SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown University of British Columbia {xulin730, hutter, hoos, kevinlb}@cs.ubc.ca

Outline

Motivation

- History of SATzilla and related work
- SATzilla methodology
- **Example Problem**
- □ SATzilla for the SAT Competition
- Conclusions and ongoing research

Motivation

Lots of high performance solvers, but No single SAT solver dominates all others on all types of instances

Question: How to select the best solver for a given SAT instance?

Algorithm Selection Problem [Rice, 1976]

Reference:

Select solvers based on previous experience or research papers

"Winner-Take-All":

Test solvers on some samples from target distribution; select the solver with best performance.

SATzilla:

Automatically based on instance characteristics'

Related work:

- Portfolio of stochastic algorithm [Gomes & Selman, 1997]
 Running multiple algorithms at the same time
- Reinforcement learning [Lagoudakis & Littman, 2001]
 Select branching rule at each decision point
- Branch & bound algorithm selection
 [Lobjois & LemaÎter, 1998]
 Based on an estimation of search tree size

History of SATzilla

Old SATzilla [Nudelman, Devkar, et. al, 2003] 2nd Random 2nd Handmade (SAT) 3rd Handmade □ SATzilla-07 1st Handmade 1st Handmade (UNSAT) 1st Random 2nd Handmade (SAT) 3rd Random (UNSAT)

SATzilla-07 Methodology (offline)

SATzilla-07 Methodology (online)

Solvers Used

- Eureka [Nadel, Gordon, Palti & Hanna, 2006]
- Kcnfs2006 [Dubois & Dequen, 2006]
- □ March_dl2004 [Heule & Maaren, 2006]
- Minisat2.0 [Eén & Sörensson, 2006]
- OKsolver [Kullmann, 2002]
- Rsat1.04 [Pipatsrisawat & Darwiche, 2006]
- Vallst [Vallstrom, 2005]
- Zchaff_Rand [Mahajan, Fu & Malik, 2005]

SATzilla-07 Example

Using quasi-group completion Problems (QCP) to validate our general approach

SATzilla-07 Example Problem

Problem distribution

QCP problems generated near phase transition

[Gomes & Selman, 1997]

Solvers

Eureka, OKsolver, Zchaff_Rand

Features

Same as in previous work

[Nudelman, et al. 2004]

Collect Data

Compute instances' features and determine solvers' runtime

- Pre-Solver & "Winner take all"
- Build Models
- Final solver selection

Empirical Hardness Model (EHM)

□ The Core of SATzilla ---→ EHM

- Accurately predict algorithm's runtime based on cheaply computable features
- Linear basis function regression

$$\mathsf{f}_{W}(\Phi) = W^{T} \Phi$$

Features (Φ)

Runtime (y)

Improve EHM (deal with censoring)

- Heavy-tailed behavior and censoring
- Three ways for censored data
 - Drop them
 - Keep them as if finished at cutoff
 - Censored sampling
- Schmee & Hahn 's approach [1979] REPEAT
 - Estimate runtime conditional on EHM and real runtime bigger than cutoff time
 - 2. Build new EHM with estimated runtime UNTIL no more changes in EHM

How to deal with censored data

A: Drop them

- B: Finished at cutoff
- C: Censored sampling

How to deal with censored data

A: Drop them

B: Finished at cutoff

C: Censored sampling

How to deal with censored data

A: Drop them B: Finished at cutoff

C: Censored sampling

Improve EHM (using Hierarchal Hardness Models)

 EHM often more accurate, much simpler when trained with SAT/UNSAT samples only [Nudelman, et al. 2004]

- Building hierarchal hardness model by approximating a model selection oracle
 - Mixture of experts problem with fixed experts

SATzilla-07 for QCP

Average Runtime

SATzilla-07 for QCP

Empirical CDF

2007 SAT Competition

Three submissions for 2007 SAT Competition BIG-MIX for all three categories (demo) RANDOM HANDMADE

SATzilla-07 for SAT Competition

Target Distribution Previous SAT competition and SAT Race Solver (with/without preprocessing, Hyper) Eureka, Kcnfs2006, March_dl2004, Minisat2.0 Vallsat, Rsat1.04, Zchaff_Rand Features Reduce probing time to 1 second Only cheap features, total about 3 seconds Pre-Solvers March_dl 5 seconds, SAPS 2 seconds

SATzilla-07 for SAT Competition

"Winner-take-all" solver March_dl2004 Final candidates BIG_MIX Eureka, Kcnfs2006, March_dl2004, Rsat RANDOM March_dl2004, Kcnfs2006, Minisat2.0+ HANDMADE March_dl2004, Vallst, March_dl2004+, Minisat2.0+, Zchaff_Random+

SATzilla-07 for BIG-MIX

SATzilla-07 for BIG-MIX

SATzilla-07 for RANDOM

SATzilla-07 for RANDOM

SATzilla-07 for HANDMADE

SATzilla-07 for HANDMADE

Conclusions

Conclusions

Can combine algorithms into portfolios, improving performance and robustness

SATzilla approach has been proven to be successful in real world competition

With more training data and more solvers, SATzilla can be even better

Ongoing research

SATzilla for industrial category

- Use the same approach, SATzilla is 25% faster and solves 5% more instances
- Score function
 - Optimize objective function other than runtime
- Local search
 - Improve SATzilla performance by using local search solvers as component

Special Thanks

Creators of solvers

- Alexander Nadel, Moran Gordon, Amit Palti and Ziyad Hanna (Eureka)
- Marijn Heule, Hans van Maaren (March_dl2004)
- Niklas Eén, Niklas Sörensson (Minisat2.0)
- Oliver Kullmann (OKsolver)
- Knot Pipatsrisawat and Adnan Darwiche (Rsat 1.04)
- Daniel Vallstrom (Vallst)
- Yogesh S. Mahajan, Zhaohui Fu and Sharad Malik (Zchaff_Rand)

SATzilla Pick for BIG_MIX

SATzilla Pick for RANDOM

SATzilla Pick for HANDMADE

