Hierarchical Hardness Models for SAT

Lin Xu, Holger H. Hoos and Kevin Leyton-Brown

University of British Columbia

{xulin730, hoos, kevinlb}@cs.ubc.ca

SATzilla-07

Old SATzilla [Nudelman, et. al, 2003] 2nd Random 2nd Handmade (SAT) 3rd Handmade □ SATzilla-07 [Xu, et. al, 2007] 1st Handmade 1st Handmade (UNSAT) 1st Random 2nd Handmade (SAT) 3rd Random (UNSAT)

Outline

Introduction

- Predicting the satisfiability of SAT instances
- Hierarchical Hardness Models
- Conclusions and future work

Introduction

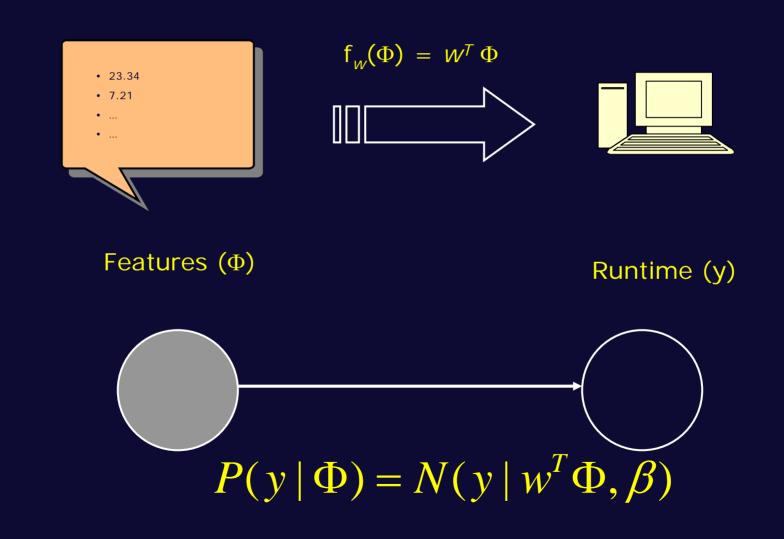
Empirical Hardness Model (EHM)

Predicting algorithm's runtime based on poly-time computable features

 Features: anything can characterize the problem instance and can be represented by a real number
 9 category features [Nudelman, et al, 2004]

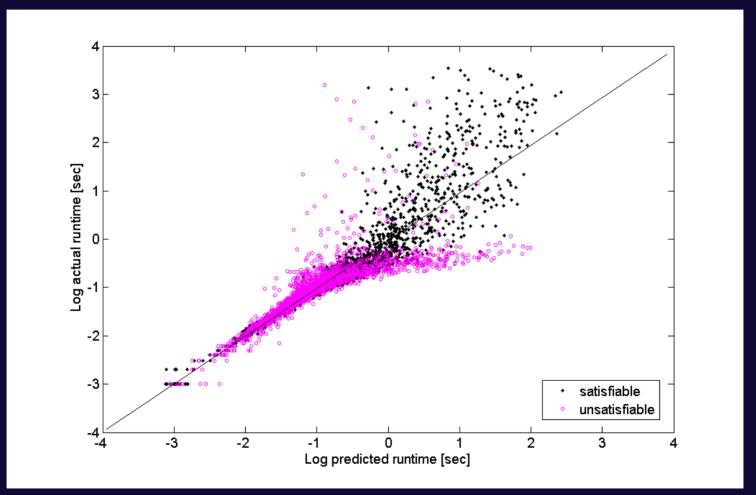
Prediction: any machine learning technique can return prediction of a continuous value
 Linear basis function regression
 [Leyton-Brown et al, 2002; Nudelman, et al, 2004]

Linear Basis Function Regression



Previous work [Nudelman, et al, 2004]

M_{sat}/M_{maton} focusation and an entry per efoinist strateses



Solver: satelite; Dataset: Quasi-group completion problem 7

Knowing satisfiability of an instance allows better prediction

Problem: the **only way** to know this is to **solve** the instance!

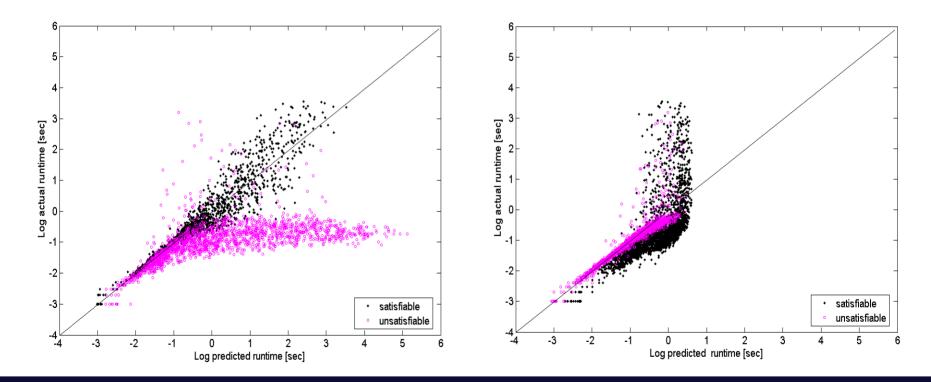
Idea: predict satisfiability

even though such a classifier can't be 100% accurate, maybe it can be accurate enough to help

The Cost of Using the Wrong Model

Only use SAT model

Only use UNSAT model



Solver: satelite; Dataset: Quasi-group completion problem

Predicting Satisfiability of SAT Instances

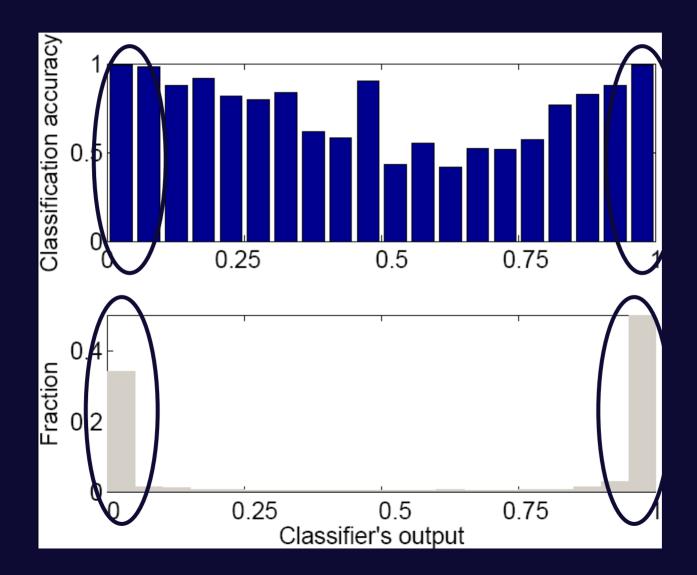
Performance of Classification

- Classifier: SMLR
- Features: same as [Krishnapuram, et al. 2005] regression

Datasets
 rand3sat-var
 rand3sat-fix
 QCP
 SW-GCP

Dataset	Classification Accuracy				
	sat.	unsat.	overall		
rand3sat-var	0.979	0.989	0.984		
rand3sat-fix	0.848	0.881	0.865		
QCP	0.980	0.932	0.960		
SW-GCP	0.752	0.711	0.734		

Performance of Classification (QCP)



Hierarchical Hardness Models

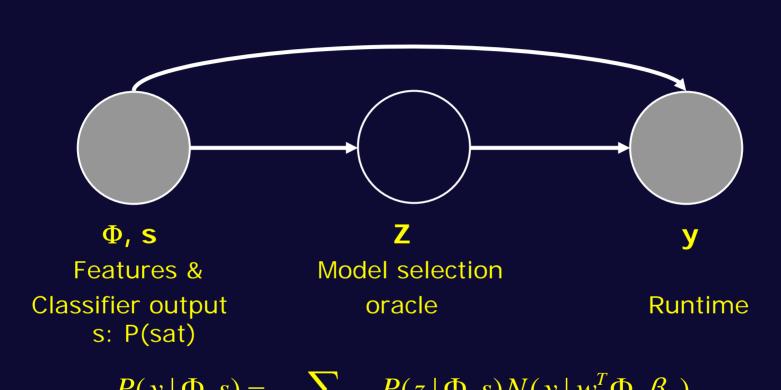
Improve EHM by using classification

Key idea: use prediction of satisfiability to improve runtime prediction

 Does this mean that I just use the (eg) unsat model if the instance is predicted to be unsat?
 NO! need to consider the error distribution

 Note: best performance would be achieved by model selection oracle!
 Question: How to approximate model selection oracle based on features

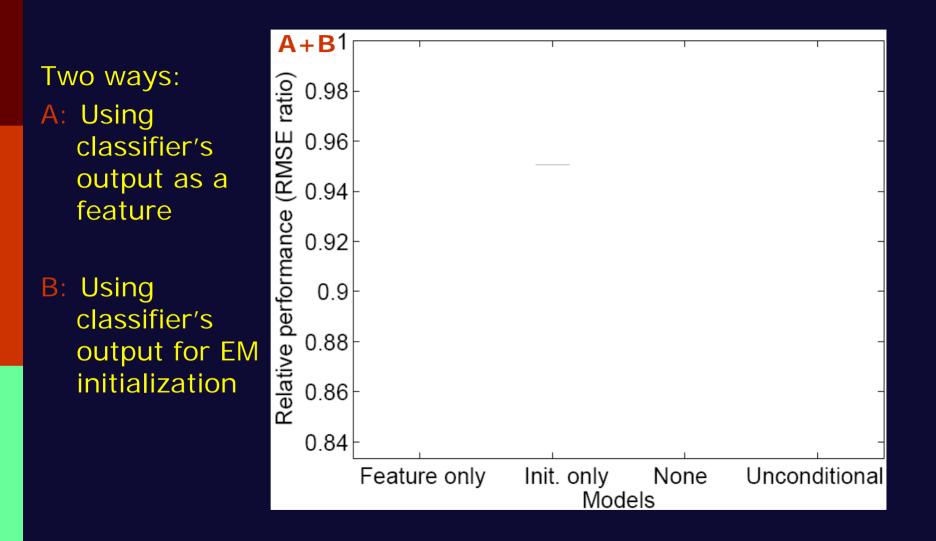
Hierarchical Hardness Models



$$P(y \mid \Phi, s) = \sum_{z \in \{sat, unsat\}} P(z \mid \Phi, s) N(y \mid w_z^T \Phi, \beta_z)$$

 Mixture of experts problem with fixed experts, use EM to find the parameters for z [Murphy, 2001]

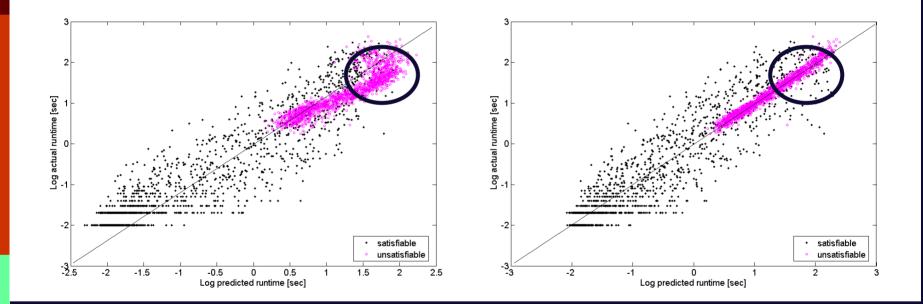
Importance of Classifier's Output



Big Picture of HHM Performance

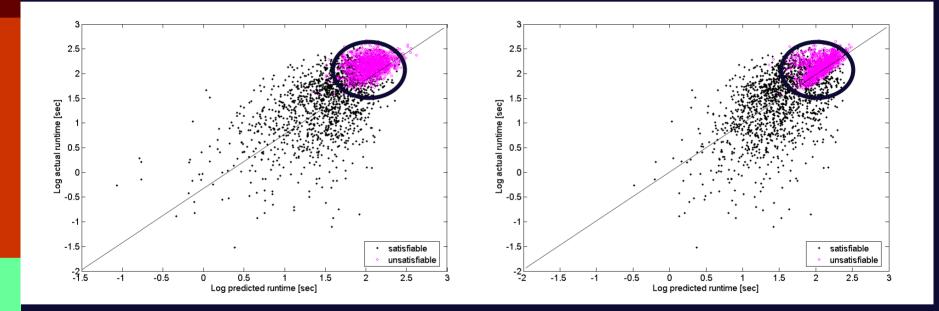
	Oracular	Uncond.	Hier.	Oracular	Uncond.	Hier.
Solver	RMSE (rand3-var)			RMSE (rand3-fix)		
satz	0.329	0.358	0.344	0.343	0.420	0.413
march_dl	0.283	0.396	0.306	0.444	0.542	0.533
kcnfs	0.294	0.373	0.312	0.397	0.491	0.486
Oksolver	0.356	0.443	0.378	0.479	0.596	0.587
Solver	RMSE (OCP)			RMSE (SW-GCP)		
Zchaff	0.303	0.675	0.577	0.657	0.993	0.983
Minisat	0.305	0.574	0.500	0.682 (1.022	1.024
Satzoo	0.240	0.397	0.334	0.384	0.581	0.581
Satelite	0.247	0.426	0.372	0.618	0.970	0.978
Sato	0.375	0.711	0.635	0.723	1.352	1.345
oksolver	0.427	0.548	0.506	0.601	1.337	1.331

Example for rand3-var (Solver: satz)



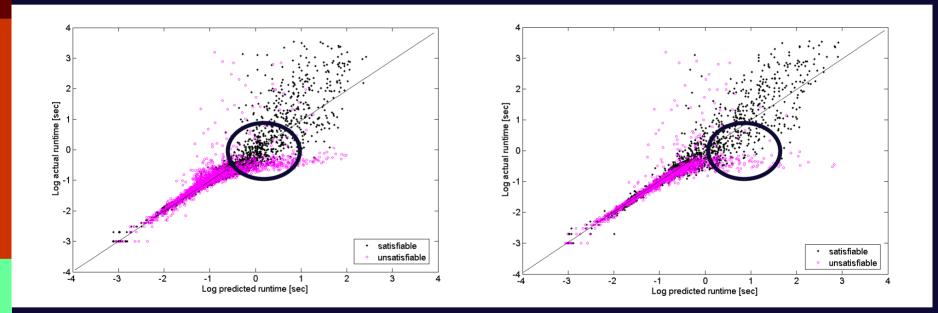
Left: unconditional model

Example for rand3-fix (solver: satz)



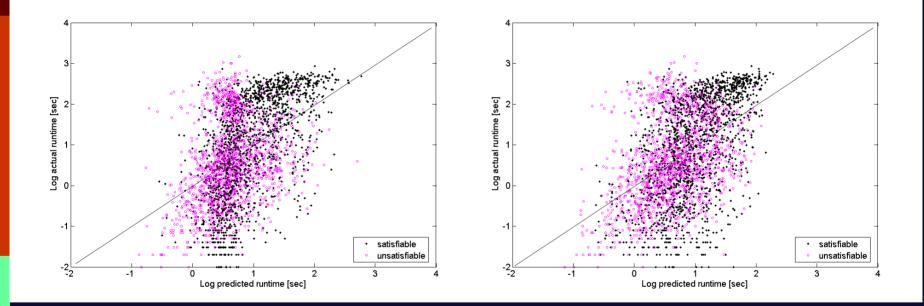
Left: unconditional model

Example for QCP (solver: satelite)



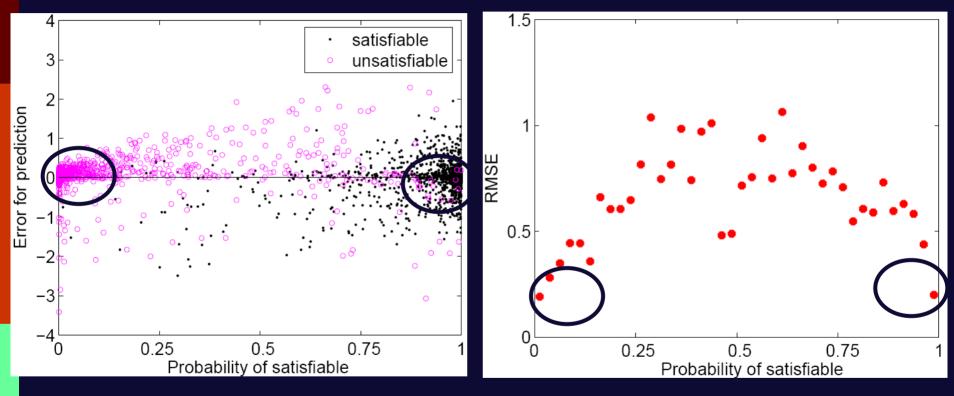
Left: unconditional model

Example for SW-GCP (solver: zchaff)



Left: unconditional model

Correlation Between Prediction Error and Classifier's Confidence



Left: Predicted P(sat.) vs runtime prediction error Right: Predicted P(sat.) vs RMSE

Solver: satelite; Dataset: QCP

Conclusions and Future Work

Conclusions

- Models conditioned on SAT/UNSAT have much better runtime prediction accuracies.
- A classifier can be used to distinguish SAT/UNSAT with high accuracy.
- Conditional models can be combined into hierarchical model with better performance.
- Classifier's confidence correlates with prediction error.

Better features for SW-GCP

Test on more real world problems

Extend underlying experts beyond satisfiability