
Performance Prediction and
Automated Tuning of

Randomized and Parametric Algorithms

Frank Hutter1, Youssef Hamadi2,
Holger Hoos1, and Kevin Leyton-Brown1

1University of British Columbia, Vancouver, Canada
2Microsoft Research Cambridge, UK

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 2

Motivation: Performance Prediction
• Useful for research in algorithms
� What makes problems hard?
� Constructing hard benchmarks
� Constructing algorithm portfolios (satzilla)
� Algorithm design

• Newer applications
� Optimal restart strategies

(see previous talk by Gagliolo et al.)
� Automatic parameter tuning (this talk)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 3

Motivation: Automatic tuning
• Tuning parameters is a pain
� Many parameters → combinatorially many configurations
� About 50% of development time can be spent tuning parameters

• Examples of parameters
� Tree Search: variable/value heuristics, propagation, restarts, …
� Local Search: noise, tabu length, strength of escape moves, …
� CP: modelling parameters + algorithm choice + algo params

• Idea: automate tuning with methods from AI
� More scientific approach
� More powerful: e.g. automatic per instance tuning
� Algorithm developers can focus on more interesting problems

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 4

Related work
• Performance Prediction

[Lobjois and Lemaître, ’98, Horvitz et. al ’01,
Leyton-Brown, Nudelman et al. ’02 & ’04, Gagliolo & Schmidhuber ’06]

• Automatic Tuning
� Best fixed parameter setting for instance set

[Birattari et al. ’02, Hutter ’04, Adenso-Diaz & Laguna ’05]

� Best fixed setting for each instance
[Patterson & Kautz ’02]

� Changing search strategy during the search
[Battiti et al, ’05, Lagoudakis & Littman, ’01/’02, Carchrae & Beck ’05]

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 5

Overview
• Previous work on empirical hardness models

[Leyton-Brown, Nudelman et al. ’02 & ’04]

• EH models for randomized algorithms
• EH models for parametric algorithms
• Automatic tuning based on these
• Ongoing Work and Conclusions

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 6

Empirical hardness models: basics
• Training: Given a set of t instances inst1,...,instt
� For each instance insti

- Compute instance features xi = (xi1,...,xim)
- Run algorithm and record its runtime yi

� Learn function f: features → runtime,
such that yi ≈ f(xi) for i=1,…,t

• Test / Practical use: Given a new instance instt+1
� Compute features xt+1

� Predict runtime yt+1 = f(xt+1)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 7

Which instance features?
• Features should be computable in polytime
� Basic properties, e.g. #vars, #clauses, ratio
� Graph-based characterics
� Local search and DPLL probes

• Combine features to form more expressive
basis functions φ = (φ1,...,φq)
� Can be arbitrary combinations of the features x1,...,xm

• Basis functions used for SAT in [Nudelman et al. ’04]
� 91 original features: xi
� Pairwise products of features: xi * xj
� Feature selection to pick best basis functions

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 8

How to learn function f: featuresÆ runtime?

• Runtimes can vary by orders of magnitude
� Need to pick an appropriate model
� Log-transform the output

e.g. runtime is 103 secÙ yi = 3

• Simple functions show good performance
� Linear in the basis functions: yi ≈ f(φi) = φi * wT

- Learning: fit the weights w
(ridge regression: w = (λ + ΦT Φ)-1 ΦTy)

� Gaussian Processes didn’t improve accuracy

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 9

Overview
• Previous work on empirical hardness models

[Leyton-Brown, Nudelman et al. ’02 & ’04]

• EH models for randomized algorithms
• EH models for parametric algorithms
• Automatic tuning based on these
• Ongoing Work and Conclusions

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 10

• We have incomplete, randomized local search algorithms
� Can this same approach still predict the run-time ? Yes!

• Algorithms are incomplete (local search)
� Train and test on satisfiable instances only

• Randomized
� Ultimately, want to predict entire run-time distribution (RTDs)
� For our algorithms, RTDs are typically exponential
� Can be characterized by a single sufficient statistic (e.g. median

run-time)

EH models for randomized algorithms

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 11

EH models: basics → sufficient stats for RTD

• Training: Given a set of t instances inst1,..., instt
� For each instance insti

- Compute instance features xi = (xi1,...,xim)
- Compute basis functions φi = (φi1,..., φik)
- Run algorithm and record its runtime yi

� Learn function f: basis functions → runtime,
such that yi ≈ f(φi) for i=1,…,t

• Test / Practical use: Given a new instance instt+1
� Compute features xt+1
� Compute basis functions φt+1 = (φt+1,1,..., φt+1,k)
� Predict runtime yt+1 = f(φt+1)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 12

EH models: basics → sufficient stats for RTD

• Training: Given a set of t instances inst1,..., instt
� For each instance insti

- Compute instance features xi = (xi1,...,xim)
- Compute basis functions φi = (φi1,..., φik)
- Run algorithm multiple times and record its runtimes yi

1, …, yi
k

- Fit sufficient statistics si for distribution from yi
1, …, yi

k

� Learn function f: basis functions → sufficient statistics,
such that si ≈ f(φi) for i=1,…,t

• Test / Practical use: Given a new instance instt+1
� Compute features xt+1
� Compute basis functions φt+1 = (φt+1,1,..., φt+1,k)
� Predict sufficient statistics st+1 = f(φt+1)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 13

Predicting median run-time

Median runtime of Novelty+ on CV-var

Prediction based on
single runs

Prediction based on
100 runs

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 14

SAPS on QWHNovelty+ on SW-GCP

Structured instances

Median runtime predictions based on 10 runs

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 15

Predicting run-time distributions

RTD of SAPS on q0.75
instance of QWH

RTD of SAPS on q0.25
instance of QWH

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 16

Overview
• Previous work on empirical hardness models

[Leyton-Brown, Nudelman et al. ’02 & ’04]

• EH models for randomized algorithms
• EH models for parametric algorithms
• Automatic tuning based on these
• Ongoing Work and Conclusions

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 17

EH models: basics → parametric algos
• Training: Given a set of t instances inst1,..., instt
� For each instance insti

- Compute instance features xi = (xi1,...,xim)

Compute basis functions φi = φ(xi)

- Run algorithm and record its runtime yi

� Learn function f: basis functions → runtime,
such that yi ≈ f(φi) for i=1,…,t

• Test / Practical use: Given a new instance instt+1
� Compute features xt+1
� .

Compute basis functions φt+1 = φ(xt+1)
Predict runtime yt+1 = f(φt+1)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 18

EH models: basics → parametric algos
• Training: Given a set of t instances inst1,..., instt
� For each instance insti

- Compute instance features xi = (xi1,...,xim)
- For parameter settings pi

1,...,pi
ni:

Compute basis functions φi
j= φ(xi, pi

j) of features and parameter settings
(quadratic expansion of params, multiplied by instance features)

- Run algorithm with each setting pi
j and record its runtime yi

j

� Learn function f: basis functions → runtime,
such that yi

j≈ f(φi
j) for i=1,…,t

• Test / Practical use: Given a new instance instt+1
� Compute features xt+1
� For each parameter setting pj of interest,

Compute basis functions φt+1
j = φ(xt+1, pj)

Predict runtime yt+1
j = f(φt+1

j)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 19

Predicting SAPS with different settings
• Train and test with 30

different parameter
settings on QWH

• Show 5 test instances,
each with different symbol
� Easiest
� 25% quantile
� Median
� 75% quantile
� Hardest

• More variation in harder
instances

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 20

One instance in detail

• Note: this is a
projection from 40-
dimensional joint
feature/parameter
space

• Relative relationship
predicted well

(blue diamonds in previous figure)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 21

Algo Data Set Speedup over
default params

Speedup over best fixed
params for data set

Nov+ unstructured 0.90 0.90
Nov+ structured 257 0.94
Nov+ mixed 15 10
SAPS unstructured 2.9 1.05
SAPS structured 2.3 0.98
SAPS mixed 2.31 1

Automated parameter setting: results

Do you

have one?

Not the best
algorithm to

tune ;-)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 22

Results for Novelty+ on Mixed

Compared to best fixed
parameters

Compared to random
parameters

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 23

Overview
• Previous work on empirical hardness models

[Leyton-Brown, Nudelman et al. ’02 & ’04]

• EH models for randomized algorithms
• EH models for parametric algorithms
• Automatic tuning based on these
• Ongoing Work and Conclusions

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 24

Ongoing work
• Uncertainty estimates

• Bayesian linear regression
vs. Gaussian processes

• GPs are better in
predicting uncertainty

• Active Learning
� For many problems, cannot try all parameter combinations
� Dynamically choose best parameter configurations to train on

• Want to try more problem domains (do you have one?)
� Complete parametric SAT solvers
� Parametric solvers for other domains (need features)
� Optimization algorithms

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 25

Conclusions
• Performance Prediction
� Empirical hardness models can predict the run-times of

randomized, incomplete, parameterized, local search algorithms

• Automated Tuning
� We automatically find parameter settings that are better than

defaults
� Sometimes better than the best possible fixed setting

• There’s no free lunch
� Long initial training time
� Need domain knowledge to define features for a domain

(only once per domain)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 26

The End

• Thanks to
� Holger Hoos, Kevin Leyton-Brown,

Youssef Hamadi
� Reviewers for helpful comments
� You for your attention☺

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 27

Backup

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 28

Experimental setup: solvers
• Two SAT solvers
� Novelty+ (WalkSAT variant)

- Adaptive version won SAT04 random competition
- Six values for noise between 0.1 and 0.6

� SAPS (Scaling and Probabilistic Smoothing)
- Second in above competition
- All 30 combinations of

� 3 values for α between 1.2 and 1.4
� 10 values for ρ between 0 and 0.9

• Runs cut off after 15 minutes
� Cutoff is interesting (previous talk), but orthogonal

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 29

Experimental setup: benchmarks
• Unstructured distributions:
� SAT04: two generators from SAT04 competition, random
� CV-fix: uf400 with c/v ratio 4.26
� CV-var: uf400 with c/v ratio between 3.26 and 5.26

• Structured distributions:
� QWH: quasi groups with holes, 25% to 75% holes
� SW-GCP: graph colouring based on small world graphs
� QCP: quasi group completion , 25% to 75% holes

• Mixed: union of QWH and SAT04

• All data sets split 50:25:25 for train/valid/test

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 30

Prediction based on
single runs

Prediction based on
100 runs

Median runtime of SAPS on CV-fix

Predicting median run-time

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 31

Automatic tuning
• Algorithm design: new algorithm/application
� A lot of time is spent for parameter tuning

• Algorithm analysis: comparability
� Is algorithm A faster than algorithm B because they

spent more time tuning it ? /

• Algorithm use in practice
� Want to solve MY problems fast, not necessarily the

ones the developers used for parameter tuning

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 32

Examples of parameters
• Tree search
� Variable/value heuristic
� Propagation
� Whether and when to restart
� How much learning

• Local search
� Noise parameter
� Tabu length in tabu search
� Strength of penalty increase and decrease in DLS
� Pertubation, acceptance criterion, etc. in ILS

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 33

Which features are most important?

• Results consistent with those for deterministic tree-
search algorithms
� Graph-based and DPLL-based features
� Local search probes are even more important here

• Only very few features needed for good models
� Previously observed for all-sat data [Nudelman et al. ’04]
� A single quadratic basis function is often almost as good as

the best feature subset
� Strong correlation between features
� Many choices yield comparable performance

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 34

Algorithm selection based on EH models

• Given portfolio of n different algorithms A1,...,An

� Pick best algorithm for each instance
� E.g. satzilla

• Training:
� Learn n separate functions

fj: features Æ runtime of algorithm j

• Test (for each new instance st+1):
� Predict runtime yj

t+1 = fj(φt+1) for each algorithm
� Choose algorithm Aj with minimal yj

t+1

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 35

Experimental setup: solvers

• Two SAT solvers
� Novelty+ (WalkSAT variant)

- Default noise setting 0.5 (=50%) for unstructured
instances

- Noise setting 0.1 used for structured instances

� SAPS (Scaling and Probabilistic Smoothing)
- Default setting (alpha, rho) = (1.3, 0.8)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 36

Best per
instance
settings

Worst per
instance
settings

Results for Novelty+ on Mixed

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 37

• Best default parameter setting for instance set
� Racing algorithms [Birattari et al. ’02]
� Local search in parameter space [Hutter ’04]
� Fractional experimental design [Adenso-Daz & Laguna ’05]

• Best parameter setting per instance:
algorithm selection/ algorithm configuration
� Estimate size of DPLL tree for some algos, pick smallest

[Lobjois and Lemaître, ’98]
� Previous work in empirical hardness models

[Leyton-Brown, Nudelman et al. ’02 & ’04]
� Auto-WalkSAT [Patterson & Kautz ’02]

• Best sequence of operators / changing search strategy during the
search
� Reactive search [Battiti et al, ‘05]
� Reinforcement learning [Lagoudakis & Littman, ’01 & ‘02]

Related work in automated parameter tuning

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 38

• Learn a function that predicts runtime from
instance features and algorithm parameter settings
(like before)

• Given a new instance
� Compute the features (they are fix)
� Search for the parameter setting that minimizes

predicted runtime for these features

Parameter setting based on runtime prediction

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 39

Find single parameter setting that minimizes
expected runtime for a whole class of problems

• Generate special purpose code [Minton ’93]
• Minimize estimated error [Kohavi & John ’95]
• Racing algorithm [Birattari et al. ’02]
• Local search [Hutter ’04]
• Experimental design [Adenso-Daz & Laguna ’05]
• Decision trees [Srivastava & Mediratta, ’05]

Related work: best default parameters

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 40

Examine instance, choose algorithm that will work
well for it

• Estimate size of DPLL search tree for each
algorithm [Lobjois and Lemaître, ’98]

• [Sillito ’00]
• Predict runtime for each algorithm

[Leyton-Brown, Nudelman et al. ’02 & ’04]

Related work: per-instance selection

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 41

Performance Prediction
• Vision: situational awareness in algorithms
� When will the current algorithm be done ?
� How good a solution will it find ?

• A first step: instance-aware algorithms
� Before you start: how long will the algorithm take ?

- Randomized → whole run-time distribution

� For different parameter settings
- Can pick the one with best predicted performance

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 42

Algo Data Set Speedup over
default params

Speedup over best fixed
params for data set

Nov+ unstructured 0.89 0.89
Nov+ structured 177 0.91
Nov+ mixed 13 10.72
SAPS unstructured 2 1.07
SAPS structured 2 0.93
SAPS mixed 1.91 0.93

Automated parameter setting: results-
old

Do you

have one?

Not the best
algorithm to

tune ;-)

Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning 43

Compared to best fixed
parameters

Results for Novelty+ on Mixed - old

Compared to random
parameters

	Performance Prediction and�Automated Tuning of �Randomized and Parametric Algorithms
	Motivation: Performance Prediction
	Motivation: Automatic tuning
	Related work
	Overview
	Empirical hardness models: basics
	Which instance features?
	How to learn function f: features  runtime?
	Overview
	EH models: basics → sufficient stats for RTD
	EH models: basics → sufficient stats for RTD
	Predicting median run-time
	Predicting run-time distributions
	Overview
	EH models: basics → parametric algos
	EH models: basics → parametric algos
	Predicting SAPS with different settings
	One instance in detail
	Results for Novelty+ on Mixed
	Overview
	Ongoing work
	Conclusions
	The End
	Backup
	Experimental setup: solvers
	Experimental setup: benchmarks
	Automatic tuning
	Examples of parameters
	Which features are most important?
	Algorithm selection based on EH models
	Experimental setup: solvers
	Performance Prediction

