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Bidding Agents
•

 

Given a valuation function, compute a bidding strategy that maximizes EU
–

 

notwithstanding “Wilson Doctrine”: mechanisms should be detail-free
–

 

Motivating example: how should agents behave in a sequence of eBay auctions?

•

 

Game Theoretic Approach

 

[Milgrom

 

& Weber, 1982], much subsequent work from econ.
–

 

model the situation as a Bayesian game
–

 

compute and then play a Bayes-Nash equilibrium of the game
•

 

when other bidders’

 

valuations are not known, estimate them from history
–

 

drawbacks:
•

 

rationality of other agents may be in doubt
•

 

intractability of computing equilibrium
•

 

multiple equilibria

•

 

Decision Theoretic Approach

 

[Boutilier et al. 1999; Byde

 

2002; Stone et al. 2003;  
Greenwald & Boyan

 

2004; MacKie-Mason et al. 2004; Osepayshvili

 

et al. 2005]
–

 

learn the behavior of other bidders from historical data
•

 

treat other bidders as part of the environment
–

 

play an optimal strategy in the resulting single-agent decision problem



Learning Valuation/Price Distributions 

•

 

Whether the GT or DT approach is taken, a shared subproblem

 

is using 
historical data to estimate distribution of bidders’

 

bid amounts

 

or valuations

•

 

[Athey

 

& Haile, 2000], various other papers in econometrics: 
–

 

assume that bidders are perfectly rational and follow equilibrium strategies
–

 

estimation of valuation distributions in various auction types given observed bids

•

 

[Byde, 2002], [Stone et al. 2003], [Greenwald & Boyan, 2004], 
[MacKie-Mason et al. 2004], [Osepayshvili

 

et al. 2005]:
–

 

estimate the distribution of the final prices

 

in (e.g.) English auctions 
based on selling price and number of agents

•

 

[Boutilier et al. 1999]: 
–

 

a decision-theoretic MDP approach to bidding in sequential first-price auctions 
for complementary goods

–

 

for the case where these sequential auctions are repeated, discusses learning a 
distribution of other agents’

 

highest bid for each good, based on winning bids
•

 

uses EM: the agent’s own bid wins, hiding the highest bid by other agents
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Online Auction Model
•

 

A (possibly repeated) online English auction such as eBay
– m potential bidders, with m drawn from a distribution g(m)

•

 

let n denote the number of bidders who place (accepted) bids in the auction
–

 

each bidder i has an independent private valuation drawn from distribution f(v)

•

 

Bidding dynamics
–

 

start with reserve price of zero
–

 

bidders sequentially place proxy bids  (each bidder gets only one bid)
–

 

auctioneer maintains current price: second-highest proxy amount declared so far
–

 

if a new bid is less than the current price, it is dropped

•

 

Bidding history
–

 

some bidders’

 

proxy bid amounts will be perfectly observed (denote this set of bids xo )
•

 

any bidder who placed a proxy bid and was outbid  (n-1 such bidders)
–

 

however, some bids will be hidden

 

(denote this set xh )
•

 

highest bid (one bidder)
–

 

revealed only up to the second-highest bidder’s proxy amount
•

 

any bid which was lower than the current price when it was placed (m –

 

n bidders)
–

 

either the bidder leaves or the bid is rejected 



Bidding Example
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Learning the Distributions f(v) and g(m)

•

 

Data: a set of auction histories
–

 

number of bidders and bids distributed identically in each auction

•

 

Simple technique

 

for estimating f(v) and g(m): 
–

 

ignore hidden bids, considering only xo and n from each auction
–

 

use any standard density estimation technique to learn the distributions
–

 

essentially this is the straightforward price estimation technique described earlier

•

 

Problem: 
–

 

the simple technique ignores the hidden bids and so introduces bias
–

 

g(m) will be skewed towards small values because n ≤

 

m

–

 

f(v) may be
•

 

skewed towards small values because it ignores the winning bid
•

 

skewed towards large values because ignores dropped, losing bids



EM Algorithm

•

 

Solution: use EM

 

to account for hidden bids
–

 

similar in spirit to the approach described above by Boutilier et al. (1999)
–

 

however, in our setting some losing bids are also hidden; the number of bidders is 
uncertain; expected number of hidden bids depends on xo and f(v)

•

 

E step:  generate the missing data

 

given estimates of f', g' and bidding model
–

 

for each observation xo , repeat until N samples of xh have been generated:
•

 

sample m from g'(m | m ≥

 

n)

•

 

simulate bidding process until m –

 

n + 1 bids have been generated:
–

 

Draw a sample from f'(v) to represent a new bid
–

 

If the sampled bid exceeds the next bid in xo , replace the bid with the next bid from xo .  
Otherwise, add the sampled bid to xh

•

 

if xh does not contain exactly one bid that exceeds the highest bid in xo , reject sample

•

 

M step:  
–

 

update f '(v) and g'(m) to maximize the likelihood of the bids

 

xo ∪

 

xh

•

 

depends on functional form of f', g'; either analytic or using e.g. simulated annealing



Learning f(v) and g(m) in a Game Theoretic Setting

•

 

The approach described above is decision-theoretic
•

 

What if we want to take a game-theoretic approach?
–

 

Athey

 

& Haile, (2000) discuss estimation in the game theoretic setting
•

 

however, they generally assume that number of bidders is known
–

 

brief discussion of unknown number of bidders, but not relevant to our online auction setting

–

 

let f(v) be the distribution of bidder’s valuations (instead of bid amounts)
•

 

g(m) remains the distribution of number of bidders, as before
–

 

given a bidder’s valuation v, what is his bid amount?
•

 

solve for Bayes-Nash equilibrium of the auction game: bid function b(v |f, g)

•

 

EM algorithm

 

to estimate f and g in a GT setting:
–

 

E step:  for each sample given observation xo :
•

 

sample m from g'(m | m ≥

 

n)

•

 

compute observed bidders’

 

valuations vo from xo by inverting the bid function
•

 

generate new bidders with valuations vh who place hidden bids xh = b(vh |f', g')
–

 

simulate the auction until m –

 

n + 1 bids are generated, where exactly one hidden bid is 
higher than the highest observed bid

–

 

M step:  update f' and g' to maximize likelihood of the valuations vo ∪

 

vh
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Building an Agent

•

 

Consider the construction of a decision-theoretic agent to participate in a 
finite sequence of auctions

 

(under our online auction model)
–

 

given estimates f'(v) and g'(m), what are the optimal bidding strategies?

•

 

Auction environment
– k sequential, single-good online auctions for possibly non-identical goods
–

 

we want only one item
•

 

e.g. buying a Playstation

 

2 from eBay, where such auctions are held regularly
–

 

denote our valuation for the item in auction j as vj and our bid as bj

–

 

let Uj denote expected payoff at time j, conditional on not having won already
•

 

a function of our valuations for the goods in the auctions j, …, k

•

 

Greenwald & Boyan

 

(2004) and Arora et al. (2003) analyzed similar domains
–

 

using similar reasoning, we derive the optimal bidding strategy for our model



Computing the Optimal Strategy

•

 

Optimal bidding: 
–

 

is the EU of the bidding strategy that maximizes Uj+1

 

(derived in the paper)

•

 

first term: payoff from current auction; second term: payoff from future auctions
•

 

note that Uj+1

 

depends on the distribution of the highest bid:

•

 

…and that Fj
1 depends in turn on f(v), g(m)

•

 

thus we must estimate f(v), g(m) to build a decision theoretic agent in this setting

•

 

Our agent computes U*
j+1

 

by approximating an integral using Monte Carlo 
sampling, again relying on our model of the auction



Elaborations

•

 

Auctions that overlap in time
–

 

note that while the optimal bid in auction j does not depend on fj1, 
it does depend on fl1 for l > j

–

 

If an auction l receives a set of (observed) bids bl before auction j has ended, 
we can compute a posterior estimate of fl1(v), and thus a better bid for auction j

•

 

sample from fl1(v) by simulating auction l according to our auction model

•

 

What about the game theoretic approach?
–

 

If each bidder (other than our agent) only participates in one auction:
•

 

dominant strategy is to bid truthfully: b(v) = v
•

 

we can use the decision-theoretic approach

–

 

If other bidders participate in more than one auction

 

[Milgrom

 

& Weber, 1982]
•

 

equilibrium strategy gets more complex (both strategically and computationally)
–

 

depends on entry, exit policies of other agents
–

 

If we have to estimate f and g, presumably other agents do too. 
How should we account for the possibility that they will learn incorrect distributions?

•

 

success in this domain is much harder to benchmark experimentally
–

 

do we believe that all agents will follow an equilibrium strategy on eBay?
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Experiments

•
 

We compared our EM approach against the simple approach
I.

 

Synthetic data: sequence of auctions for identical items, 
known distribution families

II.

 

Synthetic data: sequence of auctions for non-identical items, 
known distribution families

III.

 

Synthetic data: sequence of auctions for identical items, 
unknown distribution families

IV.

 

eBay data: auctions for Playstation

 

2, March 2005.

•
 

For each dataset, we ask two questions:
1.

 

Which approach gives better estimates

 

of the distributions 
f(v), g(m), f1(v)? 

2.

 

Which approach gives better expected payoffs

 

under the 
decision-theoretic bidding model?



Data Set I: Identical Items
•

 

Synthetic Data: f(v) is a normal distribution; g(m) is a Poisson distribution
•

 

Bidding history of 40 auctions is generated for each instance.
•

 

Both learning approaches use the correct (normal & Poisson) families of distributions to 
estimate f(v) and g(m)

•

 

Question 1: which approach made a better estimate of f(v), g(m), f1(v)?

–

 

EM approach consistently has lower KL divergence than the simple approach
–

 

statistically significant difference: Wilcoxon

 

sign-rank test (non-parametric)
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Data Set I: Comparing Expected Payoffs
•

 

Sequence of eight new auctions, after learning from the 40-auction history
–

 

in the new auctions, we still use the true g(m) and f(v)

•

 

Question 2: following the optimal strategy with the EM estimates

 

gives higher 
expected payoffs than following this strategy with the simple approach’s estimates

simple EM
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Data Set II: Non-identical Items

•

 

The mean of f(v) depends linearly on some unknown parameter a
•

 

Both approaches use linear regression to estimate the linear coefficients
•

 

Question 1: EM approach gives (stat. significantly) better estimates

•

 

Question 2: EM approach achieves significantly better expected payoffs 
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Data Set III: Unknown distributions
•

 

Identical items.  Distribution families for f(v) and g(m) are unknown
–

 

ground truth: f(v) is Gamma distributed; g(m) is a mixture of two Poissons
•

 

Use kernel density estimation to estimate f(v) and g(m)
•

 

Result: the EM approach gives better estimates

 

(significantly lower KL divergence); 
both approaches achieved similar payoffs

 

(difference not significant)
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Data Set IV: eBay Data
•

 

60 Sony Playstation-2 auctions from eBay, March 2005
–

 

considered only one-day auctions with at least 3 bidders

•

 

Problem: highest bids not available
•

 

Workaround: “pretend”

 

second-highest bid is the highest bid 
–

 

justification: this “shifted”

 

data set should have similar characteristics to the actual 
bidding history

•

 

Compared four approaches:
–

 

EM, simple approaches estimating normal and Poisson distributions
–

 

EM, simple approaches using kernel density estimation
•

 

Question 1: no ground truth for this data set—dropped bids are really dropped, etc. 
•

 

Question 2: the EM approaches achieve significantly higher expected payoffs than the 
simple approaches.



Conclusion & Future Work

•

 

Bidding agents in online auction settings

 

face the problem of estimating
–

 

distribution of bid amounts;
–

 

distribution of number of bidders 
from incomplete auction data

•

 

We proposed a learning approach based on EM

•

 

We considered the application of building a decision theoretic agent

 for sequences of online auctions

•

 

We showed in experiments that our EM approach never did worse and 
usually did better than the straightforward approach, on both synthetic and 
real-world data

•

 

Thank you for your attention!
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