Empirically Testing Decision Making in TAC SCM

Erik P. Zawadzki

July 23, 2007

Joint work with Kevin Leyton-Brown

Outline

- Introduction to Problem
- Model
 - B
 Customer Market Process
 - B
 Component Market Process
- Application: Scheduling
 - □B□ Agents
 - **B** Experiments
- Conclusions

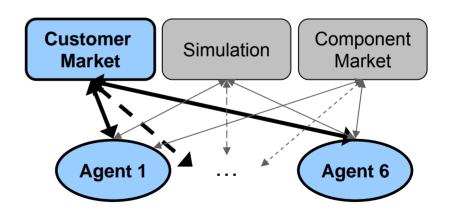
Trading Agent Competition Supply Chain Management (TAC SCM)

- Supply Chain Management (SCM) is an important industrial issue
- Static and unresponsive SC policies
 - Large inventories
 - Unreliable deliveries
 - Underperformance

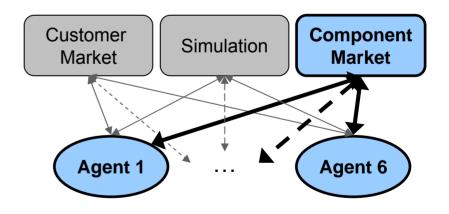
TAC SCM

- Encourages research into SCM solutions
- A simpler setting

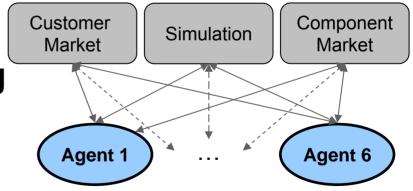
- A TAC SCM PC (personal computer) manufacturing agent must make decisions for the following four subproblems:
 - Customer Bidding



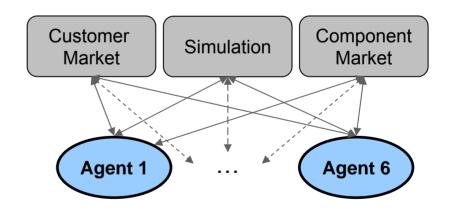
- A TAC SCM PC (personal computer) manufacturing agent must make decisions for the following four subproblems:
 - Customer Bidding
 - Component Ordering



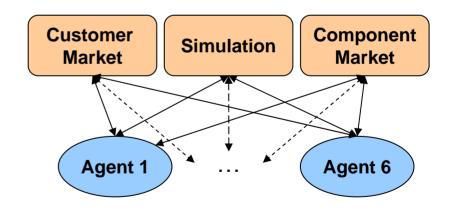
- A TAC SCM PC (personal computer) manufacturing agent must make decisions for the following four subproblems:
 - Customer Bidding
 - Component Ordering
 - Production Scheduling



- A TAC SCM PC (personal computer) manufacturing agent must make decisions for the following four subproblems:
 - Customer Bidding
 - Component Ordering
 - Production Scheduling
 - Delivery Scheduling



- A TAC SCM PC (personal computer) manufacturing agent must make decisions for the following four subproblems:
 - Customer Bidding
 - Component Ordering
 - Production Scheduling
 - Delivery Scheduling
- Decomposition
 - □ For instance [Collins et al 2007]



Decision Making is Hard

- Decision making in TAC SCM is hard
 - Each subproblem solution influences the other three
 - E.g. Customer Bidding
 - Depends on Delivery Scheduling
 - Depends on Production Scheduling
 - Depends on Component Ordering
 - There is an uncertain future
 - Customer RFQs
 - Component availability and pricing
 - Late component deliveries
 - There is a hard time-constraint
- Most agents simplify or approximate this decision (or both).

Many ways to simplify

- Subproblem connection
 - Introduce independencies
- Action
 - Only build PCs once an order is certain
- Information
 - Do not use all the information that can be collected

How Should Algorithms be Compared?

- How do we determine which approaches are better than others?
 - The traditional approach is running an agent against a large set of other agents
 - Easy to compare complete agents
 - Harder to compare particular approaches to the subproblems
 - Test results are immediately relatable to competition performance
 - Results may be highly variable
 - Multiagent
 - Randomness in the simulation

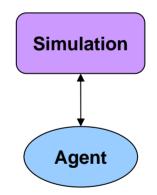
An Alternate Approach to Evaluation

- We suggest a testing framework makes it easy to:
 - 1. Hold some subproblem algorithms fixed while varying others
 - 2. Large number of experiments
 - Parallelism
 - 3. Control variance
 - Blocked experimental design
 - 4. Focus on particular game events
 - Resource shortages
 - Steady state
 - End game

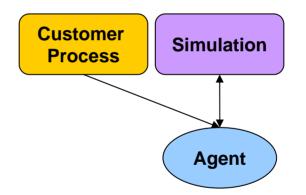
Outline

- Introduction to Problem
- Model
 - B
 Customer Market Process
 - B
 Component Market Process
- Application: Scheduling
 - □B□ Agents
 - **B** Experiments
- Conclusions

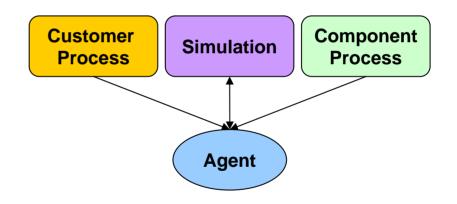
- Our Model:
 - Generate RFQs and handle factories like in TAC SCM



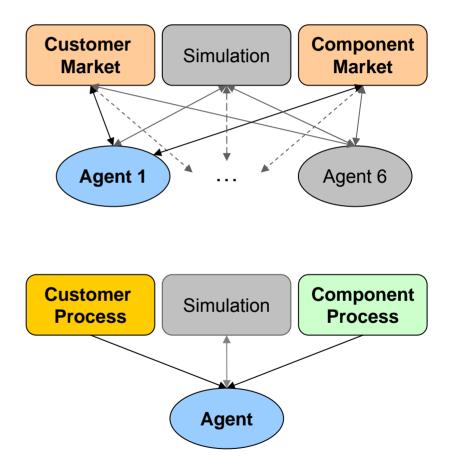
- Our Model:
 - Generate RFQs and handle factories like in TAC SCM
 - Simulate the customer market using a process learned from game data



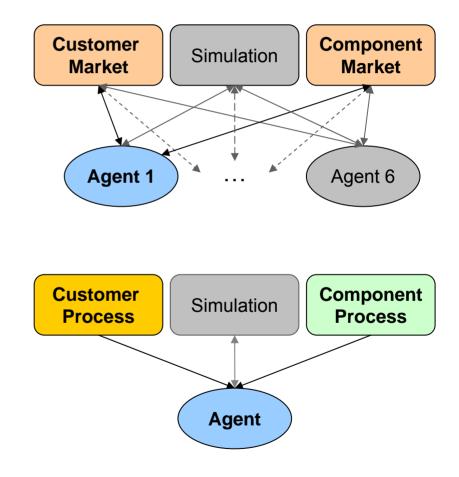
- Our Model:
 - Generate RFQs and handle factories like in TAC SCM
 - Simulate the customer market using a process learned from game data
 - Simulate the component market using a process structurally similar to TAC SCM's market



- Processes independent of agent actions
 - Blocked experimental design
 - Simulation defined random seed
 - Block experiments by simulation seed



- Processes independent of agent actions
 - Blocked experimental design
 - Simulation defined random seed
 - Block experiments by simulation seed
- We will focus on 'steady-state' behaviour
 - Days 40 to 200
 - Beginning and end game effects
- We need to validate our model
 - Want processes to be faithful to game log data



Outline

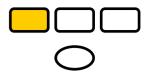
- Introduction to Problem
- Model

BCustomer Market Process

- B
 Component Market Process
- Application: Scheduling
 - **□□□** Agents
 - **B** Experiments
- Conclusions

- Learn the winning price distribution p(B|θ_t,S)

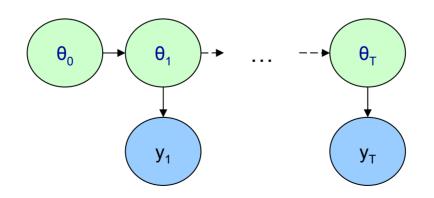
 θ_t is the model parameters for day t
 S is the product type r.v.
- Assume that each day's winning price distribution is a Gaussian



- Model parameters linearly related to previous day's with unbiased Gaussian noise
 - $\bullet \quad \theta_t = A\theta_{t-1} + N(0,Q)$



- Model parameters linearly related to previous day's with unbiased Gaussian noise
 - $\bullet \quad \theta_t = A\theta_{t-1} + N(0,Q)$
- Observations (empirical distribution) linearly related to model parameters with unbiased Gaussian noise
 - $y_t = C\theta_t + N(0,R)$



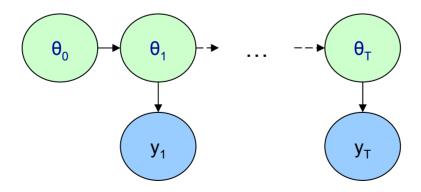
- Model parameters linearly related to previous day's with unbiased Gaussian noise

 $\bullet \quad \theta_t = A\theta_{t-1} + N(0,Q)$

 Observations (empirical distribution) linearly related to model parameters with unbiased Gaussian noise

 $\mathbf{y}_{t} = \mathbf{C}\boldsymbol{\theta}_{t} + \mathbf{N}(\mathbf{0},\mathbf{R})$

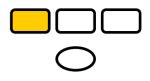
Linear Dynamic System (LDS)



How to Learn LDS Parameters

- Learn the LDS dynamic (<A,C,Q,R, θ_0 >) with EM
 - Iteratively improves on an initial model
 - 'Improvement' is increasing data likelihood
 - Unstable
 - Inversion
 - Good initial model helps avoid problems
 - Can calculate data likelihood and predict future states using Kalman Filters (KFs)
 - Recursive filter for estimating LDS states
 - Very fast
 - Simple to implement

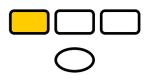
Other LDS consideration



Other decisions about the model:

- Independent vs `Full' Model
 - Should the behaviour from other PCs be informative?
 - Can an LDS model this relationship?
 - Overfitting
- Different dimensionality of the model parameters

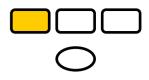
Picking an LDS Model



What makes a good model?

- Model easily explains historical data
 - Data likelihood
- Predictive power
 - Absolute prediction error

Picking an LDS Model



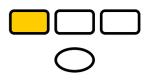
What makes a good model?

- Model easily explains historical data
 - Data likelihood
- Predictive power
 - Absolute prediction error

Model Log-Likelihoods

	Independent	Full
1/16	-35000	-50000
2/32	-34000	-94000
3/48	-34000	-144000

Picking an LDS Model



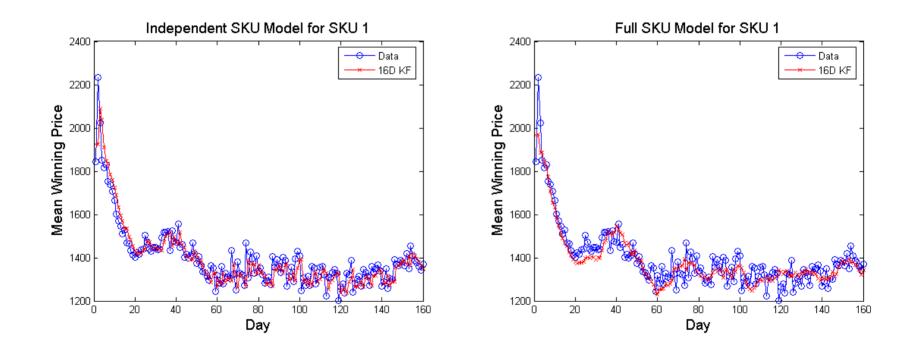
What makes a good model?

- Model easily explains historical data
 - Data likelihood
- Predictive power
 - Absolute prediction error
- Independent Model with 32 model variables
 - Highest likelihood
 - Low mean winning price prediction error of 57.0 units

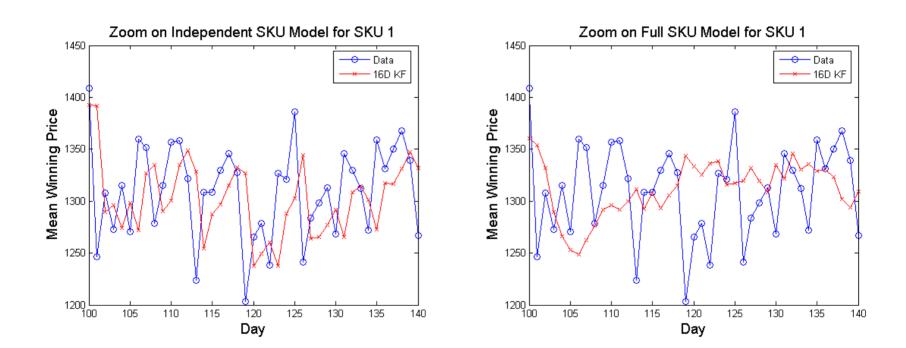
Model Log-Likelihoods

	Independent	Full
1/16	-35000	-50000
2/32	-34000	-94000
3/48	-34000	-144000

KF Predictions Based on Learned LDS



KF Predictions Based on Learned LDS



Alternate Approaches

- Our model is generative
 - But this is similar to the prediction problem
- Deep Maize Forecasting [Kiekintveld et al, 2007]
 Kth-nearest neighbour
 - What in the past looks like what is being seen right now?
- TacTex Offer Acceptance Predictor [Pardoe and Stone, 2006]
 - Separated Particle Filters

Outline

- Introduction to Problem
- Model
 - B
 Customer Market Process
 - Ombound
 Component
 Market
 Process
- Application: Scheduling
 - **□□□** Agents
 - **B** Experiments
- Conclusions

Component Market Process

- Not the focus of our work
- Needed a simple model
- Made one based on structural similarity to TAC SCM
 - Daily manufacturing capacity determined by random walk
 - Each component manufacturer maximized daily outgoing components using an ILP

Outline

- Introduction to Problem
- Model
 - B
 Customer Market Process
 - B
 Component Market Process
- Application: Scheduling
 - □□□ Agents
 - **B** Experiments
- Conclusions

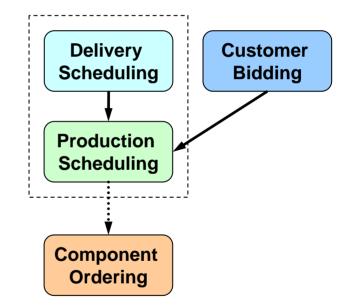
Comparing Three Scheduling

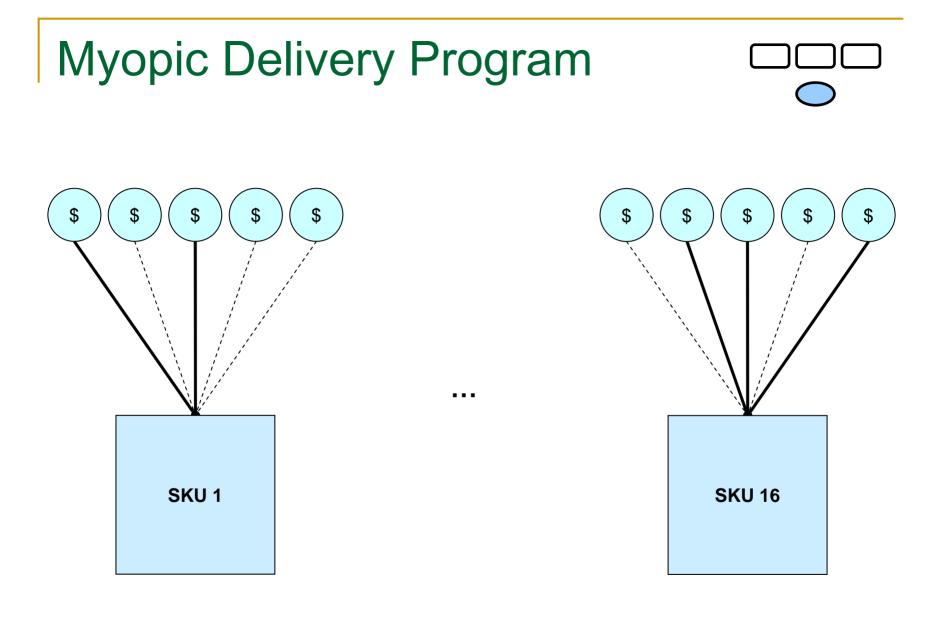
- We will use our test framework to compare three different scheduling algorithms
 - We are interested in the interaction between production and delivery scheduling
 - To maintain consistency, will using the same customer bidding and component ordering algorithms
 - Both done with simple heuristics
 - Ordering: static daily amount with inventory cap
 - Bidding: greedily, fixed percentage of production capacity

Myopic

Myopic

- Delivery Scheduling
 - ILP that maximizes current day's revenue
 - Ignores the future
- Production Scheduling
 - Greedy, based on outstanding PC demand

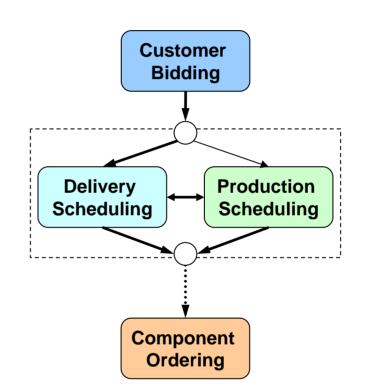


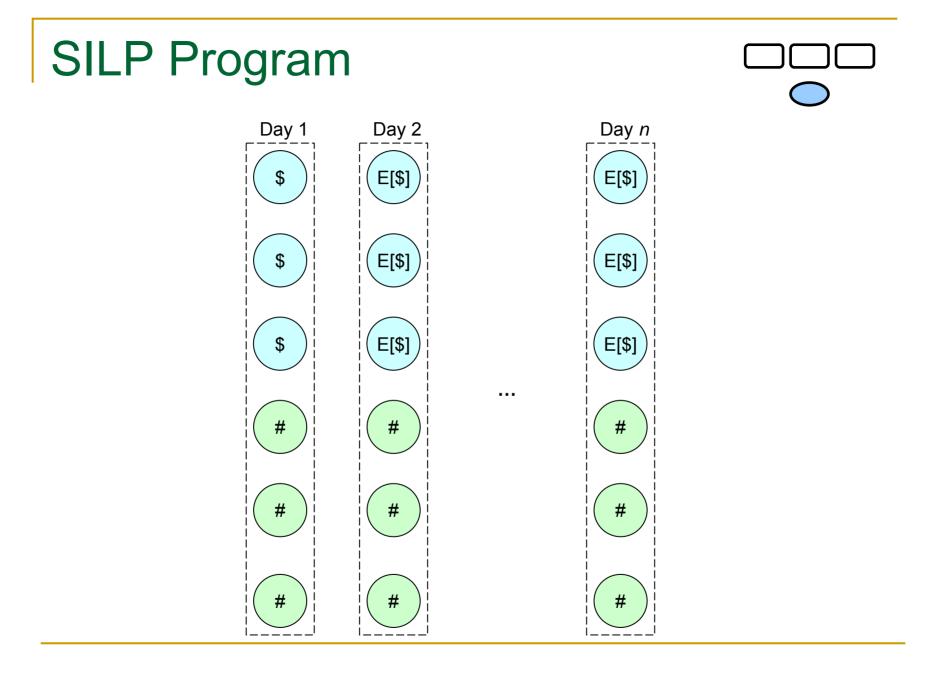


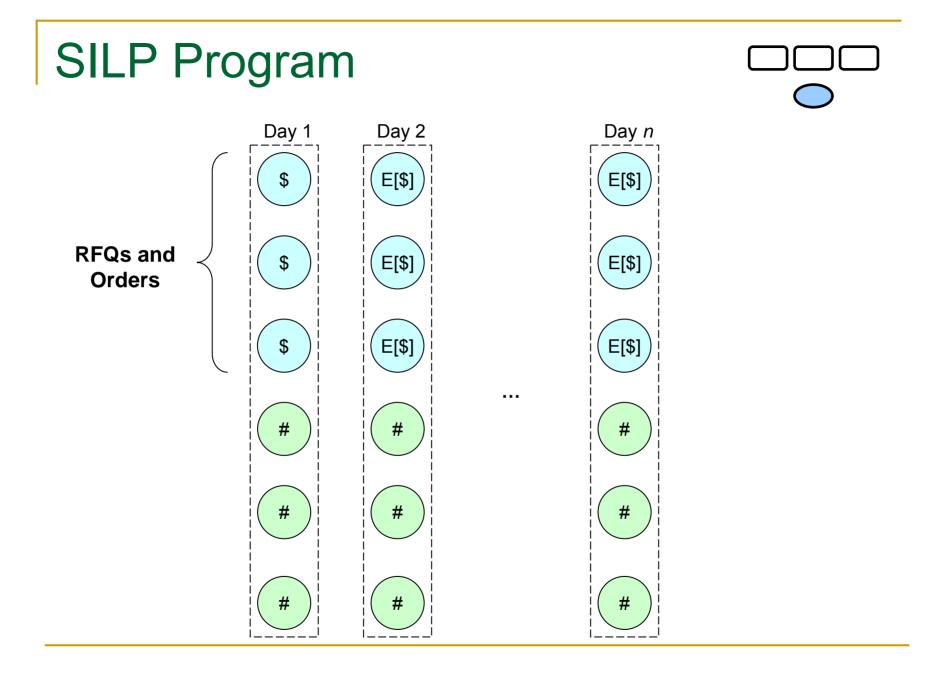
SILP

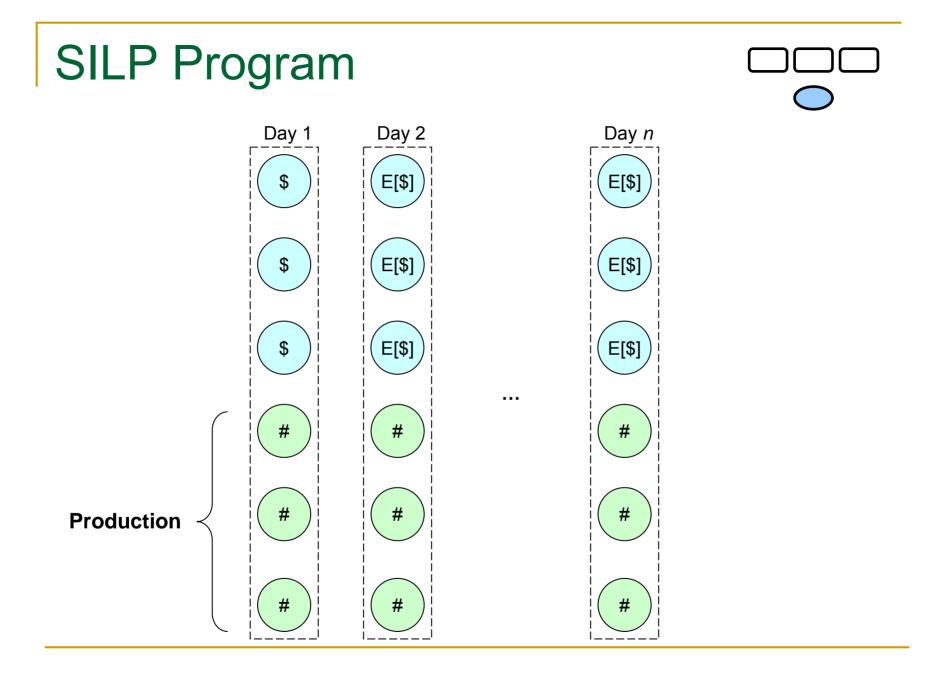
Stochastic Integer Linear Program (SILP)

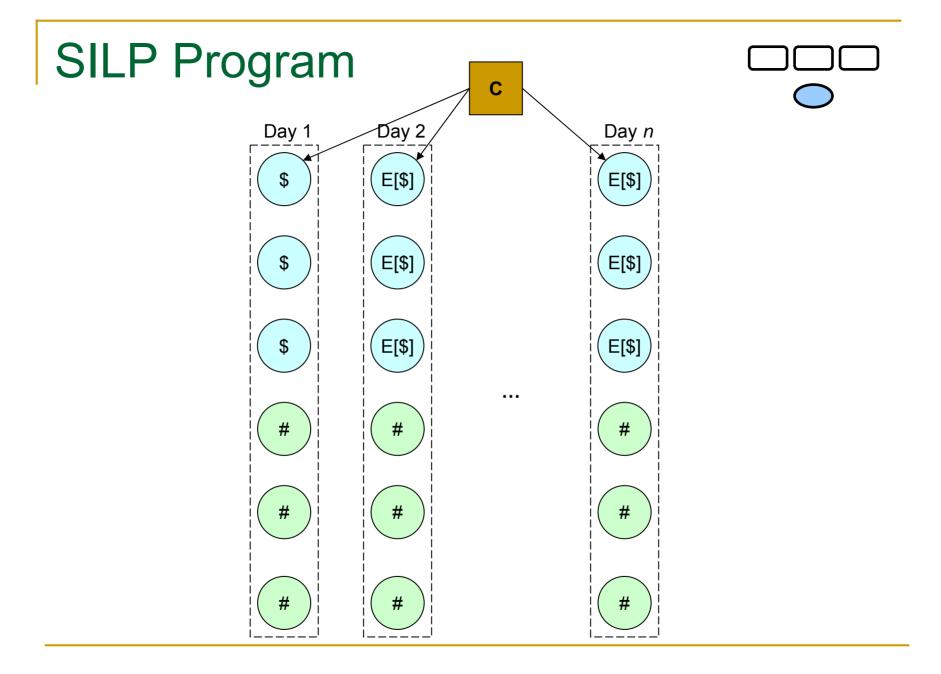
- SILP from Benisch *et al* 2004
- Delivery and Production
 Scheduling
 - ILP that maximizes expected profit
 - Fixed *n*-day horizon







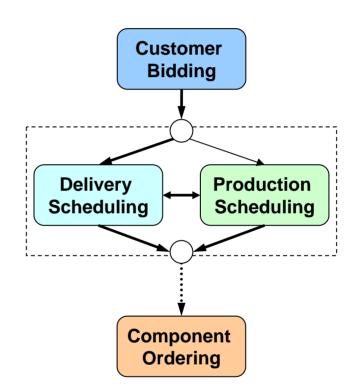


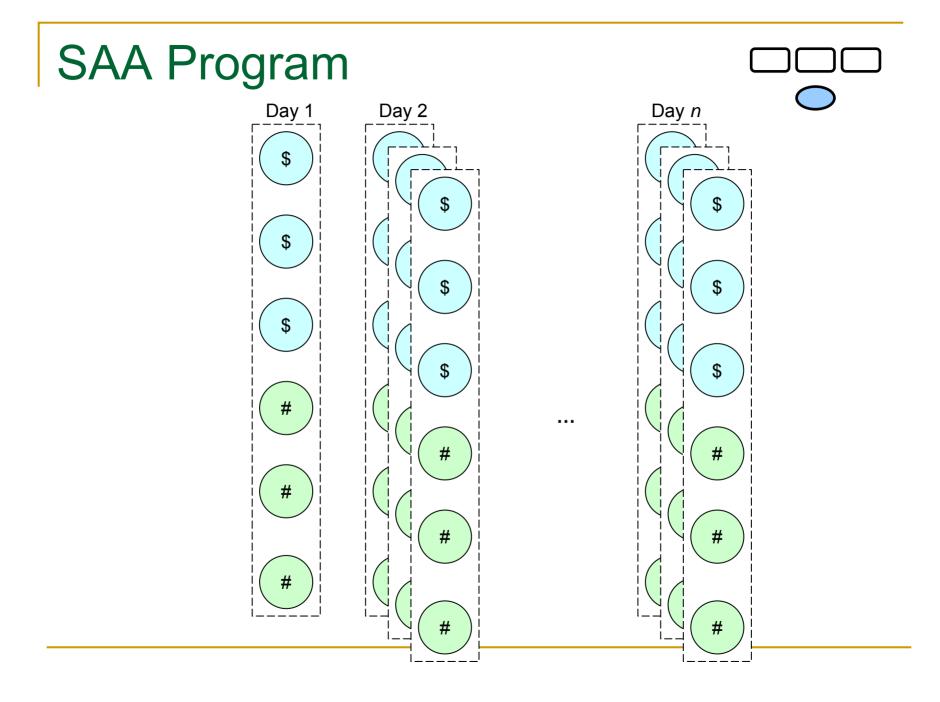


SAA

Sample Average Approximation (SAA)

- □ Shapiro et al 2001
 - Benisch et al 2004
- Delivery and Production
 Scheduling
 - ILP that maximizes expected profit
 - n-day horizon
 - k-samples
 - Drawn from uncertainty distribution

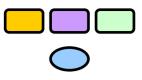




Outline

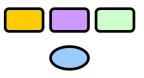
- Introduction to Problem
- Model
 - B
 Customer Market Process
 - B
 Component Market Process
- Application: Scheduling
 - □B□ Agents
 - **BBC** Experiments
- Conclusions

Common Test Setup



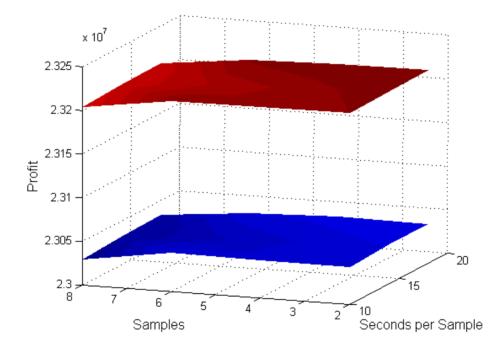
- 11-computer cluster
- ILPs solved with CPLEX 10.1
 - Told to emphasize feasibility over optimality
- Used profit as a measure of solution quality
 - Revenue less late penalties and storage costs

Experiment 1: SAA



- Question: Given a global time cap, does it make more sense for SAA to quickly consider more samples, or spend more time optimizing fewer samples?
 - □ 2, 4, 6, or 8 sample
 - □ 10, 14, or 18 seconds per sample
- For each combination ran 100 simulations
 - 30-days of simulated steady-state behaviour

Experiment 1: SAA (Results)



- Flat surface
 - Neither dimension significant for configurations that could be reasonably solved in TAC

Experiment 2: Algorithm Comparisons

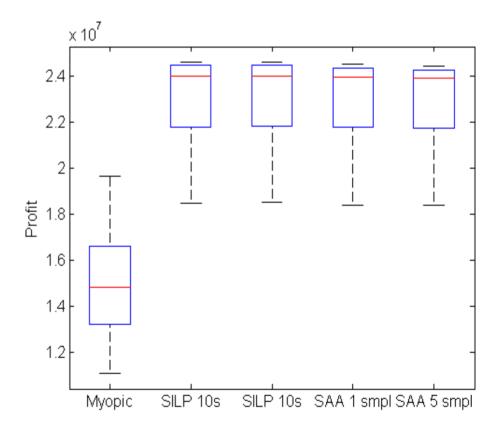
Question: Given these three algorithms and a time constraint, which algorithm should one

use?

- Myopic
- 2-day SILP with 10s cap
- 2-day SILP with 50s cap
- 3-day SAA with 1 sample, 10s cap
- 3-day SAA with 5 sample, 50s cap
- For each algorithm ran 100 simulations
 - 30-days of simulated steady-state behaviour
- CPLEX solved the Myopic ILP in under 10s

Experiment 2: Algorithm Comparisons (Results)

- SILP and SAA beat Myopic
- SILP and SAA not significantly different
- Altering time cap makes no significant difference



Outline

- Introduction to Problem
- Model
 - B
 Customer Market Process
 - B
 Component Market Process
- Application: Scheduling
 - **□□□** Agents
 - **B** Experiments
- Conclusions

From experiments

- SILP and SAA were not significantly different for examined configurations
- Increasing the number of samples in timeconstrained SAA optimization did not significantly increase profit
- Early approximations were usually quite good

Conclusions

- From testing approach and framework
 - Easy to set up and run large experiments
 - 1200 simulation in the first experiment
 - 500 simulations in the second
 - Simple to parallelize
 - More control over parameters
 - Time cap and simulation length altered
 - Accurate model of Customer Market Process
 - Game data likely given model
 - Low prediction error

Future Directions

- Data generated component market model
- Improve our model of the customer market
 - Priors during EM parameter estimation
 - Larger data set
 - TAC SCM Prediction Challenge
- Expand set of metrics
- Use framework integrate component ordering and customer bidding

Thank You

Questions and comments