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SATzillaSATzilla--0707
Old SATzilla [Nudelman, et. al, 2003 ]

2nd Random
2nd Handmade (SAT)
3rd  Handmade

SATzilla-07 [Xu, et. al, 2007]

1st Handmade
1st Handmade (UNSAT)
1st Random
2nd Handmade (SAT)
3rd Random (UNSAT)
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Introduction
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Empirical Hardness Model (EHM)

Predicting algorithm’s runtime based on 
poly-time computable features

Features: anything can characterize the problem 
instance and can be represented by a real number

9 category features [Nudelman, et al, 2004]

Prediction: any machine learning technique 
can return prediction of a continuous value

Linear basis function regression 
[Leyton-Brown et al, 2002; Nudelman, et al, 2004]
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Linear Basis Function Regression

Features (Φ) Runtime (y)

fw(Φ) = wT Φ
• 23.34

• 7.21

• …

• …

( | ) ( | , )TP y N y w βΦ = Φ
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Previous work [Nudelman, et al, 2004]

Msat/Munsat: focused on one type of instancesMuncond.: Trained on mixture of instances

Solver: satelite; Dataset: Quasi-group completion problem
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The Key Idea

Knowing satisfiability of an instance allows 
better prediction

Problem: the only way to know this is to 
solve the instance!

Idea: predict satisfiability
even though such a classifier can’t be 

100% accurate, maybe it can be accurate 
enough to help
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The Cost of Using the Wrong Model

Only use UNSAT modelOnly use SAT model

Solver: satelite; Dataset: Quasi-group completion problem
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Predicting Satisfiability of 
SAT Instances
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Performance of Classification

Classifier: SMLR
Features: same as 
regression

Datasets
rand3sat-var
rand3sat-fix
QCP
SW-GCP

Classification 
Accuracy

Dataset

sat. unsat. overall

rand3sat-var 0.979 0.989 0.984

rand3sat-fix 0.848 0.881 0.865

QCP 0.980 0.932 0.960

SW-GCP 0.752 0.711 0.734

[Krishnapuram, et al. 2005]
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Performance of Classification (QCP)
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Hierarchical Hardness 
Models
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Improve EHM by using classification

Key idea: use prediction of satisfiability to 
improve runtime prediction

Does this mean that I just use the (eg) unsat
model if the instance is predicted to be unsat?
NO! need to consider the error distribution

Note: best performance would be achieved by 
model selection oracle!
Question: How to approximate model 
selection oracle based on features
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Hierarchical Hardness Models

Φ, s
Features & 

Classifier output 
s: P(sat)

Z
Model selection

oracle 

y

Runtime

Mixture of experts problem with fixed experts,

use EM to find the parameters for z [Murphy, 2001]

{ , }
( | , ) ( | , ) ( | , )T

z z
z sat unsat

P y s P z s N y w β
∈

Φ = Φ Φ∑
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B

A

Importance of Classifier’s Output

Two ways:
A: Using 

classifier’s 
output as a 
feature

B: Using 
classifier’s 
output for EM      
initialization 

A+B
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Big Picture of HHM Performance

Oracular Uncond. Hier. Uncond. Hier.

Solver

Oracular

RMSE (rand3-var) RMSE (rand3-fix)

satz 0.329 0.358 0.344 0.343 0.420 0.413

march_dl 0.283 0.396 0.306 0.444 0.542 0.533

kcnfs 0.294 0.373 0.312 0.397 0.491 0.486

Oksolver 0.356 0.443 0.378 0.479 0.596 0.587

Solver RMSE (QCP) RMSE (SW-GCP)

Zchaff 0.303 0.675 0.577 0.657 0.993 0.983

Minisat 0.305 0.574 0.500 0.682 1.022 1.024

Satzoo 0.240 0.397 0.334 0.384 0.581 0.581

Satelite 0.247 0.426 0.372 0.618 0.970 0.978

Sato 0.375 0.711 0.635 0.723 1.352 1.345

oksolver 0.427 0.548 0.506 0.601 1.337 1.331
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Example for rand3-var (Solver: satz)

Left: unconditional model                 Right: hierarchical model
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Example for rand3-fix (solver: satz)

Left: unconditional model                 Right: hierarchical model 
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Example for QCP (solver: satelite)

Left: unconditional model                 Right: hierarchical model 
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Example for SW-GCP (solver: zchaff)

Left: unconditional model                 Right: hierarchical model 
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Correlation Between Prediction Error 
and Classifier’s Confidence

Left: Predicted P(sat.) vs
runtime prediction error

Right: Predicted P(sat.) 
vs RMSE

Solver: satelite; Dataset: QCP



23

Conclusions and Future 
Work
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Conclusions

Models conditioned on SAT/UNSAT have much 
better runtime prediction accuracies.

A classifier can be used to distinguish 
SAT/UNSAT with high accuracy.

Conditional models can be combined into 
hierarchical model with better 
performance.

Classifier’s confidence correlates with 
prediction error.
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Future Work

Better features for SW-GCP

Test on more real world problems

Extend underlying experts beyond 
satisfiability
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