ‟94]

[DGP ‟05]

[DGP ‟05]

[DGP 

‟05]
[DGP 

‟05]

[DGP ‟05]

[DP ‟05]

[CD‟05]

[CD‟05]



Nash              Brouwer

PPAD-Hardness of NASH [DGP ‟05]

: [0,1]3[0,1]3, 

continuous & p.w.linear

game whose Nash 

equilibria are close to the  

fixed points of 

- Game-gadgets: games acting as arithmetic gates



Games that do real arithmetic

two strategies per player, say {0,1};    

e.g. multiplication game (similarly addition, subtraction)

Mixed strategy  a number in [0,1] 

(probability of playing 1)

x

y

zw

w is paid: 

- $ px· py for playing 0

- $ pz for playing 1 z is paid 1-pw for 

playing 1

pz =px py

{0,1}

{0,1} {0,1}

{0,1}



Games that do real arithmetic

x

y

zw

w is paid: 

- $ px· py for playing 0

- $ pz for playing 1

z is paid: 

-$1-pw for playing 1

-$0.5 for playing 0

pz =px py

{0,1}

{0,1}

{0,1} {0,1}

y plays 0 y plays 1

x plays 0 0 0

x plays 1 0 1

z plays 0 0

z plays 1 1

for playing 0

w’s payoff

for playing 1



: [0,1]3[0,1]3, 

continuous & p.w.linear

- use game-gadgets to simulate  with a game







+









-

*

*

/
/

+

- Topology: noise reduction
x y z

fx fy fz

Nash              Brouwer

PPAD-Hardness of NASH [DGP ‟05]



Reduction to 3 players [Das, Pap „05]

…

multiplayer game



Reduction to 3 players [Das, Pap „05]

…

multiplayer game

3 lawyers

“represents” all green

players

“represents” red

players

“represents” blue

players

Coloring: no two nodes 

affecting one another, or 

affecting the same third 

player use the same color;



Payoffs of the Green Lawyer

payoffs of the 

green lawyer for 

representing node u

wishful thinking: The Nash equilibrium of the lawyer-game, gives a 

Nash equilibrium of the original multiplayer game, 

after marginalizing with respect to individual nodes.

But why would a lawyer represent every node equally? 

copy of the payoff 

table of node u

0 0

0

0

0



Enforcing Fairness

+

copy of the payoff 

table of node u

0 0

0

0

0

lawyers play on the side a 

high-stakes game over the 

nodes they represent



PPAD-hardness of NASH

...

0n

Generic PPAD

Embedded 

PPAD

SPERNER

p.w. linear 

BROUWER
multi-player

NASH

4-player

NASH

3-player

NASH

2-player

NASH

[Pap ‟94]

[DGP ‟05]

[DGP ‟05]

[DGP 

‟05]
[DGP 

‟05]

[DGP ‟05]

[DP ‟05]

[CD‟05]

[CD‟05]



Reducing to 2 players [Chen, Deng ‟05]

…

multiplayer game

2 lawyers

are enough

Coloring: no two nodes 

affecting one another, or 

affecting the same third 

player use the same color;

- the expected payoff of each 

lawyer is additive w.r.t. the nodes 

that another lawyer represents;

- hence, if two nodes affect the 

same third node, they don’t need 

to have different colors. 

Based on the following simple, 

but crucial observation:

two colors suffice to color 

the multiplayer game in 

the [DGP 05] construction



Recapping

[Nash ’51]: NASH ≤p BROUWER.

[D. Gold. Pap. ’05]: BROUWER ≤p NASH. (i.e.  NASH is PPAD-

complete)

[Chen, Deng, Teng ’06] : (n-α) - NASH is also PPAD-complete.

[Chen, Deng ’06]:      ditto for 2-player games.

Given game     and error   , find an   -Nash equilibrium of     .NASH:

Above results hold for                     , where n is the #strategies. 



Constant ε’s?

[Lipton, Markakis, Mehta ’03]:

[Tsaknakis, 

Spirakis ‟08]

For any   , an additive   - Nash equilibrium can be found in 

time                   . 

(Hence, it is unlikely that additive   -NASH is PPAD-

complete, for constant values of .)

Efficient Algorithms:   = .75  .50  .38  .37  .34



The trouble with approximate Nash

Algorithms expert 

to TSP user: 

Unfortunately, with 

current technology 

we can only give 

you a solution 

guaranteed to be 

no more than 50% 

above the optimum 



The trouble with approximate Nash

(cont.)

Irate Nash user to algorithms expert: 

Why should I adopt your 

recommendation and refrain 

from acting in a way that I know 

is much better for me?  And 

besides, given that I have serious 

doubts myself, why should I even 

believe that my opponent(s) will 

adopt your recommendation?



Bottom line

►PTAS is the only interesting question here…



And what about relative approximations?

Hot of the press [Daskalakis ’09]:

Relative ε-NASH is PPAD-complete, even for constant ε’s.

Challenges: 1. gadgets in [DGP ’05] do not work for constant 

ε’s; we redo the construction introducing some kind 

of  “gap amplification” gadget;

2. the high-stakes lawyer-game overwhelms the 

payoffs of the multiplayer game if we look at 

relative approximations with constant ε’s…

Recall, relative approximation: Payoff ≥ (1 - ε) OPT;

Result of Lipton-Markakis-Mehta does not hold anymore;



Future PPAD-hardness reductions

...

0n

Generic PPAD

Embedded 

PPAD

SPERNER

p.w. linear 

BROUWER
multi-player

NASH

4-player

NASH

3-player

NASH

2-player

NASH

[Pap ‟94]

[DGP ‟05]

[DGP ‟05]

[DGP 

‟05]
[DGP 

‟05]

[DGP ‟05]

[DP ‟05]

[CD‟05]

[CD‟05]
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Equilibrium Computation in 

Compactly-Represented Games

Costis Daskalakis & Kevin Leyton-Brown

Part 2(a)



“If your game is interesting, then its description cannot be 

astronomically long.”

Christos Papadimitriou



Internet routing
Markets

Evolution

Social networks

Elections



Computationally motivated compact 

representations

- normal form game description can be very wasteful;

(if n players, s strategies, description size is n sn )

- it is possible that by further exploiting the structure of 

the game, the game can be described more efficiently;

- in this part of the tutorial, we investigate succinct game-

representations which allow certain large games to be 

compactly described and also make it possible

to efficiently find an equilibrium



Games of Polynomial Type

-A first step towards a generalization: 

A game description is called of polynomial type, if

- the number of players is polynomial in the description size;

- the number of actions available to each player is polynomial 

in the description size;  

e.g. 1: (polynomial type) normal-form games, rest of this session…

e.g. 2: (non polynomial type) poker, traffic.

- The normal form representation lists explicitly everybody’s name, 

action space, and payoffs;

- BUT no requirement to list every payoff explicitly;



The Expected Utility Problem

- How hard is it to compute a player’s expected payoff 

given the mixed strategies of the other players?

- A game description specifies the payoff of a player, 

given the other players’ actions.

e.g. 1 (easy case) Normal form games

e.g. 2 (hard case) Suppose every player has two strategies 0/1, 

and given everybody’s strategy a circuit Ci ,

computes player i’s payoff.



Compactness pays off

If a game representation is of polynomial type and the expected 

utility problem can be solved by a polynomially long arithmetic 

circuit using +,-,*,/, max, min (i.e. a straight-line program), then 

finding a mixed Nash equilibrium is in PPAD.

Theorem [Daskalakis, Fabrikant, Papadimitriou ’06]

If a game representation is of polynomial type and the expected 

utility problem can be solved by a polynomial-time algorithm, 

then finding a correlated equilibrium is in P.

Theorem [Papadimitriou ’05]

Remark: Can be generalized to non polynomial-type games such as 

extensive-form games, congestion games; see [DFP ’06].

+

-

*

*

/

+



Symmetries in Games

Symmetric Games: Each player p has

- the same set of strategies

S = {1,…, s}

- the same payoff function u = u (σ ; n1, n2,…,ns)

number of the other 

players choosing 

each strategy in S

choice of p
E.g. :

- traffic (congestion) games, with same 

source destination pairs for each player

Nash ’51: Always exists an equilibrium in which every player uses 

the same mixed strategy

- Rock-Paper-Scissors

Size: s ns-1



Symmetrization

R , C

RT, CT

C, R

x

y
x

y

x y

Symmetric EquilibriumEquilibrium

0, 0

0, 0

Any EquilibriumEquilibrium

In fact […]

[Gale-Kuhn-

Tucker 1950]



Symmetrization

R , C

RT,CT

C, R

x

y
x

y

x y

Symmetric EquilibriumEquilibrium

0,0

0,0

Any EquilibriumEquilibrium

In fact […]

Hence, PPAD to solve 

symmetric 2-player games

Open: - Reduction from 3-player games to symmetric 3-player games

- Complexity of symmetric 3-player games



Multi-player symmetric games

If  n is large, s is small, a symmetric equilibrium

x = (x1, x2, …, xs) 

can be found as follows:

- guess the support of x, 2s possibilities

- write down a set of polynomial equations an 

inequalities corresponding to the equilibrium 

conditions, for the guessed support

- polynomial equations and inequalities of degree n 

in s variables

can be solved 

approximately 

in time 

ns  log(1/ε)



how far with symmetric games?



Internet routing
Markets

Evolution

Social networks

Elections



anonymous games

Every player is (potentially) different, but only cares about how many 

players (of each type) play each of the available strategies.

e.g. symmetry in auctions, congestion games, social phenomena, etc.

„„The women of Cairo: Equilibria in Large Anonymous Games.‟‟ 

Blonski, Games and Economic Behavior, 1999.

“Partially-Specified Large Games.” 

Ehud Kalai, WINE, 2005.

„„Congestion Games with Player- Specific Payoff Functions.‟‟ 

Milchtaich, Games and Economic Behavior, 1996.



reasons for anonymous

- succinctness: not nearly as wasteful as general normal form games

n players, s strategies, all interact, ns description (rather than nsn)

- ubiquity: much richer than symmetric games

think of your favorite large game - is it anonymous?

(the utility of a player depends on her strategy, and on how 

many other players play each of the s strategies)

working assumption: n large, s small  (o.w. PPAD-Complete) 

- robustness: 

Nash equilibira of the simultaneous move game are robust with 

regards to the details of the game (order of moves, information 

transmission, opportunities to revise actions etc. [Kalai ’05] )



PTAS for anonymous

If the number of strategies s is a constant, 

there is a PTAS for mixed Nash equilibria.

Theorem: 

[with Pap. ’07, ’08]

Remarks: - exact computation is not known to be PPAD-complete

- if n is small and s is large (few players many 

strategies) then PPAD-complete



sketch for 2 strategies

Masterplan:

0

1

0 1

p2

p1

• discretize [0,1]n into multiples of δ, and restrict 
search to the discrete space

• pick best point in discrete space





• since 2 strategies per player, Nash eq. lies in [0,1]n



sketch for 2 strategies (cont.)

Basic Question:

what grid size  is required for  - approximation?

if function of  only  PTAS
if function also of n  nothing

0

1

0 1

p2

p1





First trouble:

size of search space
1



n

by exploiting anonymity 

(max-flow argument)

1/

n



Theorem [D., Papadimitriou ’07]:

Given 

- n ind. Bernoulli‟s  Xi with expectations  pi , i =1,…, n

sketch for 2 strategies (cont.)

there exists another set of Bernoulli‟s Yi with expectations qi such 
that

- a constant  independent of n

qi‟s are integer multiples of 



total variation distance cheat sheet

Pr Xi
i

  t




 Pr Yi

i

  t



t0

n

  1( Xi
i

 , Yi
i

 )

Xi
i



Yi
i





Theorem [D., Papadimitriou ’07]:

Given 

- n ind. Bernoulli‟s  Xi with expectations  pi , i =1,…, n

 - approximation 

in time
2(1/ )On 

sketch for 2 strategies (cont.)

there exists another set of Bernoulli‟s Yi with expectations qi such 
that

- a constant  independent of n

qi‟s are integer multiples of 

the Nash equilibrium

the grid size

regret if we replace the Xi’s by the Yi’s



proof of approximation result

Law of Rare Events 

+ 

CLT

- rounding pi‟s to the closest multiple of  gives total variation n
- probabilistic rounding up or down quickly runs into problems

- what works:

Poisson 

Approximations

Berry-Esséen

(Stein’s Method)



proof of approximation result

Intuition:

If pi‟s were small   i

i

X would be close to a Poisson with mean i

i

p

i

i

X

 define the qi‟s so that i i

i i

q p 

i

i

Y

i

i

Poisson p
 
 
 


i

i

Poisson q
 
 
 




Poisson approximation is only good for small values of pi‟s. (LRE)

proof of approximation result

For intermediate values of pi‟s, Normals are better. (CLT)

i

i

X i

i

Y

Berry-EsséenBerry-Esséen



Theorem [D., Papadimitriou ’07]:

Given 

- n ind. Bernoulli‟s  Xi with expectations  pi , i =1,…, n

 - approximation 

in time
2(1/ )On 

binomial approximation result

there exists another set of Bernoulli‟s Yi with expectations qi such 
that

- a constant  independent of n

qi‟s are integer multiples of 

the Nash equilibrium

the grid size

approximation if we replace the Xi’s by the Yi’s



in fact, an “oblivious” algorithm…

set S of all unordered collections 

of mixed strategies which are  

integer multiples of 2
Oblivious-ness Property: the set S
does not depend on the game we need 

to solve

- sample an (anonymous) mixed 
profile from S

- look at the game only to determine 
if the sampled strategies can be 
assigned to players to get an ε-
approximate equilibrium (via a 
max-flow argument)

- expected running time
2(1/ )On 



is there a faster PTAS?

Theorem [Daskalakis ’08]:

There is an oblivious PTAS with running time 

- or, at most           mix, and they choose mixed strategies which 
are integer multiples of  

Theorem [Daskalakis’08]: In every anonymous game there exists 
an ε-approximate Nash equilibrium in which 

the underlying structural result…

- either all players who mix  play the same mixed strategy



Lemma:

- The sum of  m ≥ k3 indicators Xi with expectations in [1/k,1-1/k] is 
O(1/k)-close in total variation distance to a Binomial distribution 
with the same mean and variance

the corresponding symmetry…

… i.e. close to a sum of indicators with the same expectation

[tightness of parameters by Berry-Esséen]



proof of structural result

round some of the Xi‟s falling here to 

0 and some of them to ε  so that the 

total mean is preserved to within ε

- if more than 1/ε3 Xi‟s are left here, appeal 

to previous slide (Binomial appx)

similarly

0 ε 1-ε 10 ε 1-εε 11-ε

- o.w. use Dask. Pap. ‟07 (exists rounding into 

multiples of ε2)



Final Result…

Theorem [Daskalakis’08]:

There is an oblivious PTAS with running time  

Theorem [Daskalakis, Papadimitriou ’08]:

There is no oblivious PTAS with runtime better than  

in fact this is essentially tight…



What about non-oblivious PTAS‟s?

Theorem [Daskalakis, Papadimitriou ’08]:

There is a non-oblivious PTAS with running time  

the underlying probabilistic result [DP ’08]:

If two sums of indicators have equal moments up to moment k then 
their total variation distance is O(2-k).



now Kevin will continue our investigation of compact game 

representations, and their computational properties…
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Congestion Games

Congestion games [Rosenthal, 1973] are a restricted class of games
with three key benefits:

useful for modeling some important real-world settings

attractive theoretical properties

some positive computational results

Intuitively, they simplify the representation of a game by imposing
constraints on the effects that a single agent’s action can have on other
agents’ utilities.

Example

A computer network in which several users want to send large files at
approximately the same time. What routes should they choose?

Equilibrium Computation in Compactly-Represented Games Costis Daskalakis & Kevin Leyton-Brown, Slide 3



Congestion Games Graphical Games Action-Graph Games

Definition

Intuitively, each player chooses some subset from a set of
resources, and the cost of each resource depends on the number
(but not identities) of other agents who select it.

Definition (Congestion game)

A congestion game is a tuple (N,R,A, c), where

N is a set of n agents;

R is a set of r resources;

A = A1 × · · · ×An, where Ai ⊆ 2R \ {∅} is the set of actions
for agent i; and

c = (c1, . . . , cr), where ck : N 7→ R is a cost function for
resource k ∈ R.
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From Cost Functions to Utility Functions

Definition (#(r, a))

Define #(r, a) as the number of players who took any action that
involves resource r under action profile a.

Definition (Congestion game utility functions)

Given a pure-strategy profile a = (ai, a−i), let

ui(a) = −
∑

r∈R|r∈ai

cr(#(r, a)).

note: same utility function for all players
negated, because cost functions are understood as penalties

however, the cr functions may be negative

anonymity property: players care about how may others use a
given resource, but not about which others do so
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Another Example: The Santa Fe Bar Problem

The cost functions don’t have to increase monotonically in the number of
agents using a resource.

Example (Santa Fe Bar Problem)

People independently decide whether or not to go to a bar.

The utility of attending increases with the number of others
attending, up to the capacity of the bar.

Then utility decreases because the bar gets too crowded.

Deciding not to attend yields a baseline utility that does not depend
on the actions of others.

A widely studied game.

Famous for having no symmetric, pure-strategy equilibrium.

Often studied in a repeated game context

Generalized by so-called “minority games”.
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Pure Strategy Nash Equilibrium

The main motivation for congestion games was the following result:

Theorem (Rosenthal, 1973)

Every congestion game has a pure-strategy Nash equilibrium.

This is a good thing, because pure-strategy Nash equilibria are
more plausible than mixed-strategy Nash equilibria, and don’t
always exist.

It also implies that the computational problem of finding an
equilibrium in a congestion game is likely to be different

Note that congestion games are exponentially more compact
than their induced normal forms

if we’re to find PSNE efficiently, we can’t just check every
action profile
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Congestion Games Graphical Games Action-Graph Games

Myopic Best Response

Myopic best response algorithm. It starts with an arbitrary action profile.

function MyopicBestResponse (game G, action profile a) returns a
while there exists an agent i for whom ai is not a best response to a−i

do
a′i ← some best response by i to a−i

a← (a′i, a−i)
return a

If it terminates, the algorithm returns a PSNE

On general games, the algorithm doesn’t terminate

Theorem (Monderer & Shapley, 1996)

The MyopicBestResponse procedure is guaranteed to find a
pure-strategy Nash equilibrium of a congestion game.

This result depends on potential functions.
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Potential Games

Definition (Potential game)

A game G = (N,A, u) is a potential game if there exists some
P : A 7→ R such that, for all i ∈ N , all a−i ∈ A−i and ai, a

′
i ∈ Ai,

ui(ai, a−i)− ui(a′i, a−i) = P (ai, a−i)− P (a′i, a−i).

Theorem (Monderer & Shapley, 1996)

Every (finite) potential game has a pure-strategy Nash equilibrium.

Proof.

Let a∗ = arg maxa∈A P (a). Clearly for any other action profile a′,
P (a∗) ≥ P (a′). Thus by the definition of a potential function, for
any agent i who can change the action profile from a∗ to a′ by
changing his own action, ui(a∗) ≥ ui(a′).
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Congestion Games have PSNE

Theorem (Rosenthal, 1973)

Every congestion game has a pure-strategy Nash equilibrium.

Proof.

Every congestion game has the following potential function:

P (a) =
∑
r∈R

#(r,a)∑
j=1

cr(j).

To show this, we must demonstrate that for any agent i and any
action profiles (ai, a−i) and (a′i, a−i), the difference between the
potential function evaluations at these action profiles is the same
as i’s difference in utility. This follows from a straightforward
arithmetic argument; omitted.
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Convergence of MyopicBestResponse

Theorem (Monderer & Shapley, 1996)

The MyopicBestResponse procedure is guaranteed to find a
pure-strategy Nash equilibrium of a congestion game.

Proof.

It is sufficient to show that MyopicBestResponse finds a
pure-strategy Nash equilibrium of any potential game. With every
step of the while loop, P (a) strictly increases, because by
construction ui(a′i, a−i) > ui(ai, a−i), and thus by the definition of
a potential function P (a′i, a−i) > P (ai, a−i). Since there are only
a finite number of action profiles, the algorithm must terminate.
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Analyzing the MyopicBestResponse result

Good news:

it didn’t require the cost functions to be monotonic

it doesn’t even require best response: it works with better
response.

Bad news:

Theorem (Fabrikant, Papadimitriou & Talwar, 2004)

Finding a pure-strategy Nash equilibrium in a congestion game is
PLS-complete.

PLS-complete: as hard to find as any other object whose
existence is guaranteed by a potential function argument.

e.g., as hard as finding a local minimum in a TSP using local
search

thus, we expect MyopicBestResponse to be inefficient in
the worst case
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Mixed Nash in Congestion Games

Not a problem that has received wide study. Nevertheless...

Theorem

Congestion games have polynomial type (as long as the action set
for each player is explicitly listed). The ExpectedUtility
problem can be computed in polynomial time for congestion
games, and such an algorithm can be translated to an straight-line
program as required by the theorem stated earlier.

Corollary

The problem of finding a Nash equilibrium of a congestion game is
in PPAD. The problem of finding a correlated equilibrium of a
congestion game is in P.
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Graphical Games

Graphical Games [Kearns et al., 2001] are a compact
representation of normal-form games that use graphical models to
capture the payoff independence structure of the game.

Intuitively, a player’s payoff matrix can be written compactly if his
payoff is affected only by a subset of the other players.

Equilibrium Computation in Compactly-Represented Games Costis Daskalakis & Kevin Leyton-Brown, Slide 15



Congestion Games Graphical Games Action-Graph Games

Graphical Game Example

Example (Road game)

Consider n agents who have purchased pieces of land alongside a
road. Each agent has to decide what to build on his land. His
payoff depends on what he builds himself, what is built on the land
to either side of his own, and what is built across the road.

Equilibrium Computation in Compactly-Represented Games Costis Daskalakis & Kevin Leyton-Brown, Slide 16
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Formal Definition

Definition (Neighborhood relation)

For a graph defined on a set of nodes N and edges E, for every
i ∈ N define the neighborhood relation ν : N 7→ 2N as
ν(i) = {i} ∪ {j|(j, i) ∈ E}.

Definition (Graphical game)

A graphical game is a tuple (N,E,A, u), where:

N is a set of n vertices, representing agents;

E is a set of undirected edges connecting the nodes N ;

A = A1 × · · · ×An, where Ai is the set of actions available to
agent i; and

u = (u1, . . . , un), ui : A(i) 7→ R, where A(i) =
∏
j∈ν(i)Aj .
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Representation Size

An edge between two vertices ⇔ the two agents are able to
affect each other’s payoffs

whenever two nodes i and j are not connected in the graph,
agent i must always receive the same payoff under any action
profiles (aj , a−j) and (a′j , a−j), aj , a

′
j ∈ Aj

Graphical games can represent any game, but not always
compactly

space complexity is exponential in the size of the largest ν(i)
In the road game:

the size of the largest ν(i) is 4, independent of the total
number of agents
the representation requires space polynomial in n, while a
normal-form representation requires space exponential in n
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Computing CE and Mixed NE in Graphical Games

Theorem

Graphical games have polynomial type. The ExpectedUtility
problem can be computed in polynomial time for graphical games,
and such an algorithm can be translated to an straight-line
program.

Corollary

The problem of finding a Nash equilibrium of a graphical game is
in PPAD. The problem of finding a correlated equilibrium of a
graphical game is in P.

Theorem (Daskalakis, Goldberg & Papadimitriou, 2006)

The problem of finding a Nash equilibrium of a graphical game is
PPAD complete, even if the degree of the graph is at most 3, and
there are only 2 strategies per player.
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Computing Mixed NE in Graphical Games

The way that graphical games capture payoff independence is
similar to the way that Bayesian networks capture conditional
independence in multivariate probability distributions.
It should therefore be unsurprising that many computations on
graphical games can be performed efficiently using algorithms
similar to those proposed in the graphical models literature.

Theorem (Kearns, Littman & Singh, 2001)

When the graph (N,E) defines a tree, a message-passing
algorithm can compute an ε-Nash equilibrium in time polynomial in
1/ε and the size of the representation.

Theorem (Elkind, Goldberg & Goldberg, 2006)

When the graph (N,E) is a path or a cycle, a similar algorithm
can find an exact equilibrium in polynomial time.
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Computing PSNE in Graphical Games

Theorem (Gottlob, Greco & Scarcello, 2005)

Determining whether a pure-strategy equilibrium exists in a
graphical game is NP complete.

This result follows from seeing the problem as a CSP.

The same insight can be leveraged to obtain results like:

Theorem (Gottlob, Greco & Scarcello, 2005; Daskalakis &
Papadimitriou, 2006)

Deciding whether a graphical game has a pure Nash equilibrium is
in P for all classes of games with bounded treewidth or
hypertreewidth.

It’s possible to go even a bit further, to games with O(log n)
treewidth
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The Coffee Shop Problem



• set of players: want to 

open coffee shops

• actions: choose a location 

for your shop, or choose 

not to enter the market

• utility: profitability of 

a location 

– some locations might have 

more customers, and so 

might be better ex ante

– utility also depends on the 

number of other players 

who choose the same or 

an adjacent location

Action-Graph Games
[Bhat & LB, 2004; Jiang, LB & Bhat, 2009]



Formal Definitions



Formal Definitions



The Job Market Problem

Each player chooses a level of training

Players’ utilities are the sum of:

„ a constant cost: 

‟ difficulty; tuition; foregone wages

„ a variable reward, depending on:

‟ How many jobs prefer workers with 

this training, and how desirable are the 

jobs?

‟ How many other jobs are willing to 

take such workers as a second choice, 

and how good are these jobs?

„ Employers will take workers who are 

overqualified, but only by one degree.

„ They will also interchange similar 

degrees, but only at the same level.

‟ How many other graduates want the 

same jobs?
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MScMSc

BScBSc

DiplDipl

Computer

Science

PhDPhD

MEngMEng

BEngBEng

DiplDipl

Electrical

Engineering

Mechanical
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Analyzing the AGG Representation

AGGs can represent any game.

Overall, AGGs are more compact than the normal form when 

the game exhibits either or both of the following properties:

1. Context-Specific Independence: 

„ pairs of agents can choose actions that are 

not neighbors in the action graph

2. Anonymity: 

„ multiple action profiles yield the same configuration

When max in-degree I is bounded by a constant:  

‟ polynomial size: O(|Amax|n
I)

‟ in contrast, size of normal form is O(n|Amax|
n)



Graphical Games are Compact as AGGs
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The Coffee Shop Problem Revisited
„ What if utility also depends on total # shops?

„ Now action graph has in-degree |A|

‟ NF & Graphical Game representations: O(|A|N)

‟ AGG representation:  O(N|A|)

‟ when |A| is held constant, the AGG 
representation is polynomial in N

„ but still doesn’t effectively capture game structure

„ given i’s action, his payoff depends only on 3 quantities!

6 £ 5 Coffee Shop Problem: projected action graph at the red node



AGGFNs: Function Nodes

„ To exploit this structure, introduce function nodes:

‟ The “configuration” of a function node p is a (given) function of the 
configuration of its neighbors: c[p] = fp(c[º(p)])

„ Coffee-shop example: for each action node s, introduce:

‟ a function node with adjacent actions as neighbors 

„ c[p's] = total number of shops in surrounding nodes

‟ similarly, a function node with non-adjacent actions as neighbors

6 £ 5 Coffee Shop Problem: function nodes for the red node



The Coffee Shop Problem

„ Now the red node has only three incoming edges: 

‟ itself, the blue function node and the orange function node

‟ so, the action-graph now has in-degree three

„ Size of representation is now O(N3)

6 £ 5 Coffee Shop Problem: projected action graph at the red node



Example: Parallel Edges
Based on [Thompson, Jiang & LB, 2007]; inspired by [Odlyzko, 1998]

„ Network with one source, one 

sink, two parallel edges

‟ both edges offer identical speed

‟ one is free, one costs $1

‟ latency is an additive function of 

the number of users on an edge

„ Two classes of users

‟ 18 users pay $0.10/unit of delay

‟ 2 users pay $1.00/unit of delay

„ Which edge should users choose?

„ Example scales to longer paths

‟ not a congestion game because of

player-specific utility



„ Without loss of compactness, AGGs can also encode:

‟ Symmetric games

‟ Anonymous games (requires function nodes)

„ One other extension to AGGs: explicit additive structure

„ Enables compact encoding of still other game classes:

‟ Congestion games

‟ Polymatrix games

‟ Local-Effect games

Conclusion: AGGs compactly encode all major compact classes

of simultaneous-move games, and also many new games that 

are compact in none of these representations.

Further Representational Results
[Jiang, LB & Bhat, 2009]



Theorem (Jiang & LB, 2006; independently proven in 

Daskalakis, Schoenebeck, Valiant & Valiant 2009):

AGGs have polynomial type. The EXPECTEDUTILITY problem 

can be computed in polynomial time for AGGs, and such an 

algorithm can be translated to a straight-line program.

In AGGFNs, players are no longer guaranteed to affect 

c independently

• the computation is still polynomial when function nodes 

can be expressed using a commutative, associative operator

Corollary: The problem of finding a Nash equilibrium of an 

AGG is in PPAD. The problem of finding a correlated 

equilibrium of an AGG is in P.

Computing with AGGs: Complexity



Theorem (Daskalakis, Schoenebeck, Valiant & Valiant 2009):

There exists a fully polynomial time approximation scheme 

for computing mixed Nash equilibria of AGGs with constant 

degree, constant treewidth and a constant number of distinct 

action sets (but unbounded number of actions).

If either of the latter conditions is relaxed without new 

restrictions being made, the problem becomes intractable.

Theorem (DSVV-09): It is PPAD{complete to compute a 

mixed Nash equilibrium in an AGG for which (1) the action 

graph is a tree and the number of distinct action sets is 

unconstrained, or (2) there are a constant number of distinct 

action sets and treewidth is unconstrained.

it is PPAD{complete to compute a mixed Nash equilibrium. 

Similarly for AGGs

Computing with AGGs: Complexity



Computing Pure-Strategy Equilibrium

Theorem (Conitzer, personal communication, 2004; proven 

independently by Daskalakis et al., 2008):  The problem of 

determining existence of a pure Nash equilibrium in an AGG 

is NP-complete, even when the AGG is symmetric and has 

maximum in-degree of three.

Theorem (Jiang & LB, 2007):  For symmetric AGGs with 

bounded treewidth, existence of pure Nash equilibrium can be 

determined in polynomial time.

Generalizes earlier algorithms

‟ finding pure equilibria in graphical games
[Gottlob, Greco, & Scarcello 2003; Daskalakis & Papadimitriou 2006]

‟ finding pure equilibria in simple congestion games
[Ieong, McGrew, Nudelman, Shoham, & Sun 2005]



Sponsored Search Auctions
Brief preview of [Thompson & LB, ACM-EC 2009]

„ Position auctions are used to sell $10Bs of keyword ads

„ Some theoretical analysis, but based on strong assumptions

‟ Unknown how different auctions compare in more general settings

„ Idea: analyze the auctions computationally

‟ Main hurdle: ad auction games are large; infeasible as normal form

AGG representation of a Weighted, Generalized First-Price (GFP) Auction
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Sponsored Search Auctions
Brief preview of [Thompson & LB, ACM-EC 2009]

„ Position auctions are used to sell $10Bs of keyword ads

„ Some theoretical analysis, but based on strong assumptions

‟ Unknown how different auctions compare in more general settings

„ Idea: analyze the auctions computationally

‟ Main hurdle: ad auction games are large; infeasible as normal form

Social welfare and revenue of EOS auction model



Free Software Tools for AGGs
Based on [Bargiacchi, Jiang & LB, ongoing work]

„ Goal: make it easier for other researchers to use AGGs

„ Equilibrium computation algorithms:

‟ Govindan-Wilson

‟ Simplicial Subdivision

„ GAMUT

‟ extended to support AGGs

„ Action Graph Game Editor:

‟ creates AGGs graphically

‟ facilitates entry of utility fns

‟ supports “player classes”

‟ auto creates game generators

‟ visualizes equilibria on the 

action graph



Overall Conclusions

„ Equilibrium computation is a hot topic lately

‟ by now, the general complexity picture is fairly clear

„ Compact representations are a fruitful area of study

‟ necessary for modeling large-scale game-theoretic interactions

„ There’s lots to do, both in theoretical and applied veins

‟ theoretical: only scratched the surface of restricted subclasses of games, and 

corresponding algorithmic and complexity results

‟ both: extend our existing representations to make them more useful

‟ applied: now that we have practical techniques for representing and 

reasoning with large games, see what practical problems we can solve

„ We’ve focused on simultaneous-move, perfect-information games

‟ the most fundamental, both representationally and computationally

‟ to some extent, computational ideas carry over, both to incomplete 

information and to sequential moves

‟ lots of interesting work on those problems that we haven’t discussed

„ e.g., sequence form; algorithms for finding equilibria in huge extensive form games 

(motivated especially by poker); MAIDs, TAGGs
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