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Motivation
How will bidders behave In a position auction
that does not meet the assumptions
for which theoretical results are known?

Our approach: compute Nash equilibrium

Main hurdle: existing algorithms work with
normal form; infeasibly large for ad auctions

Main message: preliminary, but it works
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Types of Position Auctions

« Dimensions:

- Generalized First Price vs. Generalized Second Price
- Pay-per-click vs. Pay-per-impression
- Weighted vs. Unwelighted:

. “Effective Bid”: bid * weight

. Ads ranked by effective bid

. Payment: effective bid / weight

« Current Usage (Google,Microsoft,Yahoo!):
- Weighted, Per-Click, GSP



Model of Auction Setting

Full-information, one-shot game [varian, 2007; Edelman, Ostrovsky,
Schwarz, 2006 (“EOS”)]

CTR across CTR across Bid
Weights positions bidders Value per Click | Amounts
[EOS] Always 1 Decreasin Constant One value Continuous
Y 5 per bidder
Proportional One value
[Varian] | Arbitrary Decreasing to Weight . Continuous
) ., per bidder
(“Separable”)
Our model Arbitrary Arbitrary Arbitrary Arbitrary Discrete
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« Action Graphs:

- Each node represents an action.
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« [Bhat & Leyton-Brown, 2004 Jiang & Leyton-Brown, 2006]



What are AGGSs?

« Action Graphs:

— Each node represents an action.
- Arcs indicate payoff dependencies.

- “Function Nodes” increase sparsﬂy

« [Bhat & Leyton-Brown, 2004 Jiang & Leyton-Brown, 2006]
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Why Use AGGS? shate Leyion-grown, 20041

. Small: Compact representation of a one-shot,
full-information game

- Frequently polynomial in n

. Fast: Dynamic programing can compute
expected Uti“ty N ~O(ani+1) [Jiang & Leyton-Brown, 2006]
- Plug into existing equilibrium solvers (e.g. simplicial
subdivision [van der Laan, Talman, and van Der Heyden, 1987] Or
GNM [Govindan, wilson, 2003]) for exponential speedup
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Representing GSP

. Start from a GFP graph
- same method of computing a bidder’s position

. We need to add new nodes to compute prices
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CTR across CTR across Bid
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Why Instantiate [\VVarian|?

. Validate by comparing with Varian's analytical
results for weighted, pay-per-click GSP

- and obtain computational results on a model of
Independent interest

o Obtaln novel economic results

- “Apples-to-apples” comparison: how do different
auctions perform given identical preferences?

. Most appropriate model is still an open question



Model of Auction Setting

CTR across CTR across Bid
Weights positions bidders Value per Click | Amounts
[EOS] Always 1 Decreasin Constant One value Continuous
Y 5 per bidder
Proportional One value
[Varian] Arbitrary Decreasing to Weight . Continuous
" ., per bidder
(“Separable”)
Our model Arbitrary Arbitrary Arbitrary Arbitrary Discrete
Uniform[0,1] | Proportional One value
Problem : . . .
Distribution Uniform[0,1] * CTR of to Weight per bidder: Discrete
higher slot | (“Separable”) | Uniform][0,1]




Experimental Setup

10 bidders, 5 slots
Integer bids between 0 and 10

For pay-per-click, normalize value/click:

- Scale max; value,; to 10, then scale other values
proportionately
. to use full range of discrete bid amounts
For pay-per-impression, normalize
value/impression.



Representation size (bytes)

Size Experiments: Players
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Size Experiments: Bid Increments
10 bidders
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Runtime Experiments: Test-bed

« Environment:

— Intel Xeon 3.2GHz, 2MB cache, 2GB RAM
~ Suse Linux 10.1

o Solver software:

- Gambit [McKelvey, McLennan, Turocy, 2007] Implementation
of simplicial subdivision “simpdiv” [van der Laan, Talman,
and van Der Heyden, 1987], AGG-specific dynamic
programming inner loop?* [Jiang & Leyton-Brown, 2006]

1. http://Iwww.cs.ubc.ca/~[lang/agqg/




Runtime Experiments: Results

100%
= 90%
5]
% 80%
n 20% —— GSP,PerImp,Unweighted
D 0 —=— GSP,PerClick,Weighted
2 60% —— GSP,Perlmp,Weighted
% 500 GFP,Perlmp,Weighted
= 0 —— GFP,PerIlmp,Unweighted
5 40% —— GFP,PerClick, Unweighted
g 30% —— GSP,PerClick,Unweighted
= —— GFP,PerClick,Weighted
8 20%
LL
10%
0%
1 10 100
Time (s)

* much longer experiments are ongoing...
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[EOS]’s auction with [Varian]'s preference model
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Yahoo! Auctions: Past and Present

! |
f _n/u m paybiam
100
m = PID-1ed ‘dS9O
|
AN~ |z aybramu
| —— " " O o | p=a1yol N
O O |2 ud-1ad ‘'dS9O
AN N
& paybram
S T N I 4eh
= dwl-Jad ‘dS9
Ey = - w pajybramun
= dwj-Jad ‘dS9O
- palybrom
i E
= oID-J8d ‘d49
|
N~ (N | = payblamun
o I R S | o O %
o O |2 oud-led 'd49
— N\
- pailybiapn
L freswad | pacac 1 1%
~  dwl-1ad ‘d49
- pajybiamun
| = B
D dwjusd ‘d49
S m o < N o
— S S =) o S

alej|ap |e120S



[Varian]: VCG revenue is a lower bound on SNE revenue
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Multiple Equilibria of GSPS [varian; EOS]

« Each agent can have many best responses to an
equilibrium strategy profile.

- Raising I's bid increases (I-1)'s price, decreasing i's envy.

« Given an envy-free NE / SNE, lowering an agent’s bid
may lead to an efficient, pure NE w/ sub-VCG revenue

< Lower bids Higher bids —
4 5 6 7
Not Equilibrium Nash Equilibrium SUPAUES NEEL Not Equilibrium
Equilibrium

« Even if pure NE exist for continuous bids, they may
not exist for discrete bids.




Equilibrium selection

« Previous results simply showed the first
equilibrium found by simpdiv

- Often a mixed strategy over arbitrary points on
equilibrium interval

« Local search approach to equilibrium selection:

- Start point: Nash equilibrium found by simpdiv

- Neighbours: Nash equilibria where one bid Is
changed by one increment

- Objective: maximize/minimize sum of bids

- Algorithm: Greedily raise bids (choose bidder by
random permutation); random restarts.



Revenue (Relative to VCG)
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Summary

. Many position auctions are tractable:

- Polynomial-size AGG

- Polynomial-time expected utility by dynamic
programming

« Very general preference model.

- Position-specific valuations

- Non-separable CTRs (and arbitrary weights)

« Experimental results consistent with existing
theory and practice.



Future Work

« Economic:

- Use full preference model (learn from data)

- Model richer preferences (e.g. cascading CTR
[Aggarwal, et al, 2008; Kempe, Mahdian, 2008])

. Computational:

- In progress: Adapt SEM [porter, Nudelman, Shoham, 2006] tO
AGGs: Allows enumerating equilibria (answer
guestions like “what percentage of pure equilibria
are envy free?”)

Thank You.
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