
RESOURCE ALLOCATION

IN COMPETITIVE MULTIAGENT SYSTEMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Kevin Leyton-Brown

August 2003

c© Copyright by Kevin Leyton-Brown 2003

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Yoav Shoham
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Andrew Ng

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Moshe Tennenholtz
(Faculty of Industrial Engineering and Management

Technion - Israel Institute of Technology)

Approved for the University Committee on Graduate

Studies:

iii

iv

Abstract

In systems involving multiple autonomous agents, it is often necessary to decide how

scarce resources should be allocated. When agents have competing interests, they

may have incentive to deviate from protocols or to lie to other agents about their

preferences. Due to the strategic nature of such interactions, there has been a recent

surge of interest in addressing problems in competitive multiagent systems by bringing

together techniques from computer science and game-theoretic economics. In some

cases, the interesting issue is the application of ideas from computer science to make

existing economic mechanisms practical. In other cases, selfish agents’ conflicting

demands of a computer system can best be understood and/or managed through

game-theoretic analysis. This thesis addresses problems that fall into both cases.

The first part of this work considers game-theoretic issues in multiagent resource

allocation:

• using incentives to diffuse temporally-focused usage of a resource on a computer

network at the lowest possible cost;

• identifying a protocol to allow agents to cooperate in (single-good) first-price

auctions, and showing that in equilibrium such collusion benefits both colluding

and non-colluding agents at the auctioneer’s expense;

• compactly representing strategic multiagent situations as local-effect games, a

novel class of multi-player general-sum games for which pure-strategy Nash

equilibria can often be proven to exist and be computed efficiently.

v

The second part considers computational issues in multiagent resource allocation,

concentrating on the winner determination problem (WDP) in combinatorial auc-

tions:

• solving several variants of the WDP using heuristic branch-and-bound search

algorithms;

• building a benchmark suite for WDP algorithms by modeling real-world valua-

tions described in the economics literature;

• modeling the (empirical) computational hardness of the WDP, analyzing these

models, and applying them to construct algorithm portfolios and to generate

harder problem instances.

vi

Acknowledgements

Academic influences

Foremost, Yoav Shoham has been an ideal advisor for me. He gave me the freedom

to develop in my own direction while still providing strong guidance, making sure

that I focused on the most interesting problems and didn’t neglect fruitful avenues.

Yoav has been generous in every way, providing me with introductions, invitations to

academic, industry and government meetings, the means to attend a wide variety of

conferences all around the world, the freedom to build a large computer cluster, and

of course innumerable hours of his own time. My research meetings with Yoav are

always exhausting: in five minutes he can identify a weak point in an argument that

I have accepted for a month. It is an understatement to say that Yoav has taught me

a great deal.

Moshe Tennenholtz has all but co-advised me; during his three years as a visiting

scholar at Stanford he had a profound impact on my development as a researcher.

Our hours-long conversations spent attacking a problem have been among the most

rewarding I’ve had in research. His insight, his attention to detail and his knowledge

of the literature all served to carry our work much farther than would have been

possible otherwise. On a more personal note, Moshe is a very open, giving person,

and I have benefited many times from his kindness.

Many other people at Stanford have taught, guided and helped me. Balaji Prab-

hakar mentored me on issues in networking; without his involvement the work in

Chapter 2 could never have even gotten off the ground. Daphne Koller is an amaz-

ing academic, and has challenged and inspired me throughout my time at Stanford.

vii

Andrew Ng gave very generously of his time, making extensive (and very helpful)

comments on a draft of this thesis. The many students with whom I worked at Stan-

ford taught me a lot, and also made doing research much more fun. Particularly, I’d

like to thank Eugene Nudelman and Ryan Porter, my officemates for most of my time

at Stanford, for many useful (and diverting) discussions. Finally, I’d like to thank

the Stanford professors who helped me by serving on various committees as I pro-

gressed through my Ph.D: the members of my reading committee (Andrew Ng, Yoav

Shoham, Moshe Tennenholtz), my orals committee (reading committee plus Daphne

Koller, David Kreps) and my quals committee (Daphne Koller, Chris Manning, Moshe

Tennenholtz).

There are of course many people in the larger research community who have in-

fluenced me academically. Though this list is certainly incomplete, I’d particularly

like to thank Craig Boutilier, Peter Cramton, Carla Gomes, Amy Greenwald, David

Parkes, Tuomas Sandholm, Bart Selman, Bill Walsh, Mike Wellman and Peter Wur-

man.

Coauthors

Over the past five years I have been lucky enough to work with outstanding coauthors.

I am indebted to them for their many contributions to the work described in this

thesis.

Chapter 2 is based on joint work with Ryan Porter, Balaji Prabhakar, Yoav

Shoham and Shobha Venkataraman. An early extended abstract was [Leyton-Brown

et al., 2001]; the journal version was [Leyton-Brown et al., 2003c].

Chapter 3 is based on joint work with Yoav Shoham, Moshe Tennenholtz and

Navin Bhat. Thanks to Ryan Porter and Yossi Feinberg for very helpful discussions.

This work received additional financial support from an Ontario Graduate Scholar-

ship. An early version was [Leyton-Brown et al., 2000c]; [Leyton-Brown et al., 2002b]

was a more recent extended abstract.

Chapter 4 is based on joint work with Moshe Tennenholtz. The conference version

was [Leyton-Brown & Tennenholtz, 2003].

viii

Chapter 6 is based on joint work with Yuzo Fujishima, Yoav Shoham and Moshe

Tennenholtz. The CASS algorithm was first presented in [Fujishima et al., 1999]; the

CAMUS algorithm was introduced in [Leyton-Brown et al., 2000b].

Chapter 7 is based on joint work with Mark Pearson and Yoav Shoham. The

conference version was [Leyton-Brown et al., 2000a].

Chapter 8 is based partly on unpublished data collected by Eugene Nudelman.

Chapter 9 is based on joint work with Eugene Nudelman and Yoav Shoham. This

work received additional financial support from the Intelligent Information Systems

Institute (IISI), Cornell. Thanks to Rámon Béjar, Carla Gomes, Henry Kautz, Bart

Selman, Lyle Ungar and Ioannis Vetsikas for helpful discussions. A conference version

was [Leyton-Brown et al., 2002a].

Chapter 10 is based on joint work with Eugene Nudelman, Galen Andrew, Jim Mc-

Fadden and Yoav Shoham. This work also received support from IISI. Two extended

abstracts describing this work were [Leyton-Brown et al., 2003b] and [Leyton-Brown

et al., 2003a].

The work in this thesis was funded by DARPA grant F30602-00-2-0598, a Stanford

Graduate Fellowship, and a Canadian Natural Sciences and Engineering Research

Council PGS-A fellowship.

Others who offered me support

First, my extended family (Mom, Dad, Mlle, Allison and Caleigh, and enthusiastic

grandparents, uncles and aunt) have been cheering me on every step of the way.

They have set an example by the value they place on learning and the questioning of

assumptions and by their integrity, both intellectual and otherwise. I hope I am able

to live up to this tradition in my academic life and beyond.

My girlfriend Judith has helped, supported and influenced me in more ways than

I can list here. I’d like to thank her particularly for the many sacrifices she made

to live with me in California while I worked on my Ph.D, and also for tolerating the

havoc that my research obligations played with our schedule. Her love and support

have helped me through several tough times during the past four years, and more

ix

than anything else have defined my time at Stanford.

Finally, I’d like to thank my friends, with the caveat that there are many people

that space does not permit me to mention here. Carlos and Philippe are friends I

met during the Stanford recruitment weekend in the summer of 1998. We have been

together for just about everything over the past five years: hiking trips, impromptu

tutorials on each others’ research areas, dot-com fantasies, international travel, chats

in our offices while avoiding work, and ultimately seeking work in our respective

job hunts. Geoff was around for a lot of the above, and also introduced me to

the appreciation of wine. I’ve also been lucky with randomly-assigned roommates;

in particular, Dan is a great friend who introduced me to many new people and

experiences; Farhad and Irfan gave me a welcoming introduction to Pakistani culture

and food; and Ryan made my final year (separated from Jude while she finished her

Master’s in New Zealand) much more lively and enjoyable.

I’m lucky to have remained in close contact with many friends back home in

Canada, particularly Christa, Tara, Jai and Navin. Navin deserves particular mention

here as he found time during his own (physics) Ph.D. studies to join me as a coauthor

on the work described in Chapter 3.

I’d like to thank the members of the DAGS and multiagent research groups. Many

DAGS members have been both friends and informal teachers: I’ve been lucky to have

them around for everything from ski trips to qual study groups. (I’d particularly like

to thank Ben for explaining SVMs to me on a ski lift—in between black-diamond

mogul runs!) Finally, it often seems that I’ve learned more from the members of the

multiagent group than anywhere else in my time at Stanford. I thus have a long

list of people to thank (many of whom also featured in the list of coauthors): Alex,

Bikash, Bob McGrew, Bob Wilson, Christian, Eugene, Galen, Jenn, Jim, Karèn,

Mark, Moises, Moshe, Pedrito, Piero, Rob, Ryan, Shobha and of course Yoav. I’ve

always found that this lively group has struck the perfect balance between being

friendly and accepting on one hand, and pushing me to learn more and to think more

clearly on the other. No longer having so many of these people just a desk or an office

away will be one of the hardest things about leaving Stanford.

x

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Multiagent Systems . 1

1.2 Resource Allocation in Multiagent Systems 2

1.3 Overview . 3

1.3.1 Game-Theoretic Topics . 4

1.3.2 Computational Topics . 6

I Game-Theoretic Issues in Resource Allocation 9

2 Congestion Management in Networks 10

2.1 Introduction . 10

2.2 Problem Definition . 14

2.2.1 Mechanism Characteristics . 15

2.2.2 Agent Characteristics . 15

2.2.3 Restrictions on the Class of Mechanisms 17

2.2.4 Evaluating Outcomes . 19

2.3 Preselection Mechanism . 21

2.3.1 Equilibria . 22

2.3.2 Bounds on q and m . 23

xi

2.3.3 Maximizing Revenue . 24

2.3.4 Optimal Equilibria . 25

2.4 Bulletin Board System Mechanism 28

2.4.1 Equilibria . 29

2.4.2 Greedy Assignment of Slots 30

2.4.3 ε-Optimality . 31

2.4.4 Implementation Considerations 32

2.5 Collective Reward Mechanism . 33

2.5.1 Equilibria . 35

2.5.2 Implementation Considerations 37

2.6 Discriminatory Mechanism . 37

2.6.1 Equilibria . 38

2.6.2 Implementation Considerations 39

2.7 Comparison of Different Mechanisms 40

2.8 Conclusions . 40

3 Bidding Rings in First Price Auctions 42

3.1 Introduction . 42

3.1.1 Collusion in First-Price Auctions 44

3.1.2 Overview . 44

3.2 Modeling First-Price Auctions . 45

3.2.1 Auction Setting . 45

3.2.2 Classical First-Price Auctions 46

3.2.3 First-Price Auctions with a Stochastic Number of Bidders . . 47

3.2.4 First-Price Auctions with Participation Revelation 48

3.3 Some Technical Results . 49

3.3.1 Regular Asymmetric Auctions 50

3.3.2 Relating p to be . 51

3.4 Bidding Rings for First-Price Auctions 57

3.4.1 Bidding Ring Economic Environment 57

3.4.2 First-Price Auction Bidding Ring Protocol 59

xii

3.4.3 Are Bidding Rings Helpful? 64

3.4.4 Comparing Equilibria in Ebr 69

3.5 Discussion . 71

3.5.1 Assumptions . 71

3.5.2 Conclusions . 71

4 Local-Effect Games 73

4.1 Introduction . 73

4.2 Local-Effect Games . 75

4.3 Theoretical Results . 78

4.3.1 Nonexistence of Pure Strategy Equilibria 78

4.3.2 Pure Strategy Equilibria: Potential Functions 78

4.3.3 LEGs and Potential Functions 80

4.3.4 Other Pure-Strategy Equilibria 87

4.4 Empirical Findings . 90

4.5 Conclusions . 93

II Computational Issues in Resource Allocation 95

5 Combinatorial Auctions 96

5.1 Motivation . 96

5.1.1 Complementarity . 96

5.1.2 Substitutability . 97

5.1.3 Applications . 97

5.2 Combinatorial Auction Winner Determination 98

5.2.1 Formal definition . 98

5.2.2 XOR constraints . 99

5.2.3 Multi-unit auctions . 100

5.2.4 Asymptotic Hardness . 100

5.3 Related Work on the WDP . 101

5.3.1 Tractable Subcases . 101

xiii

5.3.2 Approximation algorithms . 101

5.3.3 Solving the WDP to optimality 102

6 Combinatorial Auction Algorithms 103

6.1 CASS Algorithm . 103

6.1.1 Dominated Bids . 104

6.1.2 Branch-and-Bound Search . 104

6.1.3 Bins . 105

6.1.4 Upper Bound . 106

6.1.5 Caching . 107

6.1.6 Good Ordering Heuristic . 109

6.1.7 Bid Ordering Heuristic . 109

6.2 CAMUS Algorithm . 110

6.2.1 Dominated Bids . 111

6.2.2 Subbins . 111

6.2.3 Dynamic Programming . 111

6.2.4 Upper Bound . 113

6.2.5 Heuristics . 114

6.3 Conclusions . 114

7 Combinatorial Auction Benchmarks 116

7.1 Past Work on Testing CA Algorithms 116

7.1.1 Experiments with Human Subjects 116

7.1.2 Particular Problems . 117

7.1.3 Artificial Distributions . 117

7.2 Generating Realistic Bids . 120

7.2.1 Prices, price offers and valuations 120

7.2.2 The CATS suite . 121

7.3 CATS in Detail . 122

7.3.1 Paths in Space . 122

7.3.2 Proximity in Space . 127

7.3.3 Arbitrary Relationships . 132

xiv

7.3.4 Temporal Matching . 134

7.3.5 Temporal Scheduling . 136

7.3.6 Legacy Distributions . 137

7.3.7 Previously Published Distributions 139

7.4 Tuning Distributions . 141

7.4.1 Removing Dominated Bids . 141

7.4.2 Sampling Parameters . 142

7.4.3 Making CATS Harder . 143

7.5 Conclusions . 144

8 Evaluating CA Algorithms 145

8.1 Original CASS Experiments . 145

8.1.1 Scaling Performance . 146

8.1.2 Anytime Performance . 146

8.1.3 CASS vs. Bidtree . 147

8.2 CASS vs. CPLEX . 148

8.3 Conclusions . 151

9 Empirical Hardness Models 154

9.1 Empirical Hardness . 154

9.1.1 Optimization Problems . 155

9.1.2 The WDP . 156

9.2 Building Hardness Models . 157

9.2.1 Our Methodology . 157

9.2.2 Problem Size . 158

9.2.3 Features . 158

9.3 Evaluating Hardness Models . 160

9.3.1 Linear Models . 161

9.3.2 Nonlinear Models . 163

9.4 Analyzing Hardness Models . 164

9.4.1 Cost of Omission . 164

9.4.2 Experimental Results . 166

xv

9.5 Conclusions . 169

10 Applications of Hardness Models 170

10.1 Introduction . 170

10.1.1 The Boosting Metaphor . 171

10.2 Algorithm Portfolios . 172

10.2.1 Experimental Results . 172

10.3 Extending our Portfolio Methodology 174

10.3.1 Smart Feature Computation 175

10.3.2 Transforming the Response Variable 176

10.3.3 Capping Runs . 177

10.3.4 Experimental Results . 177

10.4 Focused Algorithm Design . 178

10.4.1 Inducing Hard Distributions 179

10.4.2 Inducing Realistic Distributions 181

10.4.3 Experimental Results . 181

10.5 Discussion and Related Work . 183

10.5.1 Algorithm Selection . 183

10.5.2 Inducing Hard Distributions 186

10.5.3 The Boosting Metaphor Revisited 186

10.6 Conclusions . 187

Bibliography 188

Index 199

xvi

List of Tables

2.1 Comparison of Φ1, Φ2, Φ3, Φ4 . 41

9.1 Linear Regression: Errors and Adjusted R2 162

9.2 Quadratic Regression: Errors and Adjusted R2 163

10.1 Portfolio Results . 178

xvii

List of Figures

1.1 Topics covered in this thesis . 4

2.1 Quarterly Trunk Calls on Weekdays in the United Kingdom, December

1975 . 12

4.1 Graph structure for Lemma 4.7 . 80

4.2 Graph structure for Lemma 4.8 . 83

4.3 Graph structure for Lemma 4.9 . 84

4.4 T – kn = 3, 50 agents . 90

4.5 Arbitrary – kn = 3, 50 agents . 90

4.6 Binary Tree – kn = 6, 60 agents . 91

4.7 Grid – kn = 4, 200 agents . 91

4.8 Modified Grid – kn = 4, 200 agents 91

4.9 Steps to convergence for the five graphs 92

4.10 Steps to convergence for the arbitrary graph 92

6.1 Partition into Bins . 105

6.2 Skipping bins . 105

6.3 Caching . 108

6.4 Cache Pruning . 108

6.5 CASS Pseudocode . 110

6.6 Singleton Pre-processing Algorithm 113

6.7 Upper Bound Algorithm . 113

6.8 CAMUS Pseudocode . 115

xviii

7.1 Sample Railroad Graph . 124

7.2 Graph-Building Technique . 125

7.3 Bid-Generation Technique . 127

7.4 Graph-Building Technique . 128

7.5 Sample Real Estate Graph . 129

7.6 Add Good to Bundle for Spatial Proximity 131

7.7 Bid-Generation Technique . 132

7.8 Graph-Building Technique . 133

7.9 Routine Add Good to Bundle for Arbitrary Relationships 134

7.10 Map of Airport Locations . 135

7.11 Bid-Generation Technique . 136

7.12 Bid-Generation Technique . 138

7.13 Non-Dominated Bids vs. Raw Bids 142

7.14 Gross Hardness . 143

8.1 CASS Scaling: L6 . 146

8.2 CASS Scaling: L7 . 146

8.3 CASS Anytime Performance: L6 . 147

8.4 CASS vs. Bidtree: L1 . 148

8.5 CASS vs. Bidtree: L2 . 148

8.6 CASS vs. Bidtree: L3 . 148

8.7 CASS vs. Bidtree: L4 . 148

8.8 CASS vs. CPLEX: mean runtime per distribution 150

8.9 CASS vs. CPLEX: first, second and third quartiles 150

8.10 CASS vs. CPLEX: Scatter Plot . 152

9.1 Four Groups of Features for the WDP 159

9.2 Linear Regression: Squared Error (test data) 162

9.3 Linear Regression: Absolute Error Scatterplot (test data) 162

9.4 Quadratic Regression: Squared Error (test data) 163

9.5 Quadratic Regression: Error Scatterplot (test data) 163

9.6 Linear Regression: Subset size vs. RMSE. 166

xix

9.7 Linear Regression: Cost of omission for subset size 7. 166

9.8 Quadratic Regression: Subset size vs. RMSE. 167

9.9 Quadratic Regression: Cost of omission for subset size 6. 167

10.1 Algorithm and Portfolio Runtimes . 173

10.2 Optimal . 173

10.3 Selected . 173

10.4 Smart Features . 178

10.5 Transformation Functions (normalized) 178

10.6 Inducing Harder Distributions . 182

10.7 Matching . 182

10.8 Scheduling . 182

xx

Chapter 1

Introduction

1.1 Multiagent Systems

In recent years, and especially with the advent of the internet, there has been increas-

ing interest in multiagent systems. Different researchers do not always agree about

what sort of systems to consider “multiagent,” however; in particular there are dif-

ferences of opinion about where to draw a line between “agents” and “objects.”1 I’ll

begin by stating the characteristics that I see as fundamental to multiagent systems:

1. Agents are autonomous;

2. Information is distributed asymmetrically, and agents must choose what infor-

mation to share with others (and in some cases whether to tell the truth).

Agents must therefore make autonomous decisions about how to act, taking into

account their own local information and their knowledge about the presence, desires

and declared local information of other agents.

Multiagent systems can broadly be divided into two categories. Cooperative mul-

tiagent systems are those in which all agents share the same desires. Therefore, given

complete information about the world there is some outcome or set of outcomes which

1That is, encapsulated blocks of data and code common to object-oriented programming lan-
guages such as C++ and Java.

1

2 CHAPTER 1. INTRODUCTION

every agent agrees is preferable to all other outcomes. Of course these outcomes may

be difficult to achieve in practice, since physical separation, insufficient communi-

cation bandwidth or computational limitations may prevent agents from achieving

common knowledge of all relevant information or from determining which outcomes

they prefer given this information. An example of a cooperative multiagent system

is a team of robots which act together to achieve an objective in an unknown envi-

ronment.

A more general class is competitive multiagent systems. Here we relax the as-

sumption that all agents have the same interests, assuming only that each agent’s

preferences can be described by some utility function. In a sense, the term “competi-

tive” is misleading, since some utility functions can lead agents to want to cooperate

with each other, or to cooperate in some situations and to compete in others. The

key way in which competitive multiagent systems differ from the cooperative vari-

ety is that agents cannot be assumed to have the same interests: even in situations

where agents are best off cooperating they may not realize it, or may not behave as

though their interests are aligned. An example of a competitive multiagent system

is a peer-to-peer file sharing system, in which not all agents affect each other, but in

which agents compete for scarce bandwidth and attempt to avoid having to provide

files for other agents.

1.2 Resource Allocation in Multiagent Systems

The above example illustrates a common feature of multiagent systems: the presence

of resources , scarce commodities of which agents make use and which the system

explicitly or implicitly allocates. Indeed, many multiagent systems exist primarily

to distribute such resources. In cooperative multiagent systems it is comparatively

simple to allocate resources optimally. A global policy can be established according to

which agents first communicate relevant information and the system then determines

an allocation. This allocation can be computed by a central authority, by a distin-

guished agent, or implicitly by a group of agents. Because all agents prefer the same

outcome(s) given full information, the notion of an optimal allocation is well-defined.

1.3. OVERVIEW 3

Things are not so clear in the case of competitive multiagent systems. First of

all, individual agents may not have incentive to declare their private information

in order to allow the system to select its chosen outcome. Instead, they may be

able to lie about their information in a way that will cause the system to select

an outcome which they prefer. Protocols must therefore be defined to give selfish

agents incentive to truthfully declare any relevant private information, by ensuring

that agents hurt themselves by lying. Secondly, there is no unequivocal notion of

optimality in a competitive multiagent system. Instead, systems can be designed

to achieve one of a number of different—and often mutually exclusive—objectives:

social-welfare maximization (i.e., maximizing the sum of agents’ utilities), revenue

maximization (i.e., maximizing the amount that agents are made to pay in exchange

for the resources allocated to them), pareto-optimality (finding an outcome satisfying

the condition that there does not exist another outcome in which no agent is worse

off and some agent is better off), and so on.

The past few years have seen a surge of interest in addressing these problems by

bringing together techniques from computer science and game theoretic economics.

After all, microeconomics has been concerned with designing protocols for the allo-

cation of scarce resources among selfish agents for half a century. Computer science

and economics have made contact in several different ways. In some cases, the inter-

esting problem is to apply ideas from computer science to make it practical to use

existing economic mechanisms. In other cases, selfish agents’ conflicting demands of

a computer system can best be managed by the introduction of game theoretic incen-

tives. The influence between the disciplines can also be more symmetric, requiring a

synthesized view of both computational limitations and the self-interested behavior

of agents.

1.3 Overview

This thesis considers problems that fall into all of these categories. The topics covered

are divided into two parts, based on whether the work focuses on game-theoretic or

computational issues in multiagent resource allocation. In Figure 1.1 these topics are

4 CHAPTER 1. INTRODUCTION

���
���
���
���
���
���

local-effect
games

���
���
���
���
���

bidding
rings

��
��
��
��
��

load balancing
in networks

theoretical applied

problems
come from

CS

problems
come from
GT/Econ

combinatorial auction
winner determination:
algorithms; testing

empirical hardness
models; portfolios

��������������������
��������������������
�������������������� Game-Theoretic Problems Computational Problems

Figure 1.1: Topics covered in this thesis

related to each other in terms of whether they originate in computer science or in

game-theoretic economics, and of the extent to which the approach used in addressing

them is either theoretical or applied.

1.3.1 Game-Theoretic Topics

In this part, we examine three different game-theoretic issues in competitive mul-

tiagent systems: the application of game-theoretic incentives to computer networks;

cooperation among selfish agents in an auction; and the computation of pure-strategy

Nash equilibria in compactly-represented games.

Chapter 2 investigates an incentive-based approach to balancing the load on a

network resource. Traditionally, network loads are managed using a technological

approach (e.g., fair-queueing systems); however, when loads result from agents’ selfish

actions, better solutions can be achieved at a lower cost when new incentives are

provided. More specifically, we consider the problem of sharing network resources

when users’ preferences lead to temporally concentrated loads, resulting in inefficient

use of the network. We consider a setting in which bandwidth or access to service

is available during different time slots at a fixed cost, but all agents have a natural

1.3. OVERVIEW 5

preference for choosing the same time slot. We present four mechanisms that motivate

users to distribute the load by probabilistically waiving the cost for each time slot,

and analyze the equilibria that arise under these mechanisms.

Chapter 3 considers the problem of designing a protocol (a “bidding ring”) to

allow agents to cooperate in a first-price sealed-bid auction, so that at least one of

the cooperating agents benefits and no agent has an incentive to deviate from the

protocol. Unlike previous work on this topic, the work presented in this chapter

allows for the existence of multiple cartels in the auction, includes the choice of

whether or not to collude as part of agents’ strategy space, and does not assume

that non-colluding agents hold false beliefs. We show a Bayes-Nash equilibrium in

which agents choose to join bidding rings when invited and to truthfully declare their

valuations to a ring center. Furthermore, we show that the existence of bidding rings

benefits ring centers and all agents, both members and non-members of bidding rings,

at the auctioneer’s expense.

Finally, Chapter 4 considers the problem of compactly representing realistic games,

and leveraging this compact representation to yield tractable computation of Nash

equilibria. Many of the real-world multiagent systems for which game-theoretic repre-

sentations are natural involve many players and many actions for each player; however,

current algorithmic techniques for the computation of Nash equilibria are unable to

scale up beyond much smaller games. We introduce a new class of games, local-effect

games (LEGs), which model several realistic settings and also admit compact repre-

sentation. We show both theoretically and empirically that these games often (but

not always) have pure-strategy Nash equilibria. Finding a potential function is a good

technique for finding such equilibria. We give necessary and sufficient conditions for

LEGs to have potential functions and provide the functions for the cases in which

they exist; we also show a general case where pure-strategy equilibria exist in the

absence of potential functions. In experiments, we show that myopic best-response

dynamics converge quickly to pure strategy equilibria in a class of games not covered

by our positive theoretical results.

6 CHAPTER 1. INTRODUCTION

1.3.2 Computational Topics

The second part of this thesis investigates a computational problem in competitive

multiagent systems. In the past half-decade computer scientists have devoted a great

deal of study to combinatorial auctions (CAs), a resource-allocation paradigm which

allows agents to indicate their interest in arbitrary bundles of goods even when their

valuations for these goods are non-additive. The inherent flexibility of combinato-

rial auctions makes them useful for a wide variety of resource allocation applications

ranging from process scheduling on shared computational resources to the federal gov-

ernment’s multi-billion-dollar sale of radio spectrum licenses. However, combinatorial

auctions have an Achilles’ heel: they require the use of a complex and computation-

ally expensive optimization procedure to identify the set of winning bids. We examine

this combinatorial auction winner determination problem (WDP), studying the de-

sign of WDP algorithms, WDP benchmark distributions, the use of machine learning

techniques to build models of the empirical running time of such algorithms on such

benchmark data, and various applications of these empirical hardness models.

We begin with an introduction to combinatorial auctions and various formulations

of the winner determination problem in Chapter 5. Chapter 6 considers the design

of algorithms for the WDP. Two algorithms are presented, CASS and CAMUS. The

former is a branch-and-bound search algorithm, which is guaranteed to find an optimal

solution and which uses a variety of heuristics to perform well in practice. CAMUS

is a generalization of CASS which handles an important variant of combinatorial

auctions in which each good at auction may have multiple identical “units.”

Chapter 7 describes a benchmark suite which has been widely used for the eval-

uation of WDP algorithms. Since very few general CA’s have been held, there is

little data recording the bidding behavior of real bidders. Instead, to evaluate WDP

algorithms we must generate artificial data that is as representative of realistic sce-

narios as possible. We present five instance generators, each modeling a real-world

application of combinatorial auctions described in the economics literature.

Chapter 8 provides experimental results for the CASS algorithm on the benchmark

suite presented in Chapter 7. We demonstrate CASS’s scaling and anytime properties

and then compare CASS to the two most widely-cited approaches to solving the WDP:

1.3. OVERVIEW 7

Sandholm’s Bidtree algorithm and ILOG’s CPLEX integer programming solver.

Chapter 9 investigates the empirical hardness of the winner determination prob-

lem. We identify a large number of distribution-nonspecific features of data instances

and use statistical regression techniques to learn, evaluate and interpret a function

from these features to the predicted hardness of an instance, focusing mostly on

ILOG’s CPLEX solver. Surprisingly, we find that it is possible to build very accu-

rate models of running time, even though this value varies substantially on problem

instances involving the same number of bids and goods.

Finally, Chapter 10 presents two applications of our empirical hardness models.

First, we show how to build algorithm portfolios that select among a set of black-box

algorithms, and give experimental results using CPLEX, CASS and one other special-

purpose WDP algorithm. Second, we present techniques for using empirical hardness

models to make benchmark distributions harder, and evaluate these techniques on

the distributions introduced in Chapter 7.

8 CHAPTER 1. INTRODUCTION

Part I

Game-Theoretic Issues in

Multiagent Resource Allocation

9

Chapter 2

Congestion Management in

Networks

We explore the problem of sharing network resources when users’ preferences lead

to temporally concentrated loads, resulting in an inefficient use of the network. In

such cases external incentives can be supplied to smooth out demand, obviating the

need for expensive technological mechanisms. Taking a game-theoretic approach, we

consider a setting in which bandwidth or access to service is available during different

time slots at a fixed cost, but all agents have a natural preference for choosing the

same time slot. We present four mechanisms that motivate users to distribute the

load by probabilistically waiving the cost for each time slot, and analyze the equilibria

that arise under these mechanisms.

2.1 Introduction

Competition for network resources is intrinsic to a network’s operation and leads to

congestion. Since users access resources in a distributed and uncoordinated fashion,

it is common for a network to experience congestion even when the average demand

for a resource is much less than its capacity. Some of these congestion epochs are

simply a product of the statistical nature of user access patterns and traffic types, and

are thus unpredictable. To cope with this lack of coordination among users and the

10

2.1. INTRODUCTION 11

unpredictability of congestion epochs, networks send “congestion signals” to users to

help them share its resources in a fair and satisfactory fashion. For example, packets

at a congested router may be either dropped or marked [Floyd, 1994].

A great deal of network congestion is not only caused by a lack of coordination,

but also by users who aim to selfishly maximize the bandwidth available to them (see

Shenker [1995]). There exists a substantial body of work on the fair management of

this sort of congestion in networks. In particular, the problem of designing congestion

control and pricing mechanisms to provide differentiated qualities-of-service (QoS) in

the Internet has received a lot of attention recently. The first common type of solution

to this problem is technological: the network can erect “bandwidth firewalls” between

packet flows using scheduling algorithms like Weighted Fair Queuing [Demers et al.,

1990]. Such scheduling algorithms decrease or eliminate the dependence of one flow’s

QoS from the QoS of other flows. They can be difficult to implement in high-capacity

routers, however, as they require the maintenance of per-flow state to distinguish,

buffer and schedule the packets of individual flows. This has led researchers to explore

trading off performance for simplicity of implementation, yielding router mechanisms

that provide approximate fairness [Floyd & Jacobson, 1993; Pan et al., 2000; Pan

et al., 2001].

An alternate line of research takes an economic approach to congestion manage-

ment. Following this approach the network attempts to induce users to condition

their flows; this avoids the implementation complexity inherent in erecting explicit

bandwidth firewalls. Using ideas from economics, MacKie-Mason and Varian [1994]

argued that this incentive can be provided by charging agents for the damage caused

to others by their ill-conditioned flows. This work proposes a “smart market” that

uses bids to set a price for network usage at each of several time slots. Gibbens and

Kelly [1999] suggest charging a user for the role its packets play in causing congestion;

see also [Gibbens & Key, 1999] and [Key & McAuley, 1999]. Odlyzko [1997] proposes

“Paris Metro Pricing”: partitions of the network that behave identically but charge

different prices, inviting users to choose the partition they believe will offer the best

balance of cost and congestion.

12 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

6.0%

8 9 10 11 12 13 14 15 16 17 18

Hour

P
er

ce
n

ta
g

e
o

f
00

-2
4

C
al

ls

Rates drop f rom
Peak to Shoulder

Figure 2.1: Quarterly Trunk Calls on Weekdays in the United Kingdom, December
1975

In some situations, times of high demand are regular and predictable. Such fo-

cused loading can occur because many users’ utility functions are maximized by using

the network at some specific time. For example, early studies of long-distance tele-

phone networks show a spike in usage when rates drop [Mitchell, 1978]. Figure 2.1

is a representative graph adapted from p. 450 of this paper, which shows telephone

network traffic versus time of day. Note that usage falls off before the 1 PM rate drop,

spikes afterwards and then falls off again. A recent study [Blair, 1998] considers dial-

up data traffic in Ireland and the UK— where ISPs provide free Internet access but

users pay for the duration of their phone connections—showing that a focused load

on the telephone network occurs due to an increase in data connections when phone

charges drop. Web servers also experience focused loading just before deadlines, or

just after new content or services are made available. While these times are known

well in advance, users have no incentive to avoid accessing the web site close to the

deadline and thus can cause server overloads or crashes, to which system managers

typically respond by buying more resources.

What approaches would more directly address the source of the problem? It is

instructive to examine a particularly elegant solution employed by radio broadcasters.

2.1. INTRODUCTION 13

To boost audience levels, radio shows routinely offer prizes to listeners such as concert

tickets, vacations and money. Listeners tune in, wait for a signal such as a particular

song and then call in hoping to win the prize. Of course, this invites an episode

of severe focused loading at the switch board of the radio station as many listeners

simultaneously call. The brilliantly simple way out is to announce that “caller number

9” will be the winner. This provides an incentive for listeners to randomize their call-

in times—calling in too early or too late will not work—and the focused load is

thereby diffused.

Of course, many of the general-purpose congestion management techniques sur-

veyed above may also be applied to the special case of focused loading. We believe,

however, that separate consideration of this special case is worthwhile, for two main

reasons. First, the fact that focused loading occurs at very predictable times means

that it is possible to know in advance the cases for which a specialized solution should

be used. Second, the generality of the above congestion management techniques pre-

vents them from explicitly taking into account information about agent valuation

functions. Focused loading occurs because many agents prefer to use the network

at the same time. This additional knowledge makes it possible to design mecha-

nisms that collect more revenue and make fewer (e.g., computational) demands on

the network.

In this work we propose a game theoretic model of the problem of defocusing pre-

dictable and time-dependent focused loads. We attempt to explain why techniques

such as the radio show announcement can be effective, while also contributing a for-

mal model that permits analysis. While we do not rely on any particularly advanced

results from game theory or mechanism design, we do assume that the reader is famil-

iar with such concepts as individual rationality, risk attitudes (e.g,. risk neutrality,

risk aversion) and dominant strategies. Also in the game theoretic tradition, we refer

to users as agents. Good introductions to the concepts listed above are provided in

[Fudenberg & Tirole, 1991; Osborne & Rubinstein, 1994].

In Section 2.2 we give a formal model of the temporal resource contention problem,

define metrics for evaluating agent distributions and related notions of optimality, and

specify agent utility functions. In Section 2.3 we propose a simple mechanism under

14 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

which load balancing is a weak equilibrium for agents who value slots identically. We

strengthen this to a strict equilibrium in Section 2.4 and also prove that this mecha-

nism is arbitrarily close to optimal. In Sections 2.5 and 2.6 we relax the assumption

that all agents have identical utility functions and present two mechanisms that bal-

ance load when only bounds on agent valuations are known. Since these mechanisms

cannot take into account exactly how much each agent would be willing to pay to use

the network, these mechanisms are not optimal; however, we prove a bound on their

optimality which depends on the tightness of the bound on agent utility functions.

If these mechanisms were used in the original case where agents value slots identi-

cally, then they too would be arbitrarily close to optimal. Finally, in Section 2.7 we

summarize and compare the four mechanisms presented in this work.

2.2 Problem Definition

In order to motivate the notation that we will use throughout the chapter, it is helpful

to begin with an example. Consider a network resource with a fixed number of

identical time slots, where usage cost does not depend on the time slot. For example,

consider a usage-based web service such as a pay-per-view streaming video service

in which usage is divided into half-hour blocks from 7 PM to midnight. We assume

that each agent wants to use the network during only one time slot, that each agent

knows his own valuation for each slot, and that all agents’ utilities are maximized by

using the network during the same slot. For example, all agents might prefer to use

the network from 7:00 to 7:30, having strictly monotonically-decreasing valuations

for later slots as compared to earlier slots. Since time slots are priced identically,

rational agents would all choose to use the network from 7:00 to 7:30, leading to a

focused load. We further assume that although the capacity of the network resource

is unlimited (e.g., hosted on an ASP) the operator of the resource has an exogenous

desire for users to de-focus their demands (e.g., the ASP charges the operator for

peak bandwidth used1).

1A number of proposals for usage-based pricing of bandwidth suggest charging according to the
“effective” bandwidth consumed by an operator. Roughly, the effective bandwidth of a connection

2.2. PROBLEM DEFINITION 15

2.2.1 Mechanism Characteristics

In order to spread out the focused load, the network will provide agents with an

incentive to choose slots other than s. In this chapter we will consider mechanisms in

which agents are probabilistically spared the usage cost for the slot they choose. The

cost of using the slot is waived according to a probability which depends on the slot

chosen, and which is independent of the probabilities corresponding to other slots.

More formally, a mechanism Φ is defined by a tuple 〈t,m, N, f(.)〉. The network

operates over t time slots, where each slot has a fixed usage cost of m, and where the

set N of n agents, a1 . . . an, intend to use the network. Each agent ai takes an action

Ai of using a slot. The function f : A1×· · ·×An → [0, 1]n maps the actions taken by

all agents into individual probabilities Pi that the cost of the slot chosen by ai will be

waived. Though f is specified by the mechanism, the network must draw from each

Pi to determine whether the usage cost will actually be waived for each agent. Note

that the probability that each slot will be made free is determined independently. By

q we denote the expected number of slots that will be offered to at least one agent

for free. The distribution of agents is denoted d, and so d(s) is the number of agents

who chose slot s.

2.2.2 Agent Characteristics

We assume that all agents are risk neutral. Agent ai’s valuation for slot s is given by an

arbitrary non-negative function vi(s). Let si = arg maxs vi(s) and si = arg mins vi(s).

Because we are concerned with cases in which focused loading occurs we will assume

that all agents have identical and unique most- and least-preferred slots, although

this assumption is not required for any of our results. (If agents find several slots to

be the most preferable, some amount of load balancing is likely to occur without any

intervention by the network, as agents will distribute themselves across these slots.)

Therefore, we define constants s and s such that for all i, si = s and si = s. In

Sections 2.3 and 2.4 we will make the assumption that all agents’ valuation functions

is a value between the mean and peak bandwidths, capturing the trade-off between the long-term
average amount of bandwidth used by the connection and the instantaneous peak bandwidth con-
sumption. See, for example [Songhurst et al., 1999], and the references therein.

16 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

are identical (in these sections we will use the notation v rather than vi to describe

agents’ valuations). Of course this assumption is not realistic; we relax it in Sections

2.5 and 2.6. Let vl and vu be lower and upper bounds on all agents’ valuations,

respectively: i.e., ∀i, s vl(s) ≤ vi(s) ≤ vu(s). It is important to note that these

bounds apply to all agents: in our model no agent has a valuation for slot s lower

than vl(s) or higher than vu(s).2 Using this notation, the restriction on agents’

valuations in sections 3 and 4 can be understood as the case where ∀s vl(s) = vu(s).

Finally, each agent ai may also receive a signal from the network, denoted σ(ai).

In our model, the decision faced by agents is simply to choose a slot s. The

space of agent strategies S is the space of all functions mapping from the information

available to a probability distribution over slot choices. We denote an element of S
as S = Π(s): a distribution over slot choices. Agents are aware of the mechanism

and consider it when determining their strategies. Let ϕ ∈ Sn denote a set of agent

strategies, which we formally call a strategy profile. Let ϕ(i) denote ai’s strategy

under strategy profile ϕ, and let {ϕ\ i, S} denote the strategy profile where all agents

j 6= i choose the strategy ϕ(j) and agent ai chooses the strategy S. We can write

agent ai’s expected utility under strategy profile ϕ (recall that ϕ(i) is a distribution

over slot choices for agent ai, and hence ϕ(i)(s) is the probability that agent ai will

choose slot s under strategy profile ϕ):

ui(ϕ) =
t∑

s1=1

. . .

t∑
si=1

. . .

t∑
sn=1

[(n∏
i=1

ϕ(i)(si)
)·

(
vi(si) −

(
1 − f(s1, . . . , sn)i

)
m

)]
(2.1)

We can now give a key definition:

Definition 2.1 ϕ is a Nash equilibrium of Φ if ∀i,∀S, ui(ϕ) ≥ ui({ϕ \ i, S}).
2While these bounds strengthen our results, the assumption that they exist is not unrealistic.

The upper bound is easily justified by the fact that no agent is willing to pay an arbitrarily large
amount. The lower bound is trickier, since agent ai might simply not be interested in using some
slot s (i.e., vi(s) = 0). However, since we’re interested in defocusing the load, in practice we will be
considering time slots that agents want to use. Therefore, it is not unrealistic to assume that every
agent has a non-zero valuation for every slot.

2.2. PROBLEM DEFINITION 17

Intuitively, no agent can gain by unilaterally deviating from a Nash equilibrium.

This type of equilibrium is also referred to as a weak Nash equilibrium since it is

possible that the agent receives equal utility from alternative strategies. When no

such alternative exists, we have a strict Nash equilibrium:

Definition 2.2 ϕ is a strict Nash equilibrium of Φ if ∀i,∀S 6= ϕ(i), ui(ϕ) > ui({ϕ \
i, S}).

Equation (2.1) is complicated because it accounts for the calculation of the prob-

ability that slot si is free, starting from a strategy profile. Although this definition

of utility is necessary for discussing Nash equilibria, in other parts of the chapter we

will find it more convenient to take as given the same distribution p for all agents,

indicating the probability of each slot being free. We can then specify an expression

for ai’s expected utility for choosing slot s:

ui(s) = vi(s)−
(
1− p(s)

)
m (2.2)

2.2.3 Restrictions on the Class of Mechanisms

We now consider restrictions on the class of mechanisms that could be used to solve

the focused loading problem, not to make the problem easier to solve, but in order

to identify solutions with desirable characteristics. First, we introduce a restriction

concerned with agents’ incentives to participate (as discussed below, this condition is

stronger than the standard mechanism design requirement of individual rationality).

Next, we discuss restrictions that could arise from implementation considerations and

the case of continuous pricing.

Definition 2.3 A mechanism Φ is participation-safe if and only if m ≤ vl(s).

We will consider only participation-safe mechanisms in this chapter; that is, we

require that the fixed usage cost for the network resource must never exceed the lower

bound on any agent’s valuation for his most-preferred slot. Intuitively, this means

that every agent will always be able to choose at least one slot in which his payment

18 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

will never exceed his valuation, and hence that it will be rational for him to participate

regardless of how the mechanism assigns free slots. Observe that participation-safety

implies individual rationality, because, regardless of Pi, agent ai can choose slot s and

achieve a non-negative utility. Individual rationality does depend on Pi, and thus is

a weaker condition.

We do not restrict the class of mechanisms in order to simplify analysis. As it turns

out, it is very easy to design and analyze mechanisms that have a fixed cost exceeding

all agents’ valuations, and then reward agents only when they behave as desired. Such

mechanisms can have good theoretical characteristics (such as optimality, defined

below) and can remain consistent with individual rationality by assuring agents non-

negative expected gain. Indeed, it turns out that in what follows, everywhere we

prove ε-optimality or (c + ε)-optimality, we could prove optimality or c-optimality,

respectively, if we were not restricted to participation-safe mechanisms. However, we

believe that such mechanisms would be considered unreasonable to deploy in practice

despite their theoretical benefits, because they address the problem of focused loading

by threatening agents with unviable alternatives—slots whose expected costs exceed

agents’ valuations—rather than giving agents positive incentives to behave as desired.

Because of the difficulty of implementing complex protocols on a highly-loaded

network resource, it is worthwhile to consider various other restrictions on the class

of mechanisms. For example, it may or may not be possible to reimburse agents after

all agents have chosen a slot, as opposed to doing so after each agent chooses. Also,

it may or may not be permissible for f to depend on what slots agents chose, as

this would require that information be stored for each agent, and again that billing

be deferred until after all agents have selected slots. In some settings it might not

be reasonable for the network to give signals to agents; in other cases, it would be

possible to give signals but not to record which signals were given to which agents.

The significance of the time, space and communication complexity of the mechanism

may also vary depending on the setting. We discuss these and other trade-offs in

Section 2.7.

Also, it might appear that more powerful mechanisms could be designed if prices

could be varied arbitrarily, as opposed to our model in which slots must be priced

2.2. PROBLEM DEFINITION 19

at either m or 0. In fact, since we assume that agents are risk-neutral, agents will

be indifferent between any slot priced on the range [0,m] and the same slot made

free with an appropriate probability. Furthermore, m can be increased arbitrarily. In

the case of risk-averse agents, such ‘continuous pricing’ would be useful: our results

throughout this chapter hold for risk-averse agents if and only if this sort of continuous

pricing scheme is used. We have chosen not to emphasize continuous pricing because

it would be likely to make greater computational and communication demands on the

network; however, all our results are compatible with such a scheme, and furthermore

our bounds on q and m (see, e.g, equations (2.7), (2.8), and (2.9)) may be dropped

in this case.

2.2.4 Evaluating Outcomes

The network has two aims: to balance the load caused by the agents’ selection of

slots and to collect as much revenue as possible. We denote the network’s expected

revenue given a mechanism Φ and equilibrium ϕ as E[R|Φ, ϕ]. The network collects

a payment of m from each participating agent except for those who receive free slots.

Expected revenue is given by:

E[R|Φ, ϕ] =
n∑

i=1

t∑
s1=1

. . .

t∑
sn=1

[(n∏
i=1

ϕ(i)(si)
)·(1 − f(s1, . . . , sn)i

)
m

]
(2.3)

We define g as the monetary value to the network of the variance of load across

the set of time slots. Lower variance corresponds to a more even load and thus to a

higher dollar value; thus g must decrease strictly as variance increases. We will say

that load is balanced when g is maximized, which corresponds to minimal variance.

We define the superlinear summation class of functions to be the set of functions in

which g(d) = −κ
∑

i h(d(i)), where h is superlinear in d(i) and κ is a constant that

is used to indicate the relative importance of load balancing to the network. Note

that this measure is only reasonable if we assume that each agent consumes about

the same amount of load. The expected value of load balancing is given by:

20 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

E[g|ϕ] =
∑

d

g(d)Prob(d|ϕ) (2.4)

Maximizing revenue and maximizing g are conflicting goals, as it costs the network

more to induce an agent to choose slot s than to choose slot s. Indeed, note that

revenue is maximized in the original focused loading equilibrium when all agents

choose s and ∀i Pi = 0. According to our problem definition, agents are willing to

distribute themselves this way, and thus this equilibrium can be achieved without

waiving any agents’ usage fees. In some systems this could be a desirable outcome;

however, we have assumed that the mechanism designer would prefer at least some

balancing of the load. The network must therefore trade off quality of load balancing

against expected revenue; the degree of trade-off desired may be specified through

the choice of κ. Given definitions of the expected values R and g, we can define z,

the network operator’s evaluation of equilibrium ϕ of mechanism Φ:

z(Φ, ϕ) = E[R|Φ, ϕ] + E[g|ϕ] (2.5)

It will be useful to define the best possible distribution of agents given a free slot

distribution that applies to all agents. Imagine a mechanism Φall in which all strategy

profiles are in equilibrium, and Pi = p(Ai) (i.e., the probability that a slot will be

free for agent ai depends only on his action). Intuitively, this is the best distribution

of agents for the mechanism, given the constraint that the free slot distribution must

be the same for all agents.

Definition 2.4 A distribution d is ideal for p(s) if and only if an equilibrium ϕ which

deterministically results in distribution d maximizes z(Φall, ϕ).

Note that this expression may not have a unique maximum. We will denote an

ideal distribution d as d∗.

Next, we define the optimality of an equilibrium under a mechanism. Essentially,

an equilibrium of a given mechanism is optimal if there does not exist another equi-

librium of any other mechanism that yields a higher expected value of z.

2.3. PRESELECTION MECHANISM 21

Definition 2.5 A mechanism-equilibrium pair (Φ, ϕ) is optimal if and only if for all

other pairs (Φ′, ϕ′), z(Φ, ϕ) ≥ z(Φ′, ϕ′), where n is held constant.

This definition of optimality is problematic when agents have different valuation

functions that are not known by the network—the case we take up in Sections 2.5

and 2.6. An optimal mechanism for this case would have to set each agent’s expected

payment to exactly his valuation for any slot chosen, by constructing a different Pi for

each agent. For every set of agents there does exist a set of such mechanisms. How-

ever, it is impossible to select such a mechanism based on the information available;

furthermore such a mechanism will violate our restriction that it be participation-safe,

because an agent ai who chooses slot s is charged vi(s), which can be exceed vl(s).

To overcome this difficulty we provide an alternate notion of optimality that bounds

the average loss per agent as compared to an optimal mechanism:

Definition 2.6 A mechanism-equilibrium pair (Φ, ϕ) is c-optimal if and only if for

all other pairs (Φ′, ϕ′), z(Φ, ϕ) + cn ≥ z(Φ′, ϕ′), where n is held constant and c > 0.

For convenience, we will also make use of the term [c-]optimal to refer to equilibria

alone, in cases where the mechanism giving rise to the equilibrium is unambiguous.

Definition 2.7 An equilibrium ϕ is [c-]optimal if ϕ is an equilibrium of mechanism

Φ, and (Φ, ϕ) is [c-]optimal.

We call ϕ′ where all agents choose the same slot a focused-loading equilibrium.

We assume that g and v do not take values that would cause ϕ′ to be optimal. This

assumption is only required for our proof of Theorem 2.9, but it is a reasonable one

for us to make since if ϕ′ were optimal, we would have no problem to solve in the

first place.

2.3 Preselection Mechanism

In this section we consider a simple mechanism, designed to make agents indifferent

between all time slots despite their initial preferences. This mechanism will be for-

mally referred to as Φ1, and informally called ‘preselection’, since it decides which

22 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

slots will be free before observing the actions of the agents. This mechanism is unre-

alistic in several ways, and we do not discuss it here in order to propose that it should

be used in practice. Indeed, such a mechanism is an obvious first approach to the

problem of focused loading, and so it is important to demonstrate its insufficiency.

Furthermore, the exposition of this mechanism will prove useful as a starting point

for the discussion of more sophisticated mechanisms.

Φ1works as follows:

1. The network determines free slots by drawing from p. (Thus, Pi = p(Ai).)

2. Agents choose a slot.

2.3.1 Equilibria

We know from the definition of the problem that when there is no chance that they

will win a free slot agents prefer slot s to slot s. We can overcome this preference

by selecting an appropriate p(s). An agent’s expected utility is given by ui(s) =

v(s) − (1 − p(s))m. Recall that we assume vl = vu until Section 2.5; here we use

(unsubscripted) v to denote the valuation function that all agents share. We can make

agents indifferent between slots by requiring that all time slots will have the same

expected utility for agents: that is, that the expected utility derived from each time

slot is equal to the average expected utility over all time slots. This is expressed by

the equation v(s)−(
1−p(s)

)
m = 1

t

∑
i

(
v(i)−(

1−p(i)
)
m

)
. Algebraic manipulation

and q = Σsp(s) give us:

p∗(s) =
1
t

(
qm +

∑
i v(i)

)−v(s)

m
(2.6)

Observe that since free slots are free for all agents, q represents the expected num-

ber of free slots. Because we will find this probability distribution useful throughout

the chapter, we have given it a name: p∗.

If free slots are awarded according to p∗, it is a weak Nash equilibrium for all agents

to select a slot uniformly at random. We will call this equilibrium ϕ1. Consider the

case where all other agents play according to ϕ1, and one remaining agent ai must

2.3. PRESELECTION MECHANISM 23

decide his strategy. Since the choice of any slot entails equal utility on expectation, ai

can do no better than to randomly pick a slot. Again, ϕ1 is only a weak equilibrium:

indeed, there is no strategy ai could follow that would make him worse off.

We now make several remarks about the preselection mechanism. First, note that

the above analysis assumes that ai is risk-neutral. If ai is risk-averse, he will prefer

slot s, since it gives the largest fixed payment, v(s). Second, this mechanism is not

susceptible to collusion, because each agent is indifferent between all pure strategies

regardless of the actions of other agents. Finally, since all strategy profiles are weak

equilibria under the preselection mechanism, it would be reasonable to ask why we

pay special attention to ϕ1. It may be argued that randomization is a “natural”

response to indifference, and so we will consider this as a primary case in the next

subsection; however, none of our results depend on the assumption that agents will

choose this strategy.

2.3.2 Bounds on q and m

It appears that deviation from ϕ1 will never be profitable for agents, since we have

guaranteed that all slots provide the same expected utility. Consider the most prof-

itable deviation, from s to s. We have claimed that the utility of both slots is the

same: v(s) − (
1 − p(s)

)
m = v(s) − (

1 − p(s)
)
m. However if qm is too small or too

large, p(s)−p(s) > 1 will hold. Since we want to interpret p(s) and p(s) as probability

measures, we must add the constraints p(s) ≥ 0 and p(s) ≤ 1. Without these con-

straints, the equation for p∗ still makes sense if we consider continuous pricing rather

than our default model of free/non-free slots; p > 1 corresponds to an expected slot

cost of less than zero (paying agents to choose a slot) while p < 0 corresponds to an

expected slot cost of more than m. Substituting p(s) ≥ 0 into Equation (2.6) and

rearranging, we get:

q ≥ tv(s)− Σiv(i)

m
(2.7)

For the second condition, we require that p(s) ≤ 1, which gives us:

24 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

q ≤ t
(
v(s) + m

)−Σiv(i)

m
(2.8)

We must also ensure that a value of q exists for a given m and v. Intersecting the

two bounds and simplifying, we get:

m ≥ v(s)− v(s) (2.9)

Indeed, if m < v(s)− v(s) then if an agent were certain to win a free slot in s and

guaranteed never to win a free slot in s, he would still prefer s to s.

2.3.3 Maximizing Revenue

Equation (2.3) gave a general expression for E[R|Φ, d]. However, under equilib-

rium ϕ1 all agents randomly select a slot, which allows us to write an expression

for E[R|Φ1, ϕ1] that does not include a summation. In ϕ1 expected revenue is given

by the percentage of non-free slots times cost per slot times number of agents:

E[R|Φ1, ϕ1] =
(
1− q

t

)
mn (2.10)

Increasing m will increase expected revenue; however, recall that we require that

the mechanism be participation-safe, and hence that m ≤ vl(s). Regardless of the

particular value of m, reducing q (the expected number of free slots) will increase

expected revenue.

We will now show how the network can maximize revenue. We define vavg as
1
t

∑
s v(s). The requirement that an agent’s utility for slot s must be greater than or

equal to zero—i.e., that v(s) − (
1 − p(s)

)
m ≥ 0—can be rewritten, substituting in

p∗, as vavg − (1 − q
t
)m ≥ 0. The seller’s revenue will be maximized when all agents

get zero utility. Thus we must have:

(
1− q

t

)
m = vavg (2.11)

We substitute in the lower bound for q from Equation (2.7): i.e., q = 1
m

(
tv(s) −

Σiv(i)
)
. Rearranging for m, we get m = v(s). This satisfies Equation (2.9) and

2.3. PRESELECTION MECHANISM 25

ensures that the mechanism is participation-safe, so we are done.

This is intuitive because when we minimize q we set p(s) = 0. We know that

agents are indifferent between all slots, and so agents will be willing to choose any

slot when the cost of s does not exceed their valuation. We thus set m = v(s) and

(plugging m into the lower bound on q) q = t
(
1− vavg/v(s)

)
.

We have shown that each agent can be made to pay an expected amount exactly

equal to his utility for any slot he chooses. However, ϕ1 is not guaranteed to achieve

an ideal distribution of agents, and therefore ϕ1 is not optimal. The easiest way to

show this is to present another equilibrium of the preselection mechanism that is

optimal.

2.3.4 Optimal Equilibria

Consider an equilibrium in which each of the agents deterministically chooses one slot.

(Recall that any strategy is rational under Φ1, and thus that any set of strategies

is a weak equilibrium.) In one such equilibrium, agents deterministically choose

slots so that the distribution of all agents is ideal; we will call this equilibrium ϕ∗1.

Unsurprisingly, we can show:

Theorem 2.8 (Φ1, ϕ
∗
1) is optimal.

Remark. Recall that a mechanism-equilibrium pair is optimal when there does not

exist another mechanism that has an equilibrium giving rise to a distribution that

yields a higher value according to the evaluation function z.

Proof. Let E[Ri|Φ, ϕ] be the expected revenue extracted from agent ai, given

mechanism Φ and equilibrium ϕ. First, we prove by contradiction that Φ1 yields at

least as large a z as any other Φ, both given the same equilibrium of the respective

mechanisms. Assume that there exists a pair (Φ, ϕ) such that z(Φ, ϕ) > z(Φ1, ϕ).

Since the equilibrium is constant, we can expand z on both sides and simplify to

get E[R|Φ, ϕ] > E[R|Φ1, ϕ], which implies E[Ri|Φ, ϕ] > E[Ri|Φ1, ϕ] for at least one

agent ai. Φ1 sets values of p, q and m so that for all slots agent ai’s expected utility

is v(s) − E[Ri|Φ1, ϕ] = 0. Thus for Φ we have ∀s ui(s) < 0, implying that Φ is

non-participation-safe, a contradiction.

26 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

Second, we consider the case where Φ and Φ1 give rise to different equilibria. As

described above, under ϕ∗1 agents deterministically distribute themselves so as to give

rise to the distribution d∗. Recall that d∗ is an ideal distribution: ∀ϕ (
z(Φ1, ϕ

∗
1) ≥

z(Φ1, ϕ)
)
. Thus, ∀Φ, ϕ z(Φ1, ϕ

∗
1) ≥ z(Φ1, ϕ) ≥ z(Φ, ϕ).

The equilibrium ϕ∗1 is optimal, but it is extremely unlikely that it would arise

through the choices of real agents. As mentioned above, the fact that agents are

indifferent between all slots means that every combination of agent strategies is a

weak equilibrium. In fact, the preselection mechanism gives rise to many equilibria

that minimize g(d). For example, the case in which all agents choose slot s is a

weak equilibrium. Since discouraging focused loading is the purpose of the preselec-

tion mechanism, it is undesirable to find that such behavior remains an equilibrium!

However, this drawback is inherent to the setting as we have modeled it so far; a

preselection mechanism can only yield weak equilibria or focused-loading equilibria.

Theorem 2.9 When agents have identical utility functions and no signals are given

to agents and the network preselects p before agents move, all equilibria are either

weak or focused-loading.

Remark. Intuitively, this proof shows that under the conditions of the preselection

mechanism any incentive given to one agent is given to all the agents, and that the

mechanism designer must therefore choose between encouraging all agents to choose

the same slot and making all agents indifferent between a set of slots.

Proof. Consider two agents ai and aj, without restriction. The network has only

three choices with respect to ai’s preferences:

1. ai strictly prefers some slot sk to every other slot. However, every other agent

aj has the same preference. Therefore, no agents will choose any other slot.

This is a strict equilibrium, but it is also a focused-loading equilibrium.

2. ai will (non-strictly) prefer some slot sk to all other slots: he will strictly prefer

sk to sl, and will be indifferent between sk and at least one other slot. Thus

no agents will choose slot sl, and g will not be minimized. Any set of mixed

2.3. PRESELECTION MECHANISM 27

strategies over slots between which agents are indifferent will constitute a weak

equilibrium.

3. ai is indifferent between all pairs of slots sk and sl. In this case ai receives

the same payment regardless of his action, so randomizing uniformly over all

the slots is not a dominated strategy. Indeed, randomization is a weak, load-

balancing equilibrium, as shown above.

The only strict equilibrium is a focused-loading equilibrium; all other equilibria

are weak.

In fact, we can show another negative result: there does not exist an optimal

mechanism that is participation-safe and that gives rise to a strict equilibrium.

Theorem 2.10 There does not exist an optimal (Φ, ϕ) for which ϕ is a strict equi-

librium and m ≤ v(s).

Proof. We will prove this statement by contradiction. Assume that there exists an

optimal (Φ, ϕ) in which ϕ is a strict equilibrium. Since ϕ is a strict equilibrium, the

difference (call it x) between expected utility from slot s and the highest expected

utility of any other slot must be positive. By the assumption that m ≤ v(s), deviation

to s would result in no less than 0 utility. Thus by strictness of ϕ, agents in slots

s 6= s have positive expected utility of x. If we create Φ′ by altering Pi so that the

expected utility of s is decreased by x, then the revenue is increased, and it is still

an equilibrium (albeit weak) for ai to select slot s. The fact that revenue is higher

in (Φ′, ϕ) than (Φ, ϕ) but that both give rise to the same distribution contradicts the

claim that (Φ, ϕ) is optimal.

Theorem 2.10 shows that strict, optimal equilibria do not exist for participation-

safe mechanisms. However, if we allow networks with different characteristics than

those we allowed in this section, we can see that it is possible to get close to a

strict, optimal equilibrium when agents have identical utility functions and no signals

are given to agents, and p depends on the agents’ actions. Intuitively, consider a

mechanism that sets p = (1 + ε)p∗ if agents achieve an ideal distribution, and p = 0

28 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

otherwise. Further, consider a set of (pure) agent strategies where agents happen to

distribute themselves according to d∗ for p∗(s). This is an equilibrium because agents

are penalized for deviating. Intuitively, it is nearly optimal because agents achieve an

ideal distribution with respect to the mechanism, and the probability of awarding free

slots is arbitrarily close to the probability from the optimal mechanism-equilibrium

pair described in theorem 2.8. However, it would be extremely difficult for agents to

coordinate to this equilibrium in real play. In the next section we will show how the

use of a non-binding coordination phase before the selection of slots can help agents

to reach strict, nearly-optimal equilibria.

2.4 Bulletin Board System Mechanism

In this section we assume that agents are given a bulletin board system: a forum

in which all communications are visible to all agents and the identity of agents is

associated with their transmissions. For simplicity, we allow a very limited form of

communication: agents indicate the slot that they intend to choose. We assume that

agents do not all indicate slots at the same time; rather, they indicate sequentially

during the first phase. Let dj(s) denote the number of agents who have indicated

that they will choose slot s after a total of j agents have posted to the bulletin

board. d∗ will again be the ideal distribution for p ∗ (s). Agents’ communications

through the bulletin board are cheap talk : a technical term that indicates that these

communications are not binding in any way. Even so, the bulletin board can help

agents to coordinate on desirable equilibria. Mechanism Φ2 follows:

1. The network picks “potentially free”3 slots according to (1 + ε)p∗.

2. Agents communicate through the bulletin board.

3. Agents choose time slots.

4. If d = d∗, then “potentially free” slots are made to be free. That is, Pi = p∗(Ai).

Otherwise, all agents are made to pay for their slots (Pi = 0).

3We redefine q as the expected number of “potentially free” slots; the same redefinition is required
for Section 2.6.

2.4. BULLETIN BOARD SYSTEM MECHANISM 29

2.4.1 Equilibria

A strict equilibrium in Φ2, which we call ϕ2, is for the ith agent to indicate on the

bulletin board a slot s such that di−1(s) < d∗i (s), and ultimately to choose that slot

s. Consider the case where all other agents follow ϕ2 and agent ai must decide his

strategy. If ai cooperates and chooses slot s then the distribution of agents will be d∗

and so ai will receive an expected utility of v(s)− (
1− (1 + ε)p∗(s)

)
m. If ai defects

to slot s′, one of two cases will result. In the first case, agents indicating their choices

after ai will compensate for his deviation by choosing different slots; thus ai will

receive the same expected utility as he would have received if he had not deviated.

In the second case, ai will be late enough in the sequence of agents indicating their

choices that the agents who indicate after him will be too few to bring the distribution

back to d∗. In this case ai will receive an expected utility of v(s′)−m. The key point

is that ai does not know the total number of agents, and so he must assign non-zero

probability to the second case, regardless of the number of agents who have already

indicated. Furthermore, we must show that ai will choose the slot he indicated on the

bulletin board even though his selection was not binding. If all other agents follow

ϕ2 then there is clearly no incentive for ai to choose a different slot than he indicated,

because that would certainly prevent d = d∗ and reduce his payoff. Therefore ϕ2 is

strict as long as v(s) + (1 + ε)p∗(s)m > v(s′) for all s, s′ such that 1 ≤ s, s′ ≤ t.

Simplifying, we derive the conditions similar to those described in Section 2.3.

tv(s)− Σiv(i)

m
≤ q ≤ t

(
v(s) + m

1+ε

)−Σiv(i)

m
(2.12)

Again, we must intersect the two bounds to get a bound on m, which we combine

with the constraint on participation-safe mechanisms:

(1 + ε)
(
v(s)− v(s)

)≤ m ≤ v(s) (2.13)

This equilibrium relies on the fact that each agent can choose a slot as if he were

the last agent and achieve the distribution d∗, even if all agents before him chose slots

in this same way. We prove that this greedy approach works in Section 2.4.2.

An analysis of the possibility of collusion in the bulletin board mechanism is not

30 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

appropriate, because agents are already encouraged to coordinate with each other.

Any agent or cartel of agents who deviated would hurt themselves along with all other

agents.

It is well known that any game having an equilibrium arising from cheap talk

coordination has other equilibria in which agents ignore the cheap talk [Crawford &

Sobel, 1982]. The bulletin board mechanism is no exception. All agents choosing s

(focused loading) is an equilibrium when the resulting d could not be transformed into

d∗ by one agent choosing a different slot. Note, however, that ϕ2 Pareto-dominates

all equilibria where the cheap talk is ignored and a different distribution results.

2.4.2 Greedy Assignment of Slots

In ϕ2 each agent chooses a slot that would result in an optimal distribution if he

were the last agent to post to the bulletin board. For this reason it is important to

show that we can assign slots to agents greedily, with the guarantee of achieving the

ideal distribution for whatever number of agents eventually participate.

We must introduce new notation to describe changes as each agent chooses a slot

in turn. (Readers who do not intend to read the proof for lemma 2.11 can safely skip

to section 2.4.3.) First, we will subscript d to indicate the total number of agents

in the distribution, so that we can describe the distributions that result after only

a subset of agents have chosen slots. By d∗i we denote the optimal distribution of

i agents. Second, we define ∆(di, s) to be the increase in z if one agent is added

to slot s, relative to di. Define the decomposition ∆(di, s) = ∆E(di, s) + ∆g(di, s),

where ∆E(di, s) is the increase in E[R|Φ, di], and ∆g(di, s) is the increase in g(di). In

equilibrium ∆E(di, s) does not depend on di, but only on p(s) and m. (We assume

here that p does not depend on d∗i .) Two properties follow from the fact that g is

superlinear summation:

1. ∆g(di, s) is strictly monotonically decreasing in di(s)

2. ∆g(di, s) = ∆g(d
′
j, s) for all distributions d′j where d′j(s) = di(s)

Since ∆E does not depend on di, ∆ also has these properties.

2.4. BULLETIN BOARD SYSTEM MECHANISM 31

We now describe a function γ: let γ(i) represent the slot number that will be

assigned to ai, where ai is the ith agent to register. Let dγ
i (s) be the number of times

s occurs in {γ(1), . . . , γ(i)}. We note that ∀s∆(dγ
0(s)) = 0. We can now inductively

define γ: γ(i) = arg max s∆(dγ
i−1(s)).

Lemma 2.11 ∀i dγ
i is ideal under Φ2.

Remark. This lemma demonstrates that greedy assignment of slots to agents leads

to an ideal distribution when we assign slots according to γ as defined above. Recall

that an ideal distribution is defined in Definition 2.4.

Proof. Define di ≥ d′j as ∀s di(s) ≥ d′j(s). We will prove the following statement

that is stronger than the theorem: ∀j, i ≥ j, there exists an ideal distribution d∗i such

that d∗i ≥ dγ
j .

We will first prove this statement by induction on j. The base case, where j = 0,

trivially holds because ∀s dγ
0(s) = 0.

For the inductive step, assume that there exists a d∗i for all i ≥ j such that d∗i ≥ dγ
j ,

in order to prove that there exists a d∗i for all i ≥ j + 1 such that d∗i ≥ dγ
j+1. From

the inductive assumption we know that there exists a d∗i ≥ dγ
j for each i ≥ j + 1. Let

sk = γ(j + 1): hence sk = arg max s∆(dγ
j , s).

We now prove that there exists an ideal distribution d′∗i consistent with this greedy

choice. If d∗i (sk) ≥ dγ
j (sk) + 1, then d′∗i = d∗i . Otherwise, d∗i (sk) = dγ

j (sk). Consider

a slot sl where d∗i (sl) ≥ dγ
j (sl) + 1. Let Υ(d, s, c) be distribution d but with c agents

added to slot s. Let d′ = Υ(d∗i , sl,−1), and let d′′ = Υ(d′, sk, 1). We know from

the first property of ∆ that ∀s (∆(d′, s) ≤ ∆(dγ
j , s)), since d′ ≥ dγ

j . Similarly, from

the second property of ∆ we know that ∆(d′, sk) = ∆(dγ
j , sk), since d′(sk) = dγ

j (sk).

Therefore, s = sk maximizes ∆(d′, s). This implies that z(Φ, d′′) ≥ z(Φ, Υ(d′, sl, 1)).

Since Υ(d′, sl, 1) = d∗i is ideal, d′′ must also be ideal. Since d′′ ≥ dγ
j+1, we have proven

the inductive step.

2.4.3 ε-Optimality

Although theorem 2.10 showed that the bulletin board mechanism cannot be optimal,

it turns out that it can be made arbitrarily close to optimal. We now show that there

32 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

exists no other equilibrium of any other mechanism which will yield a value of z larger

than z(Φ2, ϕ2) + ε for arbitrarily small ε.

Theorem 2.12 (Φ2, ϕ2) is ε-optimal.

Remark. This is a key result, because it shows that we can get arbitrarily close

to an optimal equilibrium with a mechanism that could actually be used in practice.

Furthermore, the fact that the equilibrium is strict is encouraging, because it means

that an agent could not reduce z by deviating from ϕ2 without also reducing his own

utility.

Proof. First, we prove by contradiction that Φ2 yields z that is within nε of any

other Φ, both given the same equilibrium. Assume that there exists a pair (Φ, ϕ) such

that z(Φ, ϕ) > z(Φ2, ϕ)+nε. Since the equilibrium is the same for both mechanisms,

we can expand z on both sides and simplify to get E[R|Φ, ϕ] > E[R|Φ2, ϕ]+nε, which

implies E[Ri|Φ, ϕ] > E[Ri|Φ2, ϕ] + ε for at least one agent ai. Φ2 sets values of p, q

and m so that for all slots agent ai’s expected utility is v(s)−E[Ri|Φ2, ϕ] = ε. Thus

for Φ we have ∀s ui(s) < 0, implying that Φ is non-participation-safe, a contradiction.

Second, we now consider the case where Φ and Φ2 have different equilibria. As

shown above in lemma 2.11, the ideal distribution d∗ is achieved by (Φ2, ϕ2), hence

∀Φ, ϕ z(Φ2, ϕ2) ≥ z(Φ2, ϕ) ≥ z(Φ, ϕ)− nε.

2.4.4 Implementation Considerations

We point out that ε-optimality means that the mechanism can lose ε per agent; in

practice, ε would have to be large enough to overcome agents’ indifference between

nearly-identical payoffs and encourage them to coordinate.

Although we speak about agent strategies throughout this chapter, it is worthwhile

to note that in a real system these strategies would probably be implemented in

software that most users would not be able to change easily. Of course, this is not an

argument against equilibrium analysis or the careful design of economic mechanisms.

If agents could gain by deviating, there would be an incentive for users to change their

software, and once software has been modified it is easily redistributed. However, the

2.5. COLLECTIVE REWARD MECHANISM 33

fact that the mechanism designer could in many cases distribute client software is

significant because it can act as a coordination device: agents’ common knowledge

of using the same software could help them to coordinate to an equilibrium the

mechanism designer has preselected. Although the bulletin board mechanism gives

rise to non-ε-optimal equilibria, these might be avoided if client software helped agents

to coordinate to ϕ2.

2.5 Collective Reward Mechanism

We now consider the more general and realistic case where each agent may have a

different vi, bounded by vl and vu, as described in Section 2.2. Recall that since the

network does not know each agent’s v, we can no longer tune m, q, and p to extract

the maximum amount of revenue from each agent.

In this section we also allow the network to give signals to agents, to allow the

agents to coordinate to a desirable equilibrium; we also show how collective reward

may be used to prevent agents from deviating. We define mechanism Φ3 as follows:

1. Each agent indicates that he will participate.

2. The network gives a signal to each agent from {1, . . . , t}.

3. Agents choose time slots.

4. The network determines whether each slot will retroactively be made free.

In this mechanism, the chance that slot s will be free, p(s), depends on the number

of agents who chose slot s, d(s). Let count(s) be the number of agents who were given

the signal s. Define d+(s) = d(s) − count(s). For the collective reward mechanism

Φ3:

p(s) =

{
pb(s) if d+(s) ≤ 0

0 if d+(s) > 0
(2.14)

Thus Pi = pb(Ai) if d+(s) ≤ 0 and Pi = 0 otherwise, where pb(·) is defined below.

34 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

We will assign signals to agents so that count(s) = d∗(s), where d∗ is now ideal

for pb(s). The idea of this mechanism is that agents who choose the slot s to which

they are assigned will get that slot free with probability pb(s), and agents who deviate

to another slot will pay m. The p(s) used for this mechanism will thus differ from

p(s) for the previous two mechanisms. The intuitive reason for the change is that

in Φ1 and Φ2 we used p to make agents indifferent between all slots. Now, however,

we use p so that agents will not deviate from an assignment to a particular slot. We

will construct pb so that each agent ai will choose his assigned slot even when ai has

the lowest possible valuation for the slot corresponding to his signal, and the highest

possible valuation for s, the most profitable slot to which he could deviate. When an

agent is assigned a slot s 6= s, this condition can be formalized as:

vl(s)− (
1− pb(s)

)
m = vu(s)−m + ε (2.15)

Here as before ε is a small, positive value used to make agents strictly prefer the

slot to which they are assigned. It can be interpreted as an offset to vu, giving us

a strict upper bound on agents’ utilities. If we make an agent with this impossibly

high valuation for slot s indifferent between his assigned slot and s, then any agent

who actually plays the game must prefer his assigned slot. We can now derive pb:

pb(s) =

{
vu(s)−vl(s)+ε

m
if s 6= s

0 if s = s
(2.16)

The case of s = s is considered separately because an agent assigned to this slot

has no incentive to deviate. Note that if vi(s) = vi(s) is possible for an s 6= s, then

we would have to change the definition of pb to maintain a strict equilibrium, giving

ε′ probability of awarding s free.

We now need to give bounds on m. The condition that pb(s) ≤ 1 can be rewritten,

combined with the requirement that the mechanism be participation-safe, as:

vu(s)− vl(s) + ε ≤ m ≤ vl(s) (2.17)

For Φ3 q is defined as:

2.5. COLLECTIVE REWARD MECHANISM 35

q =
∑

i6=s

(vu(s)− vl(i) + ε

m

)
(2.18)

To maximize expected revenue, the collective reward mechanism sets m to its

upper bound of vl(s).

2.5.1 Equilibria

An equilibrium ϕ3 is for each agent aj to select the slot corresponding to his signal.4

Consider the case where all other agents follow this strategy, and one remaining agent

ai decides his strategy. If agent ai selects slot s as above, then his expected utility

is ui(s) = vi(s) −
(
1 − pb(s)

)
m. Deviating to even the best slot only gives him

ui(s) = vi(s)−m. We have defined pb so that in this case ai strictly prefers slot s.

There are no equilibria of the collective reward mechanism for which d 6= d∗.

Consider any distribution of agents such that d 6= d∗. There must be some s1 such

that d+(s1) < 0, and some other s2 such that d+(s2) > 0. An agent in s2 thus has no

chance of a free slot, and he receives utility of at most vi(s)−m. If he switches to s1,

then his probability of receiving a free slot becomes pb(s1) because d+(s1) ≤ 0. Since pb

is constructed so that this agent receives more utility, on expectation, than vi(s)−m,

he has incentive to move to slot s1. However, there do exist equilibria in which agents

do not select slots corresponding to the signals they receive. For example, consider

the case where agent ai deterministically selects the slot σ(n+1− i). (Note that this

could occur even if agent ai did not know what signal agent an+1−i receives.) In this

case the distribution of agents is d∗, and so the analysis above demonstrates that all

agents have a disincentive to deviate. Another example is where all agents select the

slot corresponding to their signals except where agent ai chooses slot σ(j) and agent

aj chooses slot σ(i).

4This note is intended for readers familiar with game theory. Consider the space of all functions
H : N → {1, . . . , t} mapping from agent names to suggested slots. Let Prob be a probability
distribution over all functions h ∈ H that give rise to the agent distribution d∗. If signals are assigned
based on an h drawn from Prob then ϕ3 can easily be formulated as a correlated equilibrium.
However, for ease of exposition and to emphasize the sequential assignment of agent signals for
implementation reasons, we do not make further use of this formulation.

36 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

Harmful collusion is not possible under the collective reward mechanism. A single

agent who deviates from ϕ3 can harm other agents by denying them a chance at a

free slot. However, no set of agents is able to improve other agents’ chance of getting

a free slot, and so there is no way that a cartel of agents could benefit from colluding.

Theorem 2.13 (Φ3, ϕ3) is c-optimal for c = maxs

(
vu(s)− vl(s)

)
+ε.

Remark. Because it depends on bounds rather than on agents’ actual valuations,

ϕ3 is not optimal. However, this theorem shows that we can prove a bound on the

optimality of ϕ3, showing that the network can lose no more than maxs

(
vu(s) −

vl(s)
)
+ε in revenue from each agent.

Theorem 2.14 (Φ3, ϕ3) is c-optimal for c = maxs

(
vu(s)− vl(s)

)
+ε.

Proof. Define vl+c−ε(s) = vl(s)+c−ε: an upper bound on vu and thus on all possible

v functions for agents. We now define variants of Φ3 based on different agent v func-

tions: Φa
3 when agents have different, arbitrary v functions, and Φl

3 and Φl+c−ε
3 for

the cases when all agents’ functions are vl and vl+c−ε, respectively. In each variant we

assume that the network has full knowledge of agents’ valuations and can set different

p’s for each agent. Let da, dl, and dl+c−ε be the corresponding ideal distributions aris-

ing from ϕ3 in their respective mechanisms. The revenue extracted from each agent

in equilibrium of Φa
3 , Φl

3 or Φl+c−ε
3 is: (1− p(s))m = (1− v(s)−v(s)+ε

v(s)
)v(s) = v(s)− ε.

We also make the change that each of these variants of Φ3 sets ε = 0 when it deter-

mines pb. This has the consequence that equilibrium ϕ3 still holds but is no longer

strict. Each variant will then extract the full v(s) from each agent in ϕ3. Each of

these mechanism-equilibrium pairs is optimal, following an argument analogous to

the one given in the proof of theorem 2.8 (not given here): the mechanism makes

each agent pay exactly his valuation, and achieves an ideal distribution. Thus, for

any set of arbitrary v functions that Φ3 encounters, z(Φa
3 , ϕ3) represents the optimal

evaluation. We now bound how far Φ3 can be from this amount.

By definition, z(Φl
3 , ϕ3) = g(dl) +

∑
i v

l(si). We know that dl+c−ε = dl be-

cause vl+c−ε differs only by a constant from vl at each slot. Thus, z(Φl+c−ε
3 , ϕ3) =

z(Φl+c−ε
3 , ϕ3) = g(dl) +

∑
i v

l+c−ε(si) = g(dl) +
∑

i v
l(si) + (c − ε)n. This implies

2.6. DISCRIMINATORY MECHANISM 37

that z(Φl
3 , ϕ3) + (c − ε)n = z(Φl+c−ε

3 , ϕ3); it remains to show that z(Φl+c−ε
3 , ϕ3) ≥

z(Φa
3 , ϕ3). Note that z(Φl+c−ε

3 , ϕ3) ≥ z(Φl+c−ε
3 , ϕ3) by definition of dl. Also,

z(Φl+c−ε
3 , ϕ3) ≥ z(Φa

3 , ϕ3) because vl+c−ε is an upper bound on each of the v’s in

the case of Φa
3 and g(da) is common to both terms. Thus z(Φl

3 , ϕ3) + (c − ε)n =

z(Φl+c−ε
3 , ϕ3) ≥ z(Φa

3 , ϕ3). Now we return to the real Φ3. The optimal distribution

is dl, and in ϕ3 the network extracts ε less revenue from each agent than Φl
3 did

because it does not set ε = 0. Thus, z(Φ3, ϕ3) + nε = z(Φl
3 , ϕ3). Combining the

last two equations, we can conclude: z(Φ3, ϕ3) + cn ≥ z(Φa
3 , ϕ3), and thus that ϕ3 is

c-optimal.

It follows from this statement that if we revert back to the setting from Sections

2.3 and 2.4 (where vu(s) = vl(s)), the network will lose only ε in revenue from each

agent. It is only the change to bounds on valuation functions that causes the weaker

claims on optimality for this mechanism and the next.

Corollary 2.15 (Φ3, ϕ3) is ε-optimal for vl = vu.

Proof. This follows directly from the preceding theorem, because vl = vu implies

that c = ε.

2.5.2 Implementation Considerations

We observe that it may involve less overhead to assign single, persistent signals to

agents if the game will be repeated many times. In this case, the collective reward

mechanism may be used as above but without the signalling phase, and with each

agent aj who did not participate counted by d+ as having participated in slot σ(j).

This allows ϕ3 to hold in the case where signals are not assigned repeatedly with the

penalty that ϕ3 will only be c-optimal for c = maxs

(
vu(s)− vl(s)

)
+ε when all agents

participate.

2.6 Discriminatory Mechanism

A disadvantage of the bulletin board mechanism is that it reimburses some agents

at the end of the game rather than simply waiving their fees. This requires tracking

38 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

individual agents’ behavior and executing more financial transactions, both of which

could be costly to the network. Also, the bulletin board mechanism has non-optimal

equilibria. Finally, irrational agents can harm others in both the bulletin board and

collective reward mechanisms. These problems are eliminated by the discriminatory

mechanism, Φ4, which makes use of agent signals and also discriminates by offering

different free slots to different agents (although, as we will see in Section 2.6.2 it

makes new demands of the network that will sometimes be undesirable):

1. Each agent indicates that he will participate.

2. The network assigns signals to agents from {1, . . . , t} according to the d∗ that

is ideal for pb.

3. The network chooses “potentially free” slots according to pb.

4. Each agent indicates what slot he selects.

5. The network checks only those agents in each slot si that was picked to be

“potentially free” (for all agents who chose other slots, Pi = 0) . If agent aj in

slot si has σ(aj) = si then Pj = pb(Aj); otherwise Pj = 0.

2.6.1 Equilibria

Agent ai’s dominant strategy is to choose the slot corresponding to his signal. The

analysis exactly follows that for ϕ3; we call this equilibrium ϕ4. The only difference

is that an agent’s expected utility does not depend on other agents’ strategies, and

hence ϕ4 is an equilibrium in dominant strategies. A consequence is that ϕ4 is unique.

By exactly the same argument that was given in the proof of theorem 2.13, (Φ4, ϕ4)

is c-optimal for c = maxs

(
vu(s) − vl(s)

)
+ε. The same corollary also holds, and so

(Φ4, ϕ4) is ε-optimal for the special case where vu = vl.

It may seem disappointing from a game-theoretic point of view that neither strat-

egy nor even payoffs under the discriminatory mechanism depend on the actions of

other agents. However, this may be seen as an advantage of the discriminatory mech-

anism, since irrational agents are not able to harm others.

2.6. DISCRIMINATORY MECHANISM 39

2.6.2 Implementation Considerations

As compared to the collective reward mechanism, the discriminatory mechanism

makes two additional demands of the network. First, the network must keep track of

the signals that are given to agents in the second step, so that they can be verified in

the fifth step. In collective reward the system does not need any sort of user accounts;

rather, it greedily assigns signals to agents, recording only the number of agents who

received each signal.

Second, the discriminatory mechanism requires the network to verify user identi-

ties. In contrast, the collective reward mechanism simply counts the number of agents

who chose each slot. Under the discriminatory mechanism the network only has to

check the identity of agents from q slots on expectation, since agents who choose a

slot that is not potentially free do not have to be checked. It would be possible for

the network to assume that all agents in possibly free slots have played according to

the dominant strategy and to randomly check only a subset of the agents in these

slots, but this would reduce the penalty for defection and thus sacrifice c-optimality.

In order to permit this verification, the mechanism can assign signals to agents in

two different ways. The obvious option is to assign signals to agents as described in

theorem 2.11, to store the numbers in some sort of user account requiring login and

then to verify that agents selected the appropriate slot by requiring them to log in

again before using the network resource. This approach requires further data storage

by the mechanism, but the resulting d will be ideal and thus the mechanism will

be c-optimal as argued above. If this data storage is not desirable, a deterministic

function may be used to calculate the slot that may be offered free to a given agent,

and the same function may be used to determine whether each agent has selected

the appropriate slot. For example, a hash of the agent’s IP address—or of any other

identifying information from the packet header—could be used. This approach has

the disadvantage that it sacrifices optimality and for steps 2 and 5 in the mechanism,

but the advantage that no information about identifying individual agents must be

stored by the mechanism.5 Indeed, if the function itself is publicized then the first two

5Another disadvantage is that an agent could register from one computer, receive a slot assign-
ment, use the network from a second computer and be denied a chance for a free slot because the

40 CHAPTER 2. CONGESTION MANAGEMENT IN NETWORKS

steps may be omitted from the mechanism, requiring only one interaction between

agents and the network.

2.7 Comparison of Different Mechanisms

Table 2.1 summarizes and contrasts the mechanisms discussed in this chapter. For

convenience, we have divided the display into three parts: (i) a list of mechanism

characteristics, (ii) a comparison of the outcomes of the mechanisms, and (iii) costs

associated with executing the mechanisms.

2.8 Conclusions

Focused loading is a predictable network congestion problem. It is caused by a pref-

erence users have for transacting with a network resource at a specific time when the

network charges transactions equally over a period of time. For example, focused

loading frequently causes web servers to crash. In this chapter we have taken an

economic approach to de-focusing load by devising incentive schemes for encouraging

users to desynchronize their transaction times. While general congestion-management

techniques may be applicable to this problem, the use of a specialized solution is at-

tractive because additional information about the problem can be used to increase

revenue and reduce demands on the network.

We present a theoretical model of the problem, and discuss four mechanisms that

induce selfish agents to smooth out their resource demands by probabilistically waiv-

ing the cost of resource usage. We show one very simple mechanism that achieves

a weak load-balancing equilibrium, and three other, somewhat more complex mech-

anisms that balance load in strict equilibria or dominant strategies. Two of our

mechanisms concern the case where all agents have the same valuations for different

time slots, and two generalize to the case where the mechanism knows only bounds

second computer’s IP did not hash to the same signal. This could be addressed by requiring agents
to use the network from the computer from which they registered, and permitting them to register
again if they change their mind about which machine they want to use.

2.8. CONCLUSIONS 41

Φ1: Φ2: Φ3: Φ4:
Preselection Bulletin Collective Discriminatory

Board Reward
Earliest possible Before any After all After each After each

free slot selection time slots time slots time slot time slot
Agent signals No No Yes Yes

The network must No No No Yes, or
store agent signals hash IP
Agents may have No No Yes Yes

different v functions
Time required for None Substantial Negligible Negligible
coordination phase

Type of equilibrium Weak Strict Strict Dominant
or strategy equilibrium equilibrium equilibrium strategy
Non-optimal Yes Yes No No

equilibria exist
Revenue increases No Yes Yes Yes
if agents deviate
Harmful collusion No No No No
Irrational actions No actions Yes Yes No
harm other agents are irrational

Time cost after O(n) O(n) O(n) O(n)
coordination phase

Storage cost O(q) O(t) O(n) O(n)
(free slots) (d) (moves) (signals, identities)

Communication cost O(n) O(nt) O(n) O(n)

Table 2.1: Comparison of Φ1, Φ2, Φ3, Φ4

on agent valuations. We prove optimality and ε-optimality of the revenue/load bal-

ancing trade-off in the first case, and a bound on the optimality of this trade-off in

the second case.

Chapter 3

Bidding Rings in First Price

Auctions

We identify a self-enforcing collusion protocol (a “bidding ring”) for first-price auc-

tions. Unlike previous work on this topic, we allow for the existence of multiple cartels

in the auction, we include the choice of whether or not to collude as part of agents’

strategy space, and we do not assume that non-colluding agents hold false beliefs.

We show a Bayes-Nash equilibrium in which agents choose to join bidding rings when

invited and truthfully declare their valuations to a ring center. Furthermore, we show

that the existence of bidding rings benefits ring centers and all agents, both members

and non-members of bidding rings, at the auctioneer’s expense.

3.1 Introduction

We consider the question of how agents can gain by coordinating their bidding in

non-repeated single-good auctions, even when all agents still act selfishly. The case

of second-price auctions is well-studied; we concentrate on the comparatively less-

studied case of first-price auctions. This problem is important for several reasons.

First, collusion is a widespread phenomenon; understanding the topic theoretically

can help auctioneers to modify the rules of their auctions in order to make collusion

42

3.1. INTRODUCTION 43

more difficult. Second, the problem of designing protocols that allow agents to max-

imize their expected utility in existing economic mechanisms is a topic of increasing

study in artificial intelligence; cf., [Wellman et al., 2003]. Finally, there exist uses of

bidding rings that might not fall under the legal definition of collusion. For example,

a corporation could use a bidding ring to choose one of its departments to bid in

an external auction, avoiding bidding against itself while avoiding dictatorship and

respecting each department’s self-interest. Collusion may also be permitted by the

auctioneer: e.g., by an internet market seeking to attract more bidders.

Graham and Marshall [1987] wrote one of the first formal papers on collusion,

considering second-price auctions. This paper introduced the knockout procedure:

agents announce their bids in a knockout auction; only the highest bidder goes to the

auction but this bidder must pay a “ring center” the amount of his gain relative to

the case where there was no collusion. The ring center pays each agent in advance;

the amount of this payment is calculated so that on expectation the ring center will

budget-balance ex ante, before knowing the agents’ valuations.

Graham and Marshall’s work has been extended to deal with variations in the

knockout procedure, differential payments, and relations to the Shapley value [Gra-

ham et al., 1990]. The case where only some of the agents are part of the cartel

is discussed by Mailath and Zemsky [1991]. von Ungern-Sternberg [1988] discusses

collusion in second-price auctions where the designated winner of a cartel is not the

agent with the highest valuation. Although we are not aware of any work that presents

this result, it is also easy to extend the protocol to an environment containing both

multiple cartels and independent bidders.

Less formal discussion of collusion in auctions can be found in a wider variety of

papers. For example, a survey paper that discusses mechanisms that are likely to

facilitate collusion in auctions, as well as methods for the detection of such schemes,

can be found in [Hendricks & Porter, 1989]. A discussion and comparison of the

stability of rings associated with classical auctions can be found in [Robinson, 1985],

concentrating on the case where the valuations of agents in the cartel are honestly

reported. Collusion is also discussed in other settings, e.g., aiming to influence pur-

chaser behavior in a repeated procurement setting [Feinstein et al., 1985] and in the

44 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

context of general Bertrand or Cournot competition [Cramton & Palfrey, 1990].

3.1.1 Collusion in First-Price Auctions

A very influential paper by McAfee and McMillan [1992] presented the first theoretical

results on collusion in first-price auctions. This work assumes that a fixed number of

agents participate in the auction and that all agents are part of a single cartel that

coordinates its behavior in the auction. The authors show optimal collusion protocols

for “weak” cartels (in which transfers between agents are not permitted: all bidders

bid the reserve price, using the auctioneer’s tie-breaking rule to randomly select a

winner) and for “strong” cartels (the cartel holds a knockout auction, the winner of

which bids the reserve price in the main auction while all other bidders sit out; the

winner distributes some of his gains to other cartel members through side payments).

A small part of the paper deals with the case where in addition to a single cartel

there are also additional agents. However, results are shown only for two cases: (1)

where non-cartel members bid without taking the existence of a cartel into account

(i.e., either they are irrational or they hold the false belief that no cartels exist) and

(2) where each agent i has valuation vi ∈ {0, 1}. The authors explain that they

do not attempt to deal with general strategic behavior in the case where the cartel

consists of only a subset of the agents; furthermore, they do not consider the case

where multiple cartels can operate in the same auction.

3.1.2 Overview

Our goal is to extend past work on collusion in first-price auctions by relaxing many

of the assumptions described above. First, we want to allow for the possibility that

some bidders will not belong to a cartel, while preserving the standard game-theoretic

setting in which agents are rational and do not hold false beliefs in equilibrium.

Second, we want to allow for the possibility that more than one cartel will exist,

introducing the new wrinkle that cartel members must reason about the behavior of

other cartels. Other features of our model are that bidders have uncertainty about

the number of participants in the auction, bidders’ valuations are real numbers drawn

3.2. MODELING FIRST-PRICE AUCTIONS 45

from an interval according to an arbitrary distribution (as compared, e.g., to the

case described above where valuations take one of only two discrete values), and the

decision of whether or not to join a bidding ring is part of an agent’s choice of strategy.

Section 3.2 describes what we consider to be the simplest economic environment

and first-price auction mechanism that do not implicitly rule out the possibility of

collusion. Section 3.3 gives two important lemmas that are necessary for our main

results, but which do not directly concern collusion. Section 3.4 describes all our

results concerning bidding rings. We extend the model from Section 3.2 to give a

model of the economic environment and an augmented auction mechanism for bidding

ring invitees. We show that this protocol results in a Bayes-Nash equilibrium, and

also that the bidding ring protocol helps both members and non-members in several

senses.

3.2 Modeling First-Price Auctions

In this section we will present an “auction hall” setting, in which bidders are aware

of the number of other bidders placing bids in the auction hall, but are uncertain

about the number of bidders who remained at home after losing a knockout auction.

First, however, we introduce notation, and then present two simpler first-price auction

models. We present results about these models that we will need throughout the

remainder of the paper, and also argue why these models are insufficient for the

study of collusion.

3.2.1 Auction Setting

An economic environment E consists of a finite set of agents who have non-negative

valuations for a good at auction, and a distinguished agent 0—the seller or center.

Denote the economic environment described here as Ec. Let T be the set of possible

agent types. The type τi ∈ T of agent i is the pair (vi, si) ∈ V × S. vi denotes an

agent’s valuation: his maximal willingness to pay for the good offered by the center.

We assume that vi represents a purely private valuation for the good, and that vi is

46 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

selected independently from the other vj’s of other agents from a known cumulative

distribution, F , having density function f . We assume only that f is continuous,

atomless, and has support on the interval [0, 1]. By si we denote agent i’s signal: his

private information about the number of agents in the auction. The set of possible

signals S will be varied throughout the chapter. Let ϕ denote the null signal, and

in Ec let S = {ϕ}. Note, however, that the economic environment itself is always

common knowledge, and so agents always have some information about the number

of agents even when they always receive the null signal.

By psi
(n) we denote the probability that agent i assigns to there being exactly n

agents in the auction, conditioned on his signal si. We denote the whole distribution

conditioned on i’s signal as psi
. The utility function of agent i, ui : R → R is

linear, normalized with ui(0) = 0. The utility of agent i (having valuation vi) when

asked to pay t is vi − t if i is allocated a good and −t otherwise. Thus, we assume

that there are no externalities in agents’ valuations and that agents are risk-neutral.

bi : T → R+ ∪ {0} denotes agent i’s strategy, a mapping from i’s type τi to his

declaration in the auction. This may be the null declaration 0, indicating that i will

not participate in the auction.

3.2.2 Classical First-Price Auctions

The choice of information structure is very important for the study of collusion in

first-price auctions. The most familiar case gives rise to what we will call the “clas-

sical” first-price auction, where the number of participants1 is part of the economic

environment (this is what we have called Ec). Using standard equilibrium analysis

(e.g., following Riley and Samuelson [1981]) a unique symmetric equilibrium can be

identified:

Proposition 3.1 If valuations are selected from a continuous distribution F then it

is a unique symmetric equilibrium for each agent i to follow the strategy

1When we say that n agents participate in the auction we do not count the distinguished agent
0, who is always present.

3.2. MODELING FIRST-PRICE AUCTIONS 47

b(vi) = vi − F (vi)
−(n−1)

∫ vi

0

F (u)n−1du.

Observe that the strategy is parameterized by valuation, but also depends on

information from the economic environment. It will be notationally useful for us to

be able to specify the amount of the equilibrium bid as a function of both v and n:

be(vi, n) = vi − F (vi)
−(n−1)

∫ vi

0

F (u)n−1du. (3.1)

We are interested in constructing a collusive agreement that requires low bidders

to drop out of the main auction. It is obvious that such collusion is nonsensical in

a classical first-price auction. When bidders’ strategies depend on the number of

agents in the economic environment, it makes no difference if cartel members with

low valuations fail to submit bids. This is a problem with our auction model rather

than with collusion in first-price auctions per se—in practice bidders might not know

the exact number of agents in the economic environment.

3.2.3 First-Price Auctions with a Stochastic Number of

Bidders

One way of modelling agents’ uncertainty about the number of opponents they face is

to say that the number of participants is drawn from a probability distribution; while

the actual number of participants is not observed, the distribution is commonly known

[McAfee & McMillan, 1987]. This setting requires that we redefine the economic

environment; denote the new economic environment as Es. Let the definition of agents

in Es be the same as in Ec. Denote the probability that n agents will participate in

the auction as p(n); let the support of p be any subset of {2, 3, . . .}. We assume that

after the number of agents is determined, the name of each agent is selected from the

uniform distribution on [0, 1]. An equilibrium was demonstrated by Harstad et al.

[1990]:

Proposition 3.2 If valuations are selected from a continuous distribution F and the

number of bidders is selected from the distribution p then it is a unique symmetric

48 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

equilibrium for each agent i to follow the strategy

b(vi) =
∞∑

j=2

F j−1(vi)p(j)∑∞
k=2 F k−1(vi)p(k)

be(vi, j).

Observe that be(vi, j) is the amount of the equilibrium bid for a bidder with

valuation vi in a setting with j bidders as described in Section 3.2.2 above. p is

deduced from the economic environment. We overload our previous notation for the

equilibrium bid, this time as a function of the agent’s valuation and the probability

distribution p:

be(vi, p) =
∞∑

j=2

F j−1(vi)p(j)∑∞
k=2 F k−1(vi)p(k)

be(vi, j). (3.2)

This auction model is still unable to model collusion in a first-price auction. If

each agent knows only the distribution of agents interested in participating in the

auction, his strategy will not be affected if one or more interested agents drop out!

Again, this is a deficiency with our model. In some settings agents may know how

many agents bid in the auction, even though they may not know the number of agents

who chose not to bid. For example, when an auction takes place in an auction hall, no

bidder knows how many potential bidders stayed home, but every bidder can count

the number of people in the room before placing his or her bid. It is in this sort of

auction that collusion based on dropping agents with low valuations could work. We

must first introduce a new type of auction to model this auction hall scenario.

3.2.4 First-Price Auctions with Participation Revelation

We define first-price auctions with participation revelation as follows:

1. Agents indicate their intention to bid in the auction.

2. The auctioneer announces n, the number of agents who registered in the first

phase.

3. Agents submit bids to the auctioneer. The auctioneer will only accept bids from

agents who registered in the first phase.

3.3. SOME TECHNICAL RESULTS 49

4. The agent who submitted the highest bid is awarded the good for the amount

of his bid; all other agents are made to pay 0.

When a first-price auction with participation revelation operates in Es, the equi-

librium of the corresponding classical first-price auction holds.

Proposition 3.3 In Es it is an equilibrium of the first-price auction with participa-

tion revelation for every agent i to indicate the intention to participate and to bid

according to be(vi, n).

Proof. Agents always gain by participating in first-price auctions when there is

no participation fee. The only way to participate in this auction is to indicate the

intention to participate in the first phase. Thus the number of agents announced by

the auctioneer is equal to the total number of agents in the economic environment.

From Proposition 3.1 it is best for agent i to bid be(vi, n) when it is common knowledge

that the number of agents in the economic environment is n.

In practice, a first-price auction with participation revelation may often be a

more realistic model than a classical first-price auction, since it covers cases where

bidders do not know a priori the number of opponents they will face. However,

when bidders are unable to collude there is no strategic difference between these

two mechanisms, possibly explaining why the simpler classical model is commonly

used. For the study of bidding rings, however, the difference between the mechanisms

is profound—we are now able to look for a collusive equilibrium in which bidder

strategies to depend only on the number of other agents who “show up” for the

auction, without having to assume that bidders are irrational or hold false beliefs

about the economic environment.

3.3 Some Technical Results

This section proves several novel technical results that are necessary for our results

about bidding rings, all concerning economic environments in which bidding rings do

not exist, but in which the number of bidders is stochastic. First, we discuss the

50 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

existence of an equilibrium in a setting where agents receive asymmetric information

about the number of participants, and are furthermore subject to asymmetric pay-

ment rules. Second, we prove a key result about how changes in the distribution

over the number of participants in a first-price auction in Es affect the amount of the

equilibrium bid be.

3.3.1 Regular Asymmetric Auctions

We describe a class of auction mechanisms that are asymmetric in the sense that

all agents are subject to the same allocation rule but may receive different signals

about the number of participants in the auction and may be made to pay according

to different payment rules.2 Let S = {ϕ, 2, 3, . . .}. A bid from agent i is denoted as

µi ∈ R+ ∪{0}, the tuple of bids from all agents is denoted as π ∈ Π and an auction’s

transfer function for agent i (determining i’s payment) is ti : R+ ∪ {0} × Π → R.

Definition 3.4 An auction Ms is aligned with signal s ∈ S if Ms allocates the good to

an agent i with µi ∈ maxj µj, and Ms is a symmetric truth-revealing direct mechanism

for a stochastic number of agents drawn from ps, each of whom receives the signal ϕ.

By the revelation principle, for every distribution over the number of agents p and

for every signal s ∈ S there exists an aligned auction Ms.

Definition 3.5 M̄ is a regular asymmetric auction if it allocates the good to an agent

i with µi ∈ maxj µj, and if each agent i is made to transfer tsi
(µi, π) to the center,

with tsi
taken from an auction Msi

that is aligned with signal si.

Lemma 3.6 Truth-revelation is an equilibrium of regular asymmetric auctions.

Proof. The payoff of agent i is uniquely determined by the allocation rule, the

transfer function tsi
, the distribution over the number of agents in the auction, and all

agents’ strategies. Assume that the other agents are truth revealing, then each other

agent’s behavior, the allocation rule, and agent i’s payment rule are all identical in

2Of course, this is in addition to the sense in which all auctions are asymmetric: agents have
different valuations for the good.

3.3. SOME TECHNICAL RESULTS 51

M̄ and Msi
. Conditioned on his private information si, agent i’s posterior is that psi

is the distribution over the number of agents in the auction. Since truth-revelation is

an equilibrium in Msi
when the distribution of agents is psi

, truth-revelation is agent

i’s best response in M̄ .

3.3.2 Relating p to be

It is intuitive to expect that in first-price auctions, the amounts of agents’ equilibrium

bids increase with the number of participating agents. We can easily verify that this

is true in the classical case:

Lemma 3.7 ∀v, ∀j ≥ 2, be(v, j + 1) > be(v, j).

Proof. From Equation (3.1), we can write

be (v, j + 1)− be (v, j) =

∫ v

0

(
1−

(
F (u)

F (v)

))(
F (u)

F (v)

)j−1

du. (3.3)

The first factor in the integrand is clearly always positive, so the right-hand side of

Equation (3.3) is positive. Thus be (v, j) is strictly increasing in j.

This intuition does not transfer to first-price auctions with a stochastic number

of bidders, in the sense that auctions with larger expected numbers of participants

do not always yield higher equilibrium bids.

Example 3.8 Consider a distribution p such that the probability mass is evenly di-

vided between two numbers of agents, jlow and jhigh, such that jhigh = jlow + κ, and

consider the strategy of agent i. The classical case is recovered if κ = 0, in which case

i’s equilibrium bid will just be be(vi, jlow). If κ is increased to 1, the equilibrium bid in-

creases by a finite amount to some be(vi, p) ∈ (be(vi, jlow), be(vi, jhigh)), as determined

by Equation (3.2). As κ is increased to an arbitrarily high value, F (vi)
jhigh−1, the

probability that agent i has the highest valuation when there are jhigh agents involved,

approaches zero. With arbitrarily close to unit probability, there will be jlow agents

involved when agent i has the highest valuation, and Equation (3.2) indicates that i’s

52 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

bid will be arbitrarily close to the κ = 0 result. Thus while the κ → ∞ distribution

has a higher expected number of participants than the κ = 1 distribution, it elicits a

lower equilibrium bid.

This phenomenon also occurs among distributions of practical interest. So in

a first-price auction with a stochastic number of participants, simply knowing that

distribution p has a smaller expected number of participants than distribution p′ is

not enough to know which distribution gives rise to a lower symmetric equilibrium

bid for a given valuation. In what follows, we identify a class of pairs of distributions

(p, p′) for which it does hold that be(vi, p) < be(vi, p
′).

Let rj (F, vi, p) denote the probability that j agents participate conditional on

agent i having the highest valuation. This is equal to the probability that j agents

participate and agent i has the highest valuation among these agents, normalized by

the unconditional probability that agent i has the highest valuation. Let Z (F, vi, p)

be the probability that agent i has the highest valuation given that his valuation is

vi.
3 Thus

Z (F, vi, p) ≡
∞∑

k=2

F (vi)
k−1 p (k) (3.4)

rj (F, vi, p) ≡ F (vi)
j−1 p (j)

Z (F, vi, p)
. (3.5)

Observe that Equation (3.2) for the equilibrium bid in a stochastic first-price

auction can be written in terms of the distribution r(F, vi, p):

be(vi, p) =
∞∑

j=2

rj (F, vi, p) be(vi, j). (3.6)

3We can use 2 rather than −∞ as the lower limit of the sum in Equation (3.4) because p(k)
has support which is a subset of {2, 3, . . .}. While Z (F, vi, p) is undefined when F (vi) = 0, this
technicality is of no practical interest.

3.3. SOME TECHNICAL RESULTS 53

The cumulative distribution Rm (F, vi, p) for the distribution r, denoting the prob-

ability that m or fewer agents participate conditional on i having the highest valua-

tion, is given by

Rm (F, vi, p) ≡
m∑

j=2

rj (F, vi, p) . (3.7)

Let D` be the set of all distributions d : Z→ R with support on a subset of the

integers greater than or equal to `. Since auctions with less than two participating

agents are not interesting, we are primarily concerned with distributions of numbers of

agents that belong to D2. Let x and y be independent random variables respectively

distributed according to p ∈ D2 and q ∈ D0, and consider the distribution of their

sum, which we call p′. Since x and y are independent, the probability of their sum

being m is just the sum of the product of the individual probabilities of values of x

and y that sum to m:

p′ (m) =
∞∑

j=0

p (m− j) q (j) . (3.8)

Summing independent distributions in this way corresponds to convolution, which

we denote symbolically as p′ = p ∗ q. Observe that convolution is associative and

commutative. We denote repeated convolution of an arbitrary distribution d

⊗
n

d ≡
d repeated n times︷ ︸︸ ︷

d ∗ d ∗ d ∗ . . . ∗ d . (3.9)

We define the Kronecker delta (an indicator function) as

δm (j) =

{
1 if j = m;

0 otherwise.
(3.10)

We make use of the following identity, which can be inferred from Equation (3.8),

later in the chapter:

54 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

⊗
j

δk = δ(j·k) (3.11)

Lemma 3.9 ∀p, p′ ∈ D2, ∀q ∈ D0, p′ = p ∗ q and q (0) < 1 implies that be (vi, p) <

be (vi, p
′).

Proof. The proof has two parts. First we show that for every j, the probability

that no more than j bidders participate conditional on bidder i having the highest

valuation is at least as high when the number of agents is drawn from p as when

it is drawn from p′, and that for some j this probability is higher in p than in p′.

Next, we show that this relationship between conditional probabilities implies that

the equilibrium bid is smaller under p than under p′.

Step 1: First, we show that ∀j, Rj (F, vi, p
′) ≤ Rj (F, vi, p), and that ∃j,

Rj (F, vi, p
′) < Rj (F, vi, p).

Consider the difference between the cumulative distributions:

∆Rj ≡ Rj (F, vi, p)−Rj (F, vi, p
′)

=

j∑
m=−∞

(
F (vi)

m−1 p (m)

Z (F, vi, p)
− F (vi)

m−1 p′ (m)

Z (F, vi, p′)

)
. (3.12)

The denominators can be related as follows:

Z(F, vi, p
′) =

∞∑

k=−∞
F (vi)

k−1

∞∑
j=0

p(k − j)q(j)

=
∞∑

j=0

∞∑

k=−∞

(
F (vi)F (vi)

j−1F (vi)
k−j−1

)
p(k − j)q(j) (3.13)

= F (vi)
∞∑

j=0

F (vi)
j−1 q (j)

∞∑

k=−∞
F (vi)

k−j−1 p (k − j)

= F (vi) Z (F, vi, q) Z (F, vi, p) . (3.14)

Substituting (3.14) into Equation (3.12), and making use of Equation (3.8),

3.3. SOME TECHNICAL RESULTS 55

∆Rj =
1

Z (F, vi, p′)

j∑
m=−∞

(
Z (F, vi, q) F (vi)

m p (m)

−F (vi)
m−1

∞∑

k=0

p (m− k) q (k)

)
(3.15)

=
F (vi)

Z (F, vi, p′)

(∞∑

k=0

q (k) F (vi)
k−1

j∑
m=−∞

F (vi)
m−1 p (m)

−
∞∑

k=0

q (k) F (vi)
k−1

j∑
m=−∞

F (vi)
m−k−1 p (m− k)

)
(3.16)

=
F (vi)

Z (F, vi, p′)

∞∑

k=0

q (k) F (vi)
k−1

(
j∑

m=−∞
F (vi)

m−1 p (m)

−
j−k∑

m=−∞
F (vi)

m−1 p (m)

)
. (3.17)

To obtain Equation (3.16), we have reordered the sums, made use of Equation (3.4)

and performed factoring like that done to obtain Equation (3.13). To obtain Equation

(3.17), we have factored the bracketed expression in (3.16) and shifted the dummy

indices of the second sum.

When k = 0, the bracketed expression in Equation (3.17) is zero, so that term

can be dropped from the sum. The bracketed sums can then be combined, yielding

∆Rj =
F (vi)

Z (F, vi, p′)

∞∑

k=1

(
F (vi)

k−1 q (k)

j∑

m=j−k+1

F (vi)
m−1 p (m)

)
. (3.18)

Since k ∈ [1,∞) in Equation (3.18), the lower summand of the second sum is

always less than or equal to the upper summand, so that sum is well-defined. Fur-

thermore, all of the factors in Equation (3.18) are non-negative, so it remains only to

be established whether ∆Rj > 0 or ∆Rj = 0. Since p ∈ D2, there exists some least

element in the support of p; call this value m∗. For values of j < m∗ the second sum

56 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

in Equation (3.18) gives exactly 0, and ∆Rj = 0. Similarly, for all values of j ≥ m∗,

the second sum is nonzero, and since by assumption ∃k > 0 such that q (k) > 0,

we have that ∆Rj > 0. Thus for all j, Rj (F, vi, p
′) ≤ Rj (F, vi, p), and for some j,

Rj (F, vi, p
′) < Rj (F, vi, p).

Step 2: Now it must be established that (∀j, Rj (F, vi, p
′) ≤ Rj (F, vi, p) and ∃j,

Rj (F, vi, p
′) < Rj (F, vi, p)) implies be (vi, p) < be (vi, p

′).

We must show that ∆b > 0, where we use Equation (3.6) to write

∆b ≡ be (vi, p
′)− be (vi, p)

=
∞∑

m=2

(rm (F, vi, p
′)− rm (F, vi, p)) be (vi,m) .

We rewrite this sum using summation by parts (the discrete analog of integration

by parts). This yields

∆b =
∞∑

m=2

(be (vi,m + 1)− be (vi,m))
m∑

j=2

(rj (F, vi, p)− rj (F, vi, p
′)) (3.19)

=
∞∑

m=2

(be (vi,m + 1)− be (vi,m)) (Rm (F, vi, p)−Rm (F, vi, p
′)) . (3.20)

To obtain Equation (3.19), we have also used the fact that both r(F, vi, p) and

r(F, vi, p) are normalized. Lemma 3.7 tells us that be (vi,m) is strictly increasing in

m; clearly it is always positive. Thus be (vi,m + 1)− be (vi,m) > 0 ∀m. Furthermore,

from Step 1, Rm (F, vi, p) − Rm (F, vi, p
′) is non-negative, and for all m ≥ m∗ it

is greater than zero. The right-hand side of Equation (3.20) is therefore a sum of

products of non-negative factors, of which at least one is a product of strictly positive

factors. Thus ∆b > 0, or be (vi, p) < be (vi, p
′).

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 57

3.4 Bidding Rings for First-Price Auctions

This section contains the chapter’s main technical results. We begin by extending

the economic environment Es to include the characteristics necessary for a model of

bidding rings. We then give the bidding ring protocol for first-price auctions, based

on a first-price auction with participation revelation as described in Section 3.2.4.

We show an equilibrium of this auction, and demonstrate that both ring centers and

agents gain under this equilibrium.

3.4.1 Bidding Ring Economic Environment

Our aim is not to model a situation where agents’ decisions to collude are exogenous,

as this would gloss over the question of whether the collusion is stable. We thus

include the collusive protocol as part of the model and show that it is individually

rational ex-post (i.e., after agents have observed their valuations) for agents to choose

to collude. However, we do consider exogenous the selection of the set of agents who

are offered the opportunity to collude. Furthermore, we want to show the impact

of the possibility of collusion upon non-colluding agents; indeed, even those agents

who do collude must take into account the possibility that other groups of agents in

the auction may also collude. We extend the economic environment Es to consist

of the distinguished agent 0, a randomly-chosen set of agents who have non-negative

valuations for a good at auction and a set of ring centers who do not value the good,

but may invite agents to participate in a bidding ring. We denote the new economic

environment Ebr.

Ring centers

Ring centers are not free to choose their own strategies; rather, they act as part of

the mechanism for a subset of the agents in the economic environment. The selection

of ring centers is similar to the selection of agents in the economic environment Es.

In this case, however, this finite set is considered a set of “potential ring centers”. In

Section 3.4.1 we will describe which potential ring centers are “actualized,” i.e., cor-

respond to actual ring centers. We denote the probability that an auction will involve

58 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

nc potential ring centers as γC(nc). γC may be any distribution the support of which

is a subset of {2, 3, . . .}. We assume that after the number of potential ring centers

is determined, the name of each potential ring center is selected from the uniform

distribution on [0, 1].

Agents

The probability that n agents will be associated with a potential ring center is denoted

γA(n). γA may be any distribution the support of which is a subset of {1, . . .}. If only

one agent is associated with a potential ring center, the potential ring center will not

be actualized and hence the agent will not belong to a bidding ring. In this way we

model agents who participate directly in the auction without being associated with

a ring center. If more than one agent is associated with a potential ring center, the

ring center is actualized and all the agents receive an invitation to participate in the

bidding ring. As before, we assume that after the number of agents is determined,

the name of each agent associated with a potential ring center is selected from the

uniform distribution on [0, 1]. The key consequence of our technical construction of

ring center and agent names is that an agent’s knowledge of the ring center with

whom he is associated does not give him additional information about what other

agents have been selected. Any other technique for providing this property may also

be used; e.g., constructions draw ring center and agent names from finite sets.

We can now give an expression for p, the distribution over the number of agents

in the economic environment Ebr:

p =
∞∑

n=2

γC (n)

(⊗
n

γA

)
. (3.21)

Types and Signals

Recall that the type τi ∈ T of agent i is the pair (vi, si) ∈ V × S. As in Ec, let vi

denote an independent private value for the good, drawn from F . Let S ⊆ N \ {0};
si ∈ S denotes agent i’s private information about the number of agents in his bidding

ring. Of course, if this number is 1 then there is no ring center for the agent to

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 59

deal with, and he simply participates in the main auction. Note also that agents are

neither aware of the number of potential ring centers for their auction nor the number

of actualized potential ring centers, though they are aware of both distributions.

Beliefs

Once an agent is selected, he computes a posterior distribution over the number of

agents in the economic environment. Not all agents will have the same beliefs—agents

who have been signaled that they belong to a bidding ring will expect a larger number

of agents than singleton agents.

We denote by psi
(m) the probability that there are a total of m agents in the

auction, conditioned on agent i’s observation of his own signal si:

psi
=

∞∑
n=2

γC (n)

(⊗
n−1

γA

)
∗ δsi

. (3.22)

Finally, we denote by pn,si
(m) the probability that there are a total of m agents

in the auction, conditioned on i’s signal that there are si agents in his ring and

the additional information that there are a total of n bidding rings and/or singleton

bidders in the auction:

pn,si
=

(⊗
n−1

γA

)
∗ δsi

. (3.23)

3.4.2 First-Price Auction Bidding Ring Protocol

Any number of ring centers may participate in an auction. However, we assume that

there is only a single collusion protocol, and that this protocol is common knowledge.

What follows is the protocol of a ring center who approaches k agents and who

operates in conjunction with a first-price auction with participation revelation in the

economic environment Ebr.

1. Each agent i sends a message µi to the ring center.

60 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

2. If all k agents accept the invitation then the ring center drops all bidders except

the bidder with the highest reported valuation, who we will denote as bidder

h. For this bidder the ring center indicates the intention to bid in the main

auction, and places a bid of be(µh, pn,1).

3. If d > 0 agents decline participation then the ring center indicates an intention

to bid in the main auction on behalf of every agent who accepted the invita-

tion to the bidding ring. For each bidder i, the ring center submits a bid of

be(µi, pn−d,k), where n is the number of bidders announced by the auctioneer.4

4. The ring center pays each member a pre-determined payment cn,k ≥ 0 whenever

all bidders participate in the ring, which is independent of the outcome of the

auction and the amount each bidder bid, but which can depend on n and k.

5. If bidder h wins in the main auction, he is made to pay be(µh, pn,1) to the center

and be(µh, pn,k)− be(µh, pn,1) to the ring center.

We are now ready to prove the main theorem of the chapter.

Theorem 3.10 It is a Bayes-Nash equilibrium for all bidding ring members to choose

to participate and to truthfully declare their valuations to their respective ring centers,

and for all non-bidding ring members to participate in the main auction with a bid of

be(v, pn,1).

Proof. This proof is divided into sections. First, we prove that each category of

bidders is best off choosing to participate. Next, we present a one-stage revelation

mechanism and prove that it is equivalent to the bidding ring protocol when all agents

participate. Finally, we show that the given strategies are in equilibrium when agents

participate.

Participation of non-ring bidder: When there is no participation fee, it is

always rational for a bidder to participate in a first-price auction.

4Observe that in this case, the n announced by the auctioneer will include the d additional agents
who deviate from the bidding ring.

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 61

Participation of ring bidder: Because there is no participation fee, all bidding

ring members will participate in the auction, but must decide whether or not to accept

their bidding ring invitations. Consider the case where cn,k = 0; clearly cn,k > 0 only

increases agents’ incentive to accept the invitation. Assume that all agents except

for i join their respective rings and bid truthfully, and agent i must decide whether

to join his ring and bid truthfully or to decline the invitation and bid freely. In this

discussion let n represent the true number of bidding rings and singleton bidders in

the economic environment (i.e., the value realized from the distribution γc).

First, consider a different setting, which we denote (?): a first-price auction with

a stochastic number of participants in economic environment Es, with the number

of agents distributed according to pn,si
. In (?) all bidders have the same information

as i, and are subject to the same payment rule: from Proposition 3.2 it is a best

response for i to bid be(vi, pn,si
). Clearly i’s expected utility is the same in (?) and

when participating honestly in his bidding ring, because both auctions allocate the

good to the bidder who submits the highest bid, have the same distribution over the

number of agents, and implement the same payment rule for i. Thus our goal in this

part of the proof is to show that i’s expected utility after rejecting his bidding ring

invitation is less than his expected utility in the equilibrium of (?).

Given that all other bidders participate in bidding rings and follow the protocol, if

the bidding ring did not respond to i’s deviation, there would exist some distributions

p and signals si for which i would prefer to decline the invitation. (Taking into account

his signal and once the auctioneer has made an announcement, i would know that

the number of agents is distributed according to pn,si
; however, if he were to deviate

then all agents would bid in the main auction as though the number of agents were

distributed according to pn+1,1. For certain values of p and si, i’s expected loss from

causing the auctioneer to announce one more participant is less than his expected

gain from being able to bid freely and from not having to make a payment to the ring

center if he wins.)

According to the protocol, however, the bidding ring does change its behavior in

response to deviation. If i declines the invitation the ring center will send all the

other members of the ring into the main auction, causing the auctioneer to announce

62 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

n+k−1 participants. As a result there will be si−1 bidders placing bids of be(v, pn,si
)

and n− 1 other bidders placing bids of be(v, pn+si−1,1). We can show that these n− 1

bidders will decrease i’s expected utility by bidding too high. Recall Equation (3.23):

pn,si
=

(⊗
n−1 γA

)∗δsi
, and so pn+si−1,1 =

(⊗
n+si−2 γA

)∗δ1. We can write γA = gA∗δ1,

where gA is the distribution over the number of agents in a bidding ring beyond the

first agent. Then

pn+si−1,1 =

(⊗
n−1

γA

)
∗

(⊗
si−1

γA

)
∗ δ1

=

(⊗
n−1

γA

)
∗

((⊗
si−1

gA

)
∗ δsi−1

)
∗ δ1

= pn,si
∗

(⊗
si−1

gA

)
. (3.24)

Since γA has support on a subset of the positive integers, it follows that gA has

support on a subset of the integers greater than or equal to zero. And since γA(1) < 1,

gA(0) < 1. It then follows from Lemma 3.9 that be(v, pn+si−1,1) > be(v, pn,si
). Thus

the singleton bidders and other bidding rings will bid a higher5 function of their

valuations than the equilibrium amount in (?). It always reduces a bidder’s expected

gain in a first-price auction to cause other bidders to bid more, because it reduces

the chance that he will win without affecting his payment if he does win. This is the

effect of i declining the offer to join his bidding ring: the k − 1 other bidders from

i’s bidding ring bid according to the equilibrium of (?), but the n − 1 singleton and

bidding ring bidders submit bids that exceed this amount. Therefore i’s expected

utility is smaller if he declines the offer to participate than if he accepts it.

One-Stage Mechanism: Define the one-stage mechanism M as follows:

1. The center announces n, the number of bidders in the main auction.

5Note that this occurs because the singleton bidders and other bidding rings in the main auction
follow a strategy that depends on the number of bidders announced by the auctioneer; hence they
bid as though all the k − 1 bidders from the disbanded bidding ring might each be independent
bidding rings.

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 63

2. Each bidder i submits a bid µi to the mechanism.

3. The bidder with the highest bid is allocated the good and is made to pay

be(µi, pn,si
).

4. All bidding ring members are paid cn,si
.

M has the same payment rule for bidding ring bidders as the bidding ring protocol

given above, but no longer implements a first-price payment rule for singleton bidders.

Observe that the original auction is efficient under the strategies stated in the theorem

because each bidder i bids be(vi, pn,1) in the main auction. Thus, in order to prove

that the strategies given in the statement of the theorem constitute an equilibrium,

it is sufficient to show that truthful bidding is an equilibrium for all bidders under

M .

Equilibrium: Assume that all other bidders bid truthfully, and consider the

strategy of bidder i. This bidder’s posterior distribution over the number of other

bidders he faces, given his signal si and the auctioneer’s announcement that there are

n bidders in the main auction, is pn,si
. Since agent i is made to pay be(µi, pn,si

) if he

wins, and since the good is always allocated to the agent who submits the highest

message, M is regular asymmetric. From Lemma 3.6, agent i’s best response to

truthful bidding in a regular asymmetric auction is to bid truthfully. Observe that

this analysis holds for both non-ring and ring bidders since it makes no assumptions

about si. If i is a ring bidder then he gets the additional payment cn,si
, but this

payment does not depend on the amount of his bid, and so has no effect on his choice

of how to bid given his decision to participate.

Note that this equilibrium gives rise to an economically-efficient allocation, as was

mentioned in the proof of the theorem. The highest bidder in each bidding ring always

bids in the main auction, and every bidder in the main auction places a bid according

to the same function, which is monotonically increasing in the bidder’s valuation.

The equilibrium from Theorem 3.10 is not unique. We can show another equi-

librium, where no agents accept bidding ring invitations and agents bid according to

the equilibrium for first-price auctions with participation revelation demonstrated in

64 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

Proposition 3.3.

Proposition 3.11 It is a Bayes-Nash equilibrium for each bidding ring invitee to

decline his bidding ring invitation, and for each agent i to bid be(vi, n).

Proof. If at least one agent declines the invitation to join a bidding ring, other

invitees of that bidding ring are no worse off if they decline as well. (If they decline

then they can bid freely, rather than being made to submit bids of a particular form.)

If no agents join bidding rings then agents’ signals contain no useful information.

Thus the argument from Proposition 3.3 applies, and it is a Bayes-Nash equilibrium

for each bidder to submit a bid of be(vi, n).

3.4.3 Are Bidding Rings Helpful?

First of all, we show that ring centers gain on expectation from running bidding rings.

Theorem 3.12 The ring center gains on expectation if it pays agents cn,k = 1
k
(gn,k−

c′n,k) with 0 < c′n,k ≤ gn,k and

gn,k = k

∫ ∞

0

f(vi)
∞∑

j=2

pn,k(j)F
j−1(vi) (be(vi, pn,k)− be(vi, pn,1)) dvi,

and is budget-balanced on expectation when c′n,k = 0.

Proof. Since the distribution pn,k is just pn,1 with k − 1 singleton agents added,

pn,k = pn,1∗δk−1. Since k ≥ 2, it follows from Lemma 3.9 that be(vi, pn,k) > be(vi, pn,1).

This proves that the ring center always receives a positive payment when a ring

member wins. gn,k is the ring center’s ex ante expected gain if all k invited agents

behave according to the equilibrium in Theorem 3.10, the auctioneer announces n

participants, and the ring center makes no payment to the agents. Thus the ring

center will gain on expectation if each ring member’s unconditional payment is less

than 1
k
gn,k, and will budget-balance on expectation when each ring member’s payment

is exactly 1
k
gn,k.

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 65

The payment of c to all bidders follows an idea from [Graham & Marshall, 1987] for

returning a ring center’s profits to bidders without changing incentives. In equilibrium

the ring center will have an expected profit of c′n,k, though it will lose kcn,k whenever

the winner of the main auction does not belong to its ring. If a ring center wants to

be guaranteed never to lose money, it can set c′n,k = gn,k.

There are several ways of asking whether bidders gain by being invited to join

bidding rings. One natural question is whether bidders are better off being invited to

a bidding ring or being sent to the auction as singleton bidders.

Theorem 3.13 An agent i has higher expected utility in a bidding ring of size k

bidding as described in Theorem 3.10 than he does if the bidding ring does not exist and

k additional agents (including i) participate directly in the main auction as singleton

bidders, again bidding as described in Theorem 3.10, for cn,k ≥ 0.

Proof. Consider the counterfactual case where agent i’s bidding ring does not

exist, and all the members of this bidding ring are replaced by singleton bidders in

the main auction. We show that i is better off as a member of the bidding ring

(even when cn,k = 0) than in this case. If there were n potential ring centers in the

original auction and k agents in i’s bidding ring, then the auctioneer would announce

n+k− 1 as the number of participants in the new auction. In both cases the auction

is economically efficient, which means i is better off in the auction that requires him

to pay a smaller amount when he wins. Under the equilibrium from Theorem 3.10,

as a singleton bidder i will bid be(vi, pn+k−1,1). If he belonged to the bidding ring

and followed the same equilibrium i would bid be(vi, pn,k). As argued in the proof of

Theorem 3.10, Lemma 3.9 shows that ∀k ≥ 2, ∀n ≥ 2,∀v, be(v, pn+k−1,1) > be(v, pn,k),

and so our result follows.

Intuitively, an agent gains by not having to consider the possibility that other

bidders who would otherwise have belonged to his bidding ring might themselves be

bidding rings. We can also show that singleton bidders and members of other bidding

rings benefit from the existence of each bidding ring in the same sense. Following

an argument similar to the one in Theorem 3.13, other bidders gain from not hav-

ing to consider the possibility that additional bidders might represent bidding rings.

66 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

Paradoxically, as long as c′n,k > 0, other bidders’ gain from the existence of a given

bidding ring is greater than the gain of that ring’s members.

Corollary 3.14 In the equilibrium described in Theorem 3.10, singleton bidders and

members of other bidding rings have higher expected utility when k ≥ 2 agents form

a bidding ring than when k additional agents participate directly in the main auction

as singleton bidders.

Proof. Consider a singleton bidder in the first case, where the ring of k agents

does exist. (It is sufficient to consider a singleton bidder, since other bidding rings

bid in the same way as singleton bidders.) Following the equilibrium from Theorem

3.10 this agent would submit the bid be(vi, pn,1). Theorem 3.13 shows that it is

better to belong to a bidding ring (and thus to bid be(vi, pn,k)) than to be a singleton

bidder in an auction with the same number of agents (and thus to bid be(vi, pn+k−1,1).

From the argument in Theorem 3.12 we know that be(vi, pn,1) < be(vi, pn,k). Thus

∀k ≥ 2, be(vi, pn,1) < be(vi, pn+k−1,1).

Another way of showing that bidding rings are helpful is to demonstrate that

bidders prefer a world with bidding rings to a world without. We consider two other

settings: an auction with participation revelation in economic environment Es, and

an auction with a stochastic number of bidders in Es. First we compare the three

environments ex-post, asking which an agent would prefer given knowledge of his

own type. (Recall that we have defined an agent’s type to include his signal si

about the number of agents in the economic environment.) Second, we compare the

environments ex-ante, asking which environment an agent would prefer if he knew

the distribution over types but did not know what type he would receive.

Theorem 3.15 (ex-post ring) For all τi ∈ T , for all k ≥ 2, for all n ≥ 2, for all

cn,k > 0, agent i obtains greater expected utility by:

1. participating in a bidding ring of size k in Ebr and following the equilibrium

from Theorem 3.10; than by

2. participating in a first-price auction with participation revelation in Es with

number of bidders distributed according to pn,k; or by

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 67

3. participating in a first-price auction with a stochastic number of participants in

Es with number of bidders distributed according to pn,k.

When cn,k = 0, agent i obtains the same expected utility in all three cases.

Proof. For an efficient first-price auction, an agent i’s expected utility EUi is∑∞
j=2 p(j)F j−1(vi)b, where p(j) is the probability that there are a total of j agents in

the economic environment, F j−1(vi) is the probability that i has the high valuation

among these j agents, and b is the amount of i’s bid.

First, we consider case (1). Let EUi,bc denote agent i’s expected utility in Ebr as

a member of a bidding ring of size k, in the equilibrium from Theorem 3.10. Recall

that in this equilibrium the bidder with the globally highest valuation always wins,

and if bidder i wins he will be made to pay be(vi, pn,k). In any case i will receive an

unconditional positive payment of cn,k.

EUi,bc =
∞∑

j=2

pn,k(j)F
j−1(vi) (vi − be(vi, pn,k)) + cn,k (3.25)

We now consider case (2). From Proposition 3.3 it is an equilibrium for agent i

in economic environment Es to bid be(vi, j) in a first-price auction with participation

revelation, where j is the number of bidders announced by the auctioneer. Since

the number of agents is distributed according to pn,k, agent i’s expected utility in a

first-price auction with participation revelation, which we denote EUi,pr, is

EUi,pr =
∞∑

j=2

pn,k(j)F
j−1(vi) (vi − be(vi, j)) (3.26)

=

∑∞
`=2 pn,k(`)F

`−1(vi)∑∞
`′=2 pn,k(`′)F `′−1(vi)

∞∑
j=2

pn,k(j)F
j−1(vi) (vi − be(vi, j))

=
∞∑

`=2

pn,k(`)F
`−1(vi)

(
vi −

∞∑
j=2

pn,k(j)F
j−1(vi)∑∞

`′=2 pn,k(`′)F `′−1(vi)
be(vi, j)

)

=
∞∑

`=2

pn,k(`)F
`−1(vi) (vi − be(vi, pn,k)) . (3.27)

68 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

Observe that we make use of the definition of be(vi, p) from Equation (3.2). Equa-

tion (3.27) is agent i’s expected utility in case (3), so i’s expected utility is equal in

cases (2) and (3).

Intersecting equations (3.25) and (3.27), we get

EUi,bc − EUi,pr = cn,k. (3.28)

When cn,k > 0, agent i’s expected utility is strictly greater in case (1) than in

cases (2) and (3); when cn,k = 0 he has the same expected utility in all three cases.

What about agents who do not belong to bidding rings? We can show in the same

way that they are not harmed by the existence of bidding rings: they are neither

better nor worse off in the bidding ring economic environment than facing the same

distribution of opponents in the two cases described above.

Corollary 3.16 (ex-post singleton) For all τi ∈ T , for all n ≥ 2, agent i obtains

the same expected utility by:

1. participating as a singleton bidder in Ebr and following the equilibrium from

Theorem 3.10; as by

2. participating in a first-price auction with participation revelation in Es with

number of bidders distributed according to pn,1; and by

3. participating in a first-price auction with a stochastic number of participants in

Es with number of bidders distributed according to pn,k.

Proof. We follow the same argument as in Theorem 3.15, except that k = 1 and

EUi,bc does not include cn,k. Thus we get EUi,bc = EUi,pr.

We now consider the ex-ante case. Observe that in this case an agent does not

know whether or not he will be invited to a ring, as this is part of his type.

Corollary 3.17 (ex-ante) For all n ≥ 2, as long as ∃n, ∃k, γc(n) > 0 and γa(k) > 0

and cn,k > 0, agent i obtains greater expected utility by:

3.4. BIDDING RINGS FOR FIRST-PRICE AUCTIONS 69

1. participating in Ebr and following the equilibrium from Theorem 3.10; than by

2. participating in a first-price auction with participation revelation in Es with

number of bidders distributed according to p; or by

3. participating in a first-price auction with a stochastic number of bidders in Es

with number of bidders distributed according to p.

When ∀n, ∀k, cn,k = 0, agent i obtains the same expected utility in both cases.

Proof. In case (1) agent i’s expected utility (given an arbitrary n, which will be

announced by the auctioneer rather than being a part of i’s type) is

EUi,bc =

∫ ∞

0

f(vi)
∞∑

k=1

kγA(k)∑∞
k′=1 k′γA(k′)

∞∑
j=2

pn,k(j)F
j−1(vi)

(vi − be(vi, pn,k)) dvi + cn,k (3.29)

In case (2) agent i’s expected utility is

EUi,pr =

∫ ∞

0

f(vi)
∞∑

k=1

kγA(k)∑∞
k′=1 k′γA(k′)

∞∑
j=2

pn,k(j)F
j−1(vi) (vi − be(vi, j)) dvi (3.30)

We can make the same argument as in Theorem 3.15, starting with equations

(3.29) and (3.30) instead of equations (3.25) and (3.26). The only difference is that

after intersecting the equations we conclude that i prefers case (1) as long as there

exist a pair (n, k) which are possible (i.e., γc(n) > 0 and γa(k) > 0) for which cn,k > 0,

and that otherwise i is indifferent between the three cases.

3.4.4 Comparing Equilibria in Ebr

The theorems and corollaries in Section 3.4.3 allow us to compare the equilibrium

from Theorem 3.10 with the equilibrium from Proposition 3.11.

70 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

Corollary 3.18 Ex-ante, all bidders prefer the equilibrium from Theorem 3.10 to

the equilibrium from Proposition 3.11. Ex-post, bidding ring invitees prefer the equi-

librium from Theorem 3.10 to the equilibrium from Proposition 3.11, and singleton

bidders are indifferent between the equilibria.

Proof. A bidder’s expected utility under the equilibrium from Proposition 3.11 (in

economic environment Ebr) is the same as his expected utility from an auction with

participation revelation in economic environment Es with the same distribution over

the number of bidders. (This is obvious from the proof of Proposition 3.11.) Thus

the result is immediate from Theorem 3.15, Corollary 3.16 and Corollary 3.17.

Since both bidders (and, trivially, ring centers) prefer the equilibrium from The-

orem 3.10 to the equilibrium from Proposition 3.11, it follows that auctioneers must

have the opposite preference. It turns out that auctioneers can disrupt bidding rings

by making a slight change to the rules of the auction, so that the strategies described

in Theorem 3.10 are no longer in equilibrium but the equilibrium from Proposition

3.11 is preserved. This can be achieved by making it possible for bidders to place

bids in both their bidding rings and the main auction without detection by the ring

center, either by allowing bidders to bid under “false names,” or by refraining from

publicly disclosing the winner of the auction.6

If bidders can bid both in their bidding rings and anonymously in the main auction,

the equilibrium from Theorem 3.10 breaks down in the following way. A bidder i can

accept the invitation to join the bidding ring but place a very low bid with the ring

center; at the same time, i can directly submit a competitive bid in the main auction.

Agent i will gain by following this strategy when all other agents follow the strategies

specified in Theorem 3.10 because accepting the invitation to join the bidding ring

ensures that the ring does drop all but one of its members and also causes the high

bidder to bid less than he would if he were not bound to the collusion protocol. If the

bidding ring drops any bidders other than i then all agents’ bids will also be lowered

because the number of participants announced by the auctioneer will be smaller,

compared to the case where the bidding ring did not exist or where it was disbanded.

6Observe that these options may not be available to all auctioneers; e.g., government auctions
may be prohibited from allowing false-name bidding and required to publicly disclose winners.

3.5. DISCUSSION 71

However, if false-name bidding is impossible and the winner of the auction is publicly

disclosed then the ring center can detect an agent who has deviated in this way.

Because the agent has agreed to participate in the bidding ring the ring center has

the power to punish this agent and make the deviation unprofitable.

3.5 Discussion

3.5.1 Assumptions

To emphasize the generality of our work and to suggest directions in which it might

be extended, we restate our substantive assumptions here:

• Bidders are risk-neutral, with independent private values drawn from an arbi-

trary continuous and atomless distribution f on the interval [0, 1].

• The distribution over the number of agents in the economic environment has

the property that the numbers of agents invited to each bidding ring are inde-

pendent.

• Invitations to join bidding rings are exogenous, and each bidder receives at most

one invitation.

• Bidders are unable to place bids both in the bidding ring and directly in the

main auction.

• Only a single bidding ring protocol is used in the auction.

3.5.2 Conclusions

We have presented a formal model of bidding rings which in many ways extends

models traditionally used in the study of collusion. Most importantly, all agents

behave strategically and take into account the possibility that groups of other agents

will collude. Other features of our setting include a stochastic number of agents and

of bidding rings in each auction, and revelation by the auctioneer of the number of

72 CHAPTER 3. BIDDING RINGS IN FIRST PRICE AUCTIONS

bids received. The strategy space is expanded so that the decision of whether or not

to join a bidding ring is part of an agent’s choice of strategy. Bidding rings make

money on expectation, and can optionally be configured so they never lose money.

We showed a bidding ring protocol for first-price auctions that leads to a (globally)

efficient allocation in equilibrium, and which can optionally avoid the use of side-

payments. In this equilibrium all invited agents choose to participate, even when

the bidding ring operates in a single auction as opposed to a sequence of auctions.

This means that the protocol’s stability does not rely on the threat of an agent being

denied future opportunities to collude.

We asked the question of whether agents gain by participating in bidding rings in

first-price auctions in three different ways:

1. Could any agent gain by deviating from the protocol?

2. Would any agent be better off if his bidding ring did not exist?

3. Would any agent would be better off (either ex-post or ex-ante) in an economic

environment that did not include bidding rings at all?

We have shown that agents are strictly better off in all three senses. (In the third

sense, the gain is only strict when ring centers make a side-payment to agents.) We

have also shown that each bidding ring causes non-members to gain in the second

sense, and does not hurt them in the third sense.

Chapter 4

Local-Effect Games

We present a new class of games, local-effect games (LEGs), which exploit structure

in a different way from other compact game representations studied in AI. We show

both theoretically and empirically that these games often (but not always) have pure-

strategy Nash equilibria. Finding a potential function is a good technique for finding

such equilibria. We give a necessary and sufficient conditions for LEGs to have

potential functions, and provide the functions for each case. We also show a general

case where pure-strategy equilibria exist in the absence of potential functions. In

experiments, we show that myopic best-response dynamics converge quickly to pure

strategy equilibria in games not covered by our positive theoretical results.

4.1 Introduction

Games have long been studied in AI as a model of both competitive and cooperative

multiagent interactions. While many AI researchers have concentrated on coopera-

tive settings (see, e.g., [Boutilier, 1996; Guestrin et al., 2001]), there has also been

growing interest in formulating competitive settings as games and in computing Nash

equilibria for these games (see e.g., [Billings et al., 2003; Reeves & Wellman, 2003;

Conitzer & Sandholm, 2002]). The computational obstacles to computing equilibria

in general games has led to a parallel line of work on compact representations of

73

74 CHAPTER 4. LOCAL-EFFECT GAMES

games with large numbers of players, and games for which the computation of equi-

libria is tractable [Koller & Milch, 2001; Vickrey & Koller, 2002; Kearns et al., 2001;

Kearns & Mansour, 2002; Roughgarden & Tardos, 2001; Mura, 2000]. Much work

in this vein has been based on the exploitation of one of two kinds of locality. First,

some approaches exploit unconditional independencies between players’ abilities to

affect each other’s payoffs [Koller & Milch, 2001; Vickrey & Koller, 2002; Kearns

et al., 2001; Blum et al., 2003]. Second, some approaches exploit symmetry in utility

functions along with context-specific independencies between players’ effects on each

other; more precisely, cases in which players’ abilities to affect each other depend on

the actions they choose. Here we study games in this second class, because we believe

that this sort of context-specific independence is more common in real-world games.

Although compact representation has not been a primary motivation for economists,

some work from economics does fall into the framework defined above. Most influen-

tially, congestion games were defined by Rosenthal [1973]. In these games each agent

i selects a subset Si of a set of resources R; where nr is the number of agents who

choose resource r ∈ R, and Fr are arbitrary functions for each r, agent i pays:

pi(Si, n) =
∑
r∈S

Fr(nr) (4.1)

The sets of actions available to each agent do not have to be identical or even

overlapping. Observe that agent payoffs often do not exhibit any unconditional inde-

pendencies: whenever two agents have action choices that name the same resource,

they can affect each other’s payoffs. On the other hand, context-specific independence

does exist when two agents choose non-intersecting resource subsets. The main result

in [Rosenthal, 1973] was that congestion games always have pure-strategy Nash equi-

libria (PSNE) . This is important because, although all games have mixed-strategy

Nash equilibria [Nash, 1950], there are relatively few known classes of interesting

games with pure strategy equilibria. At the same time, pure strategy equilibria are

attractive: they can be more likely to arise in play as they are more intuitive than

mixed-strategy equilibria for many players; they can be easier for agents to coordinate

to; as there are a finite number of pure strategy profiles in a given game, they can be

4.2. LOCAL-EFFECT GAMES 75

easier to compute than mixed strategy equilibria.

Rosenthal’s work was extended by Monderer and Shapley [1996], who showed

that the class of congestion games is equivalent to the class of games with potential

functions . A potential function P : A1 × · · · × An → R maps agents’ joint actions

to a real number, with the property that if X and Y are joint actions differing only

in the action choice of one agent i, P (X) − P (Y) is equal to the difference in i’s

payoff from selecting the two actions. This result is useful because it means that the

construction of a potential function is sufficient for showing the existence of a pure-

strategy equilibrium. Potential functions can also be used to compute equilibria:

the set of pure-strategy Nash equilibria is equivalent to the set of joint actions that

maximize P .

Recent work in computer science and AI has explored classes of games inspired by

and extending congestion games. For example, Kearns et al. examined games with

bounded effects [Kearns & Mansour, 2002], and Roughgarden studied a nonatomic

variant [Roughgarden & Tardos, 2001]. In this chapter we propose a new class, which

we call local-effect games.

4.2 Local-Effect Games

In congestion games, whenever two agents affect each other’s payoff, they each do

so by the same amount. Local-effect games (LEGs) model situations where agents’

effects on each other are potentially asymmetric. Generally, action A locally affects

action B if the utility of agents taking action B depends on some function FA,B of the

number of agents taking action A, but the utility of agents taking action A depends

on a different function FB,A of the number of agents taking action B.

There are many natural settings which are modeled by such locally-effecting ac-

tions. One problem domain that has been studied in economics for three quarters

of a century is the location problem [Hotelling, 1929]. These problems model situa-

tions where agents must choose a location to operate their business in the presence of

other competing agents, and each agent’s profit depends on how far she is from her

competitors. The canonical example concerns ice cream vendors who must choose

76 CHAPTER 4. LOCAL-EFFECT GAMES

a spot on the beach to set up a kiosk, with agents’ utility depending on how many

other ice cream sellers have located themselves in the same or adjacent areas. Work

from economics on this problem has usually dealt with one-dimensional continuous

spaces and has not modeled local effects explicitly; also, game theoretic analyses have

typically considered only settings with 2 or 3 agents (see e.g., [Osborne & Pitchik,

1987]). It is easy to think of many variants on the location problem: ice cream sellers

arranging themselves around a lake (ring structure); vendors opening coffee houses

in a city (grid structure); pairs at a cocktail party trying to pick a quiet room, with

noise proportional to the number of people in the room, and noise also emanating

from nearby rooms (arbitrary structure).

Another natural domain modeled by LEGs is a role formation game, where agents

can take on one of a set of partially-substitutable roles. Agents are rewarded according

to the amount of work they do, so their payoff is reduced as other agents adopt the

same or similar roles.

Formally, let 〈G,F , n〉 be a local-effect game for n agents. G is a graph, defined

as G = 〈A, E〉. A is the set of nodes in the graph, which correspond to the actions

available to each player in the game.1 E is a set of pairs of nodes, where (a, a′) ∈ E

denotes that a (directed) edge runs from a to a′. Let neigh(i) denote the set of nodes

from which there are edges that terminate at node i. The function Fa,a′ : Z+∪{0} → R
labels every node and edge in G: each node a is labelled by a node function Fa,a

and each edge from a to a′ is labelled by an edge function Fa,a′ . (For notational

convenience, we define F for every pair of nodes; (a, a′) 6∈ E implies ∀x, Fa,a′(x) = 0.)

Let D denote the distribution of players across actions, and D(a) denote the

number of players who chose action a ∈ A. We can now state the cost function of an

agent a who chose action i ∈ A:

cost(a) = Fi,i(D(i)) +
∑

j∈neigh(A)

Fj,i(D(j)). (4.2)

1We note in passing that a natural extension to local-effect games is the case where the set of
actions available to each agent i is Ai ⊆ A.

4.2. LOCAL-EFFECT GAMES 77

We denote a class of local-effect games by the pair 〈G,F〉: i.e., the set of local-

effect games having the same graph, node and edge functions, but differing in the

number of agents. Analogously, we can define a class of congestion games: the set

of congestion games having the same resource functions and the same action choices

for every agent, but differing in the number of agents. Finally, since there exists a

bijection between congestion games and potential games, we can define a class of

potential games as a set of potential games that correspond to all the members of

some class of congestion games.

We assume that there are no local effects from unpopulated nodes:

Assumption 4.1 ∀a ∈ A,∀a′ 6= a ∈ A, Fa,a′(0) = 0

Also, we make an assumption about the connectivity of G:

Assumption 4.2 ∀A,B 6= A ∈ A, (A,B) ∈ E ⇔ (B,A) ∈ E

That is, each pair of nodes in the graph are either both or neither neighbors of

each other, though they might influence each other according to different local-effect

functions.

Definition 4.3 A local-effect game is a bidirectional local-effect game (B-LEG) when

∀a ∈ A,∀a′ 6= a ∈ A, Fa,a′(x) = Fa′,a(x).

For B-LEGs local-effect functions between pairs of actions are always the same

in both directions: i.e., the local-effect graph G is undirected. Note however that

for a given distribution of agents the magnitude of the local effects between a pair of

actions may be different.

Definition 4.4 A local-effect game is a uniform local-effect game (U-LEG) when

∀A,B, C ∈ A (B ∈ neigh(A) ∧ C ∈ neigh(A)) → ∀xFA,B(x) = FA,C(x).

That is, if action A has any effect on nodes B and C then the same function

governs its effect on both. We define notation for the uniform effect from node A:

∀y ∈ A, FA,y = Fu
A(x).

78 CHAPTER 4. LOCAL-EFFECT GAMES

4.3 Theoretical Results

4.3.1 Nonexistence of Pure Strategy Equilibria

Rosenthal was able to show that congestion games always have a PSNE. For local-

effect games, we can find counterexamples where exhaustive enumeration of strategies

shows the absence of any PSNE, demonstrating that such a sweeping general result is

impossible. One example (found experimentally, and confirmed by exhaustive search)

is the B-LEG 〈〈{A,B,C}, {(A,B), (B, A), (A,C), (C, A), (B, C), (C, B)〉,F , 11〉, with

FA,A(x) = 2.79x, FB,B(x) = 4.72x, FC,C(x) = 1.5x, FA,B(x) = 0.64 log x, FA,C(x) =

0.32 log x, FB,C(x) = 2.77 log x.

4.3.2 Pure Strategy Equilibria: Potential Functions

In this section we show that two interesting classes of local-effect games have potential

functions, meaning that they always have pure-strategy Nash equilibria. Although

these results show regions of overlap between the class of congestion games and the

class of local-effect games, the potential functions themselves are interesting as their

construction is nontrivial. Also, these results are useful because they make it possible

for the games to be described in the more intuitive local-effect game framework.

Theorem 4.5 Bidirectional local-effect games have pure strategy Nash equilibria if

∀i, ∀j 6= i there exist constants mi,j such that Fi,j(x) = mi,jx.

Proof. Recall that the existence of a potential function entails the existence of a

pure-strategy Nash equilibrium. We prove the result by giving a potential function:

P (D) =
n∑

i=1

D(i)∑
j=1

Fi,i(j) +
1

2

n∑
i=1

∑

j∈neigh(i)

D(i)mj,iD(j) (4.3)

The first term is the congestion game potential function for the case where every

action names one unique resource. A game with only functions of the form Fi,i(x) is

a congestion game, and so must have the congestion game potential function. The

relationship between each Fi,j(x) function and the agent’s cost function is additive,

4.3. THEORETICAL RESULTS 79

and potential functions are only used for taking differences. Thus if we can find a

potential function P ′ for a game with only local effects and all Fi,i(x) = 0, the poten-

tial function for a general B-LEG will be the sum of the congestion game potential

function and P ′.

Thus it remains to argue that our second term is this P ′: that it captures changes

in utility arising from local effects. Consider the sum of the contribution of local ef-

fects to each agent’s utility: s =
∑n

i=1

∑
j∈neigh(i) D(i)mj,iD(j). When a single agent

a deviates, s increases by twice the amount of the change to a’s utility, because all

Fi,j(x) are linear and bidirectional. That is, there is a change both in the amount of

local effect acting on agent a, and new local effect caused by agent a, and bidirec-

tionality and linearity imply that these two amounts are the same. Thus the desired

result is obtained by adding 1
2
s to the congestion game potential function.

Observe that Theorem 4.5 holds for B-LEGs with arbitrary node functions Fi,i(x)—

all that is required is linearity of the local-effect functions.

Theorem 4.6 Uniform local-effect games have pure strategy Nash equilibria if the

local-effect graph is a clique.

Proof. Again we provide a potential function:

P (D) =
n∑

i=1

D(i)∑
j=1

Fi,i(j)−
n∑

i=1

D(i)−1∑
j=1

Fu
i (j) (4.4)

As argued in Theorem 4.5, to construct a potential function it is sufficient to add

the standard congestion game potential function with a function that accounts for

changes in utility due to local effects. This explains the first term.

Let distributions X and Y be identical except that DX(A) = α and DX(B) = β,

while DY (A) = α − 1 and DY (B) = β + 1. Assuming FA,A(·) = FB,B(·) = 0,

P (X) − P (Y) = Fu
B(β) − Fu

A(α − 1). This is precisely the change in utility for an

agent deviating from A in X to B in Y : the agent will be spared the local effect

Fu
B(β) since he moves to B and is no longer subject to its local effect; however, since

he moves away from A and the graph is a clique, he is now subject to the local effect

80 CHAPTER 4. LOCAL-EFFECT GAMES

Fu
A(α − 1). Because the graph is a clique, and because the game is a U-LEG, the

argument holds no matter which pair of nodes is chosen as A and B.

4.3.3 LEGs and Potential Functions

Finding potential functions is an effective way of proving the existence of pure-strategy

equilibria; however, there are many LEGs for which potential functions can be shown

not to exist. In this section we give a complete characterization of the class of LEGs

which have potential functions. We will state three lemmas that consider arbitrary

graphs with every possible subgraph involving three nodes2, and give sufficient condi-

tions for these LEGs not to have potential functions. Finally, we will combine these

lemmas with the positive results in Theorems 4.5 and 4.6 to show that the same

conditions are also necessary.

Figure 4.1 shows the graph structure to which Lemma 4.7 refers. There may be

any number of nodes other than A,B and C; their connectivity (both with A,B

and C and with each other), their node functions and their edge functions are all

unrestricted. The only restrictions are that A,B and C must be connected as shown,

and that either FB,C 6= FC,B or FB,C is nonlinear.

A CB

arbitrary grapharbitrary graph

A CB

arbitrary grapharbitrary grapharbitrary grapharbitrary graph

Figure 4.1: Graph structure for Lemma 4.7

2Except for completely disconnected graphs, which are trivially congestion games and are handled
in Theorem 4.10.

4.3. THEORETICAL RESULTS 81

Lemma 4.7 There exists no class of local-effect games where every game in the class

has a potential function, in the case where ∃A, B, C ∈ A where B ∈ neigh(C) and

A 6∈ neigh(B) and A 6∈ neigh(C) and (FB,C 6= FC,B or FB,C is nonlinear).

Proof. Assume for contradiction that every LEG in the class3 has a potential

function P . We will consider three distributions of agents in order to derive properties

of P . Without loss of generality, we take A,B and C to be the first three actions in the

game, and we take the total number of actions to be n. For more compact notation

in what follows, let α = D(A), β = D(B) and γ = D(C). Define the following three

distributions: X = (α, β, γ, D(4), . . . , D(n)), Y = (α − 1, β + 1, γ,D(4), . . . , D(n))

and Z = (α, β + 1, γ − 1, D(4), . . . , D(n)). Without making any assumptions about

the local effects between actions A,B and C and any of the other n− 3 actions, and

for x ∈ {A,B, C}, let:

Ux(D(x), D(4), . . . , D(n)) = Fx,x(D(x)) +
∑

a′∈{4,...,n}
Fa′,a(D(a′)) (4.5)

That is, Ux(D(x), D(4), . . . , D(n)) denotes the (negative) utility contributed to

each agent taking action x ∈ {A,B,C} by those agents also taking action x, and by

those agents taking the 4th through nth actions. For compactness we will abbreviate

Ux(D(x), D(4), . . . , D(n)) as ux(D(x)) below.

If distribution X were the case and an agent playing action A switched to action

B, then distribution Y would be the result. Thus:

P (X)− P (Y) = [uA(α)]− [FC,B(γ) + uB(β + 1)] (4.6)

If X were the case and an agent playing action C switched to action B, then Z

would be the result. Thus:

3Observe that Lemma 4.7 (like Lemmas 4.8 and 4.9) speak about classes of games—i.e., local-
effect game structures for which the number of agents is unspecified. This is because there may exist
particular numbers of agents for which the contradictions in the lemmas do not obtain for a given
graph structure and given node/edge functions. For example, if the game is a B-LEG and all edge
functions are linear for integers between 0 and some value x, but nonlinear overall, then potential
functions nonetheless exist for all games in the class which have no more than x agents.

82 CHAPTER 4. LOCAL-EFFECT GAMES

P (X)− P (Z) = [FB,C(β) + uC(γ)]− [FC,B(γ − 1) + uB(β + 1)] (4.7)

If Y were the case and an agent playing action C switched to action A, then Z

would be the result. Thus:

P (Y)− P (Z) = [FB,C(β + 1) + uC(γ)]− [uA(α)] (4.8)

From equations (4.6) and (4.7), we can infer:

P (Y)− P (Z) = [P (X)− P (X)] + P (Y)− P (Z)

= [P (X)− P (Z)]− [P (X)− P (Y)]

=
[
[FB,C(β) + uC(γ)]− [FC,B(γ − 1) + uB(β + 1)]

]

− [
[uA(α)]− [FC,B(γ) + uB(β + 1)]

]
(4.9)

Intersect Equation (4.9) with Equation (4.8) and rearrange. Observe that uA(α),

uB(β +1) and uC(γ) all cancel out, demonstrating that this proof does not depend on

what edges exist between A,B, C and the rest of the graph, or on node effects. Define

Ia,a′(x) = Fa,a′(x) − Fa,a′(x − 1): the incremental cost on the local effect between a

and a′ of adding the xth agent to a. We then get:

IC,B(γ)− IB,C(β + 1) = 0 (4.10)

Clearly, Equation (4.10) will not be satisfied for all β, γ unless FB,C = FC,B and

FB,C is linear. This contradicts our assumption that a potential function exists for

every LEG in the class.

Lemma 4.8 There exists no class of local-effect games where every game in the class

has a potential function, in the case where ∃A,B,C ∈ A where B ∈ neigh(C) and

A ∈ neigh(B) and A 6∈ neigh(C) and (FB,C 6= FC,B or FB,C is nonlinear or FA,B 6=
FB,A or FA,B is nonlinear).

4.3. THEORETICAL RESULTS 83

A CB

arbitrary grapharbitrary graph

A CB

arbitrary grapharbitrary grapharbitrary grapharbitrary graph

Figure 4.2: Graph structure for Lemma 4.8

Proof. This proof follows the proof of Lemma 4.7 and uses the same setting

and definitions, except that (as stated in the theorem and depicted in Figure 4.2)

A ∈ neigh(B).

If distribution X were the case and an agent playing action A switched to action

B, then distribution Y would be the result. Thus:

P (X)− P (Y) = [FB,A(β) + uA(α)]− [FA,B(α− 1) + FC,B(γ) + uB(β + 1)] (4.11)

If X were the case and an agent playing action C switched to action B, then Z

would be the result. Thus:

P (X)− P (Z) = [FB,C(β) + uC(γ)]− [FA,B(α) + FC,B(γ − 1) + uB(β + 1)] (4.12)

If Y were the case and an agent playing action C switched to action A, then Z

would be the result. Thus:

P (Y)− P (Z) = [FB,C(β + 1) + uC(γ)]− [FB,A(β + 1) + uA(α)] (4.13)

From equations (4.11) and (4.12), we can infer:

84 CHAPTER 4. LOCAL-EFFECT GAMES

P (Y)− P (Z) =
[
[FB,C(β) + uC(γ)]− [FA,B(α) + FC,B(γ − 1) + uB(β + 1)]

]

− [
[FB,A(β) + uA(α)]− [FA,B(α− 1) + FC,B(γ) + uB(β + 1)]

]
(4.14)

Intersect Equation (4.14) with Equation (4.13) and rearrange:

[IC,B(γ)− IB,C(β + 1)
]
+

[IB,A(β + 1)− IA,B(α)
]
= 0 (4.15)

Clearly, Equation (4.15) will not be satisfied for all α, β, γ unless FA,B = FB,A,

FB,C = FC,B, and both FA,B and FB,C are linear. This contradicts our assumption

that a potential function exists for every LEG in the class.

A CB

arbitrary grapharbitrary graph

A CB

arbitrary grapharbitrary grapharbitrary grapharbitrary graph

Figure 4.3: Graph structure for Lemma 4.9

Lemma 4.9 There exists no class of local-effect games where every game in the class

has a potential function, in the case whereB ∈ neigh(C) and A ∈ neigh(B) and

A ∈ neigh(C) and (FB,C 6= FC,B or FB,C is nonlinear or FA,B 6= FB,A or FA,B is

nonlinear or FA,C 6= FC,A or FA,C is nonlinear) and (FA,B 6= FA,C or FB,A 6= FB,C

or FC,A 6= FC,B).

Proof. This proof follows the proof of Lemma 4.7 and uses the same setting

and definitions, except that (as stated in the theorem and depicted in Figure 4.3)

A ∈ neigh(B) and A ∈ neigh(C).

4.3. THEORETICAL RESULTS 85

If distribution X were the case and an agent playing action A switched to action

B, then distribution Y would be the result. Thus:

P (X)− P (Y) = [FB,A(β) + FC,A(γ) + uA(α)]

− [FA,B(α− 1) + FC,B(γ) + uB(β + 1)] (4.16)

If X were the case and an agent playing action C switched to action B, then Z

would be the result. Thus:

P (X)− P (Z) = [FA,C(α) + FB,C(β) + uC(γ)]

− [FA,B(α) + FC,B(γ − 1) + uB(β + 1)] (4.17)

If Y were the case and an agent playing action C switched to action A, then Z

would be the result. Thus:

P (Y)− P (Z) = [FA,C(α− 1) + FB,C(β + 1) + uC(γ)]

− [FB,A(β + 1) + FC,A(γ − 1) + uA(α)] (4.18)

From equations (4.16) and (4.17), we can infer:

P (Y)− P (Z) =
[
[FA,C(α) + FB,C(β) + uC(γ)]

− [FA,B(α) + FC,B(γ − 1) + uB(β + 1)]
]

− [
[FB,A(β) + FC,A(γ) + uA(α)]

− [FA,B(α− 1) + FC,B(γ) + uB(β + 1)]
]

(4.19)

Intersect Equation (4.19) with Equation (4.18) and rearrange:

86 CHAPTER 4. LOCAL-EFFECT GAMES

[IA,C(α)− IA,B(α)
]
+

[IB,A(β + 1)− IB,C(β + 1)
]

+
[IC,B(γ)− IC,A(γ)

]
= 0 (4.20)

Equation (4.20) may be rewritten as:

[IA,C(α)− IC,A(γ)
]
+

[IB,A(β + 1)− IA,B(α)
]
+

[IC,B(γ)− IB,C(β + 1)
]
= 0 (4.21)

From Equation (4.20) we can see that the contradiction does not obtain for all

α, β, γ when FA,B = FA,C ,FB,A = FB,C , and FC,A = FC,B. From Equation (4.21)

we can see that the contradiction does not obtain for all α, beta, γ when FA,B =

FB,A,FB,C = FC,B,FA,C = FC,A and FA,B,FA,C and FB,C are all linear. If neither

condition holds, our assumption a potential function exists for every LEG in the class

is contradicted.

We can now give necessary and sufficient conditions for a class of LEGs to be

representable as potential games (and thus, as congestion games).

Theorem 4.10 There exists a class of potential games that is equivalent to a given

class of local-effect games if and only if:

1. the local-effect games are bidirectional and all local-effect functions are linear

2. the local-effect games are uniform and the local-effect graph is a clique

Proof. It is easy to show that the stated conditions are sufficient. If the game

is bidirectional with linear functions, Theorem 4.5 shows that an equivalent class of

potential games exists. Likewise, if the game is uniform and the local-effect graph is

a clique, Theorem 4.6 shows that an equivalent class of potential games exists.

Next, we prove that the stated conditions are necessary. We begin by considering

classes of LEGs having three or more actions by examining all possible local-effect

graph structures. Clearly, we will have considered all possible graphs having three

4.3. THEORETICAL RESULTS 87

or more nodes if we consider all graphs with no edges, all cliques, and all graphs

containing subgraphs having three nodes connected by exactly one or exactly two

edges.

If the local-effect graph has no edges, then all LEGs in the class are B-LEGs with

linear local-effect functions.

If the local-effect graph contains a three-node subgraph having exactly one edge,

and the games are not bidirectional with linear functions, Lemma 4.7 shows that no

equivalent class of potential games exists.

If the local-effect graph contains a subgraph with three nodes and exactly two

edges, and the games are not bidirectional with linear functions, Lemma 4.8 shows

that no equivalent class of potential games exists. If the local-effect graph is a clique,

it contains a clique of size three as a subgraph. If this graph is neither uniform nor

bidirectional with linear edge functions, Lemma 4.9 shows that no equivalent class of

potential games exists.

All that remains is to consider games having exactly one or two actions. A class

of games with only a single action is trivially equivalent to a class of potential games

because no actions exist to which agents can deviate. All LEGs with only two actions

either have no edges, in which case they are B-LEGs with linear local-effect functions,

or they have one edge, in which case they are U-LEGs for which the local-effect graph

is a clique.

4.3.4 Other Pure-Strategy Equilibria

We are able to prove the existence of pure-strategy Nash equilibria for classes of

graphs, and node and edge functions that Theorem 4.10 shows cannot have potential

functions. The following constructive proof has classes of B-LEGs and U-LEGs as

special cases:

Theorem 4.11 If a local-effect game satisfies:

1. ∀A ∈ A,∀B ∈ neigh(A),∀x, FA,A(x) ≤ FA,B(x)

2. ∀A,B ∈ A,∀x ≥ 1, FA,B(x + 1)−FA,B(x) ≤ FA,B(x)−FA,B(x− 1),

88 CHAPTER 4. LOCAL-EFFECT GAMES

3. ∀A,B 6= A ∈ A,∀x ≥ 1, FA,B(x)−FA,B(x− 1) > 0,

then there exists a pure-strategy Nash equilibrium in which agents choose nodes that

constitute an independent set.4

Proof. This proof proceeds by induction, building up a Nash equilibrium one

agent at a time, and with each agent making a myopic best response to the previous

distribution. In the case of a single agent, it is clearly an equilibrium for him to select

the best node. Define Di as the distribution of agents at induction step i. Assume

that n− 1 agents have each selected the best node in turn, resulting in a distribution

Dn−1 which is a Nash equilibrium and also an independent set. We must show that

when an additional agent n chooses the best node the resulting distribution Dn is

still an independent set, and still a Nash equilibrium.

First, we show that the new distribution is an independent set. Assume for the

purposes of contradiction that it was best for n to choose a node that does not belong

to the independent set. Then it must be the case that the selected node has at least

one neighbor which has been chosen by one or more other agents. Let the node

selected by n be A, and let B be some neighboring node. From condition 2 in the

theorem (linearity/sublinearity), we can infer that:

FB,B(Dn−1(B) + 1) ≤ FB,B(Dn−1(B)) + FB,B(1) (4.22)

From condition 1 in the theorem (functional dominance), we know that:

FB,B(Dn−1(B)) ≤ FB,A(Dn−1(B)) (4.23)

Thus we can use Equation (4.23) to weaken the bound in Equation (4.22) to get:

FB,B(Dn−1(B) + 1) ≤ FB,A(Dn−1(B)) + FB,B(1) (4.24)

Define the utility at inductive step i for an agent taking action X, and disregarding

any local effect from action Y :

4Recall that an independent set is a subset of the nodes in a graph with the property that no
two nodes in the subset are neighbors.

4.3. THEORETICAL RESULTS 89

U i
X,∼Y (z) = FX,X(z) +

∑

W∈neigh(X)|W 6=Y

FW,X(Di(W)).

At some step i in the induction, Di(B) = 0 and Di(A) = 0, but Di+1(B) = 1.

From the fact that the distribution of agents resulted from myopic choices (stated in

the induction hypothesis), we know that:

FB,B(1) ≤ U i
A,∼B(1) (4.25)

We can use UA,∼B(1) in Equation (4.25) because Di(B) = 0 anyway. From condi-

tion 3 in the theorem (monotonicity of local-effect functions), and the fact that i ≤ n

we can write:

U i
A,∼B(1) ≤ Un

A,∼B(1) (4.26)

We can use Equation (4.26) to weaken the bound given in Equation (4.25):

FB,B(1) ≤ Un
A,∼B(1) (4.27)

Finally, we can use Equation (4.27) to further weaken the bound given in Equation

(4.24). This gives us:

FB,B(Dn−1(B) + 1) ≤ FB,A(Dn−1(B)) + Un
A,∼B(1) (4.28)

Equation (4.28) contradicts our assumption that agent n would myopically choose

A over B; therefore Dn must be an independent set.

Now we show that D′ is a Nash equilibrium. Let C be the node that the new

agent i selected in making his myopic response to the distribution D. From symmetry

of cost functions we know that no agent can profitably deviate from node C: if so, i

would have chosen a different node in the first place. Consider an agent j who chose

a node V 6= C. Agent j’s payoff does not change from distribution D to distribution

D′, because D′ is an independent set, and so FC,V (·) = 0 (there are no local effects

between nodes C and V . Since distribution D was a Nash equilibrium (inductive

90 CHAPTER 4. LOCAL-EFFECT GAMES

11 5 2

5

11

115

Figure 4.4: T – kn = 3, 50 agents

14

10

1

14

1

10

Figure 4.5: Arbitrary – kn = 3, 50
agents

hypothesis) j will not deviate from a new distribution D′ that differs only in that

node C is more costly.

4.4 Empirical Findings

Section 4.3 shows that there are many cases in which local-effect games have pure-

strategy Nash equilibria. Myopic best response has been shown to be an effective

technique for computing pure strategy equilibria in a variety of settings [Monderer &

Shapley, 1996]. In this section we show that this simple algorithm can compute pure

strategy equilibria for some very large local-effect games that are not covered by any

of the positive results in Section 4.3 and that do not have potential functions. We

present five different graph structures with similar local-effect functions, and show

sample equilibria. We should note that we have been able to find equilibria exper-

imentally for most B-LEGs5 with different graph structure and different local-effect

functions that we have tried, and that convergence occurs within a second in most

cases. As with our theoretical results, we do not claim that these equilibria are unique;

indeed, because agents’ cost functions are symmetric, a new equilibrium can always

be constructed from a given equilibrium by swapping action choices between pairs

of agents. Furthermore, we have observed many cases where multiple structurally

different equilibria exist in the same local-effect game.

5So far, we have only experimented with B-LEGs because undirected local-effect graphs are easier
to specify and generate, and because we consider them to be among the most natural LEGs. We
expect to experiment with other classes of LEGs in our future work.

4.4. EMPIRICAL FINDINGS 91

4

3 3

2 2 2 2

6 5 5 55 5 5 6

Figure 4.6: Binary Tree – kn = 6,
60 agents

16

7

9

7

15

7

5

5

5

7

9

5

7

5

9

15

7

9

7

15

7

5

5

5

7

Figure 4.7: Grid – kn = 4, 200
agents

16

4

18

4

17

6

8

9

5

7

9

0

8

8

13

8

6

8

13

8

3

12

3

7

Figure 4.8: Modified Grid – kn = 4,
200 agents

All games shown here are B-LEGs with ∀A, ∀B FA,B(x) = kA,B log(x + 1). We

use one kn for all node functions and another ke for all edge functions (i.e., ∀A, ∀B 6=
A kA,A = kB,B and ∀A,∀B 6= A, ∀C 6∈ {A,B} kA,B = kA,C). We hold ke = 1

throughout, and vary kn to highlight some of the more interesting equilibria. These

equilibria are representative of average runs, and were found with a minimum of pa-

rameter manipulation. Each node is labelled with the number of agents choosing

the node in equilibrium. Figure 4.4 shows a T structure representative of a simple

location problem. Figure 4.5, which we call ‘arbitrary’ in what follows, is interest-

ing because there are 2 nodes with 2 neighbors, 2 with 3 neighbors and 2 with 4

neighbors. This setting could represent a role formation game. Figure 4.6 shows a

binary tree structure; observe that most agents select leaf nodes because they have

92 CHAPTER 4. LOCAL-EFFECT GAMES

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

Number of Agents

S
te

p
s

to
 C

o
n

ve
rg

en
ce

T

Arbitrary

Bin Tree

Grid

Mod Grid

Figure 4.9: Steps to convergence for
the five graphs

.25in
0

5

10

15

20

25

30

35

0 20 40 60 80 100

Number of Agents

S
te

p
s

to
 C

o
n

ve
rg

en
ce

Figure 4.10: Steps to convergence
for the arbitrary graph

only one neighbor, and thus the parents of leaves are chosen by few agents. Figure

4.7 shows a two-dimensional grid, representative of our coffee house location problem.

Observe that the corners are most desirable, as they have only two neighbors; nodes

neighboring corners are thus under-populated, leading to another concentration of

agents in the middle of each edge. It is also interesting that agents concentrate in the

central node, even though it has four neighbors, because its neighbors are relatively

under-populated. Figure 4.8 shows what happens to the game from Figure 4.7 when

we remove a single node (consider the same location problem when one node becomes

unavailable). Observe that agents generally cluster around the missing node, except

for one neighboring node that is entirely unpopulated, as a result of the large local

effects acting upon it.

The amount of time it took to reach convergence in each graph is shown in Figure

4.4, starting in each case with a uniform distribution of agents across the actions.

Finally, since the ‘arbitrary’ graph in Figure 4.5 took the longest to converge (34% of

the agents moved before convergence occurred) we examine this graph in more detail

in Figure 4.4. Observe that as we vary the number of agents, the number of steps

required for convergence increases roughly linearly.

4.5. CONCLUSIONS 93

4.5 Conclusions

To encourage future work and to summarize the local-effect game setting, we re-

state the most important conditions that must be satisfied in order for a game to be

representable as a LEG:

1. Symmetry: every agent has the same action choices and utility function;

2. Anonymity: every agent affects other agents in the same way; thus, we can

ignore agent identities and consider only the number of agents taking each

action;

3. Additivity: the relationship between different local effects acting on the same

node is linear;

4. Connected Neighbors: if A is connected to B in the local-effect graph then

B is also connected to A. However, each edge can potentially be labelled with

a different function.

Local-effect games exploit context-specific independence between players’ payoff

functions. Finding a potential function is a good technique for finding equilibria;

we identify all the local-effect games for which potential functions exist, and provide

the potential function in each case. We also give a positive theoretical result for a

broad class of games that do not have potential functions. Furthermore, we can show

that myopic best response dynamics converge quickly in some other cases in which

potential functions do not exist, and which are not covered by our positive theoretical

results.

94 CHAPTER 4. LOCAL-EFFECT GAMES

Part II

Computational Issues in

Multiagent Resource Allocation

95

Chapter 5

Combinatorial Auctions

5.1 Motivation

Auctions are the most widely studied mechanism in the mechanism design literature

in economics and game theory [Fudenberg & Tirole, 1991]. This is due to the fact that

auctions are basic protocols, serving as the building blocks of more elaborated mech-

anisms. Given the wide popularity of auctions on the Internet and the emergence of

electronic commerce, where auctions serve as the most popular game-theoretic mech-

anism, efficient auction design has become a subject of considerable importance for

researchers in multi-agent systems (e.g., [Wellman et al., 1998; Monderer & Tennen-

holtz, 2000]). The use of auctions in business-to-business trades is also increasing

rapidly. Within AI there is growing interest in using auction mechanisms to solve re-

source allocation problems in competitive multiagent systems. For example, auctions

and other market mechanisms are used in network bandwidth allocation, distributed

configuration design, factory scheduling, and operating system memory allocation

[S. H. Clearwater, 1996; Wellman, 1993].

5.1.1 Complementarity

The value of a good to a potential buyer can depend on what other goods s/he wins.

We say that there exists complementarity between goods γ1 and γ2 to agent a if

96

5.1. MOTIVATION 97

ua({γ1, γ2}) > ua({γ2}) + ua({γ2}), where ua(S) is the utility to a of acquiring the

set of goods S. If goods γ1 and γ2 were auctioned separately, it is likely that neither

of the typically desired properties for auctions—efficiency or revenue maximization—

would hold. One way to accommodate complementarity in auctions is to allow bids

for combinations of goods as well as for individual goods. Combinatorial auctions are

a class of auctions that accommodate bidders whose valuations exhibit complemen-

tarities: multiple goods are auctioned simultaneously and bidders place as many bids

as they want for different bundles of goods with the guarantee that these bundles

will be allocated “all-or-nothing”. For example, imagine an auction of used electronic

equipment. A bidder might value a particular TV at x and a particular VCR at y,

but value the pair at z > x + y.

5.1.2 Substitutability

It is also common for bidders to desire a second good less once they have won a first

good. We say that there exists substitutability between goods γ1 and γ2 to agent

a when ua({γ1, γ2}) < ua({γ1}) + ua({γ2}). A common example of substitutability

is for a bidder to be indifferent between several goods but not to want more than

one. In order to be useful, a combinatorial auction mechanism should provide some

way for bidders to indicate that goods (or, more generally, bundles of goods) are

substitutable. Combinatorial auctions that allow the description of valuation func-

tions involving both complementarity and substitutability can be seen as providing

a general framework for allocation and decision-making problems among agents in

competitive multiagent systems.

5.1.3 Applications

Combinatorial auctions are applicable to many real-world situations. In an auction for

the right to use railroad segments a bidder desires a bundle of segments that connect

two particular points; at the same time, there may be alternate paths between these

points and the bidder needs only one [Brewer & Plott, 1996]. Similarly, in the FCC

spectrum auction bidders may desire licenses for multiple geographical regions at the

98 CHAPTER 5. COMBINATORIAL AUCTIONS

same frequency band while being indifferent to which particular band they receive

[Milgrom, 1998]. These and other real-world applications of combinatorial auctions

are described in more detail in Chapter 7. While economics and game theory provide

many insights into the potential uses of such auctions, they have little to say about

computational considerations. This is an obstacle to the practical use of combinatorial

auctions, because it turns out that combinatorial auctions often give rise to very hard

computational problems.

5.2 Combinatorial Auction Winner Determination

In a combinatorial auction, a seller is faced with a set of price offers for various

bundles of goods, and his aim is to allocate the goods in a way that maximizes his

revenue. The winner determination problem (WDP) is choosing the subset of bids

that maximizes the seller’s revenue, subject to the constraint that each good can be

allocated at most once.

5.2.1 Formal definition

Let G = {γ1, γ2, . . . , γm} be a set of goods, and let B = {b1, . . . , bn} be a set of bids.

Bid bi is a pair (p(bi), g(bi)) where p(bi) ∈ R+ is the price offer of bid bi and g(bi) ⊆ G

is the set of goods requested by bi. For each bid bi define an indicator variable xi that

encodes the inclusion or exclusion of bid bi from the allocation.

Problem 5.1 The single-unit WDP is the following integer program:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ 1 ∀γ ∈ G

xi ∈ {0, 1} ∀i

5.2. COMBINATORIAL AUCTION WINNER DETERMINATION 99

5.2.2 XOR constraints

Problem 5.1 allows bidders to describe complementarities in their valuations; however,

it does not explicitly allow the expression of substitutabilities. To do so, bidders must

have some way of indicating that their interest in two bundles is mutually exclusive.

Let S = {s1, . . . , sκ}, where each si denotes a set of bids which are not allowed to be

allocated together by the optimization algorithm.

Problem 5.2 The single-unit WDP with XOR constraints is the following integer

program:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ 1 ∀γ ∈ G

∑

i|bi∈sj

xi ≤ 1 ∀j ∈ [1, κ]

xi ∈ {0, 1} ∀i

Some algorithms may not provide a way of specifying sets of mutually exclusive

bundles s. Luckily, it is possible to use an encoding trick, introducing dummy goods

[Fujishima et al., 1999]. Dummy goods do not correspond to actual goods in the

auction, but serve to enforce mutual exclusion between bids. For example, if bids

b1 and b2 are intended to be mutually exclusive, we add a dummy good d to each

bundle, defining new bids b′i where g(b′i) = g(bi)∪d. Since the good d can be allocated

only once, at most one of b′1 and b′2 will allocated. More generally, it is possible to

introduce n-unit dummy goods to enforce the condition that no more than n of a

set of bids may be allocated (see Section 5.2.3 for a definition of units), and to use

multiple dummy goods with the same bundles to enforce other complex constraints.

This technique can lead to a combinatorial explosion in the number of bids if many

goods are substitutable, but in many interesting cases this does not occur. While

dummy goods increase the expressive power of the bidding language, making use of

100 CHAPTER 5. COMBINATORIAL AUCTIONS

them requires no changes to an optimization algorithm. In fact, observe that Problem

5.2 is exactly the same as Problem 5.1 when XOR constraints are expressed using

dummy goods. Hence, in what follows we do not discuss explicit XOR constraints,

but assume that dummy goods are used where required.

5.2.3 Multi-unit auctions

In some cases, the set of goods at auction will contain subsets of goods among which

all bidders are indifferent. We call these subsets units of a single good. While it

is possible to auction each unit as a separate good, this forces bidders interested in

a subset of the units to specify unnecessary XOR bids. For example, consider an

electronics manufacturer auctioning 100 identical TVs and 100 identical VCRs. A

retailer who wants to buy 70 TVs and 30 VCRs would be indifferent between all

bundles having 70 TVs and 30 VCRs. Rather than having to bid on each of the(
100
70

) · (100
30

)
distinct bundles, she would prefer to place the single bid (price, {70 TVs,

30 VCRs}). This can be achieved by generalizing Problem 5.1. Let q(γ) denote the

number of units of good γ.

Problem 5.3 The multi-unit WDP is the following integer program:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ q(γ) ∀γ ∈ G

xi ∈ {0, 1} ∀i

5.2.4 Asymptotic Hardness

With or without XOR constraints, the WDP is equivalent to weighted set-packing

and is therefore NP-hard even in its single-unit variant: see e.g., [Rothkopf et al.,

5.3. RELATED WORK ON THE WDP 101

1998]. Furthermore, it is known that the WDP is inapproximable within any constant

factor: see e.g., [Sandholm, 1999].

5.3 Related Work on the WDP

In recent years many researchers have been interested in the combinatorial auction

winner determination problem. For a survey, see [de Vries & Vohra, 2003].

5.3.1 Tractable Subcases

Rothkopf et al. [1998] identified the following subcases of the single-unit WDP which

may be solved in polynomial time:

1. bids contain no more than two goods;

2. for any two bids, either they are disjoint or one is a subset of the other; or

3. bids only name goods that are consecutive given a one-dimensional ordering.1

More recent work on tractable subcases may be found in [Nisan, 2000; Tennen-

holtz, 2000; de Vries & Vohra, 2003]. The case of infinitely divisible goods may be

solved in polynomial time by using linear programming techniques: we solve the linear

programming relaxation of Problem 5.1, where the integrality constraint is replaced

by the linear constraint 0 ≤ xi ≤ 1.

5.3.2 Approximation algorithms

Some researchers have studied algorithms to approximate the WDP, despite the fact

that the WDP cannot be approximated with guarantees. For example, Hoos and

Boutilier [2000] and Zurel and Nisan [2000] have proposed algorithms with good em-

pirical performance despite their lack of theoretical guarantees. Furthermore others,

1In fact, this case can be extended to the case where goods are placed around a ring and each bid
requests only consecutive goods. Consider adding each bid in turn (and removing all other bids that
conflict with this bid): the remaining subproblem to be solved has only bids that request consecutive
goods given a one-dimensional ordering, because the selection of the first bid breaks the ring.

102 CHAPTER 5. COMBINATORIAL AUCTIONS

notably Nisan and Ronen [2000] and Lehmann et al. [1999], have proposed alterna-

tive economic mechanisms that are built around approximation algorithms. It is also

possible to make bidders responsible for improving the quality of the approximation.

Banks et al. [1989] and Bykowsky et al. [1995] have reported a mechanism called

AUSM in which non-winning bids are pooled in a stand-by queue. Bidders can com-

bine their bids with other bids currently in the queue to form new allocations. A new

allocation is adopted if it generates more revenue than the previously best allocation.

5.3.3 Solving the WDP to optimality

Although the WDP is NP-hard, in practice it is possible to address interestingly-

large datasets with heuristic methods [Fujishima et al., 1999; Sandholm, 1999; Gonen

& Lehmann, 2000; Leyton-Brown et al., 2000b; Nisan, 2000; Sandholm & Suri, 2000;

Gonen & Lehmann, 2001; Sandholm et al., 2001]. Furthermore, there are reasons why

it can be important to solve the WDP to optimality, and why restrictions to a tractable

subcase may not be acceptable. For example, optimal solutions to the WDP are

required in order for the Vickrey-Clarke-Groves mechanism [Mas-Colell et al., 1995;

Varian, 1995] give rise to dominant strategies. In fact, Nisan and Ronen [2000] show

that the Vickrey-Clarke-Groves mechanism can give rise to arbitrarily bad outcomes

when agents suspect that there is any possibility that any non-optimal solution to the

WDP will be used. As another example, Parkes [1999], among others, has proposed

an ascending auction mechanism that requires a provably-optimal solution to the

WDP. Because of the importance of such applications, we concern ourselves in this

work only with provably-optimal solutions to the WDP.

Chapter 6

Algorithms for Solving the

Combinatorial Auction Winner

Determination Problem

We present two branch-and-bound algorithms that exploit instances’ particular bid

structures to find optimal solutions to the WDP, using contextual information to

make upper bounds tighter. Upper bounds are further tightened by online caching

of results from unpruned subtrees. The first algorithm, CASS, considers only the

single-unit WDP (i.e., it solves WDP Problem 5.1). The second algorithm, CAMUS,

generalizes CASS, addressing the multi-unit WDP (Problem 5.3).

6.1 CASS Algorithm

In this section we present an algorithm, Combinatorial Auction Structured Search

(CASS), a branch-and-bound search algorithm with a novel heuristic. Most impor-

tantly, CASS structures the search space in a way that provides context to this

heuristic in order to allow more pruning during the search and that avoids consider-

ation of most infeasible allocations. CASS also caches the results of partial searches

and prunes the search tree. Finally, CASS may be used as an anytime algorithm, as

it tends to find good allocations quickly.

103

104 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

Before proceeding, we must introduce additional notation pertaining to alloca-

tions. An allocation π ⊆ B is a subset of the bids where ∀b1 ∈ B, b2 6= b1 ∈
B, g(b1) ∩ g(b2) = {}. We overload the functions g() and p() to apply to allocations:

g(π) =
⋃

b∈π g(b) and p(π) =
∑

binπ p(b). A full allocation πfull is an allocation for

which g(πfull) = G, and a partial allocation is an allocation that is not full.

6.1.1 Dominated Bids

Some bids may be removed in a polynomial-time preprocessing step before search

begins. For each pair of bids (b1,b2) where g(b1) ⊆ g(b2) and p(b1) ≥ p(b2), we may

remove b2 from the list of bids to be considered during the search as b2 is never

preferable to b1 (hence we say that b1 dominates b2).

6.1.2 Branch-and-Bound Search

Branch-and-bound search is a general search strategy that is widely used in the op-

erations research community (see e.g., [Nemhauser & Wolsey, 1988]). We explain it

here using the terminology of combinatorial auctions.

Whenever a bid is encountered that does not conflict with the current partial

allocation then the search tree branches, where one branch adds the bid to the partial

allocation and the other does not. CASS performs a depth-first search, meaning that

one branch of the tree is fully explored before the other is considered. (This has the

advantage that CASS requires only linear space to store the search tree.) When a full

allocation π is reached CASS records this allocation as πbest if p(π) > p(πbest), and

then backtracks.

CASS also computes a function h(π) at each node, which gives an upper bound

on the revenue that can be collected from the goods G \ g(π). When h() indicates

that the current subtree cannot lead to a solution better than πbest then the search

tree can be pruned : we can backtrack before a full allocation has been constructed.

More precisely, we backtrack whenever p(π) + h(π) ≤ p(πbest). We will describe the

construction of the function h(π) in Section 6.1.4, but first we must introduce the

concept of bins.

6.1. CASS ALGORITHM 105

124

12

134

1345

125

14

1245

1

124

12

134

1345

125

14

1245

1

23

24

245

2

234

23

24

245

2

234
35

345

3

34

35

345

3

34

4

45

4

45
5

D D D D D

Figure 6.1: Partition into Bins

124

12

134

1345

125

14

1245

1

124

12

134

1345

125

14

1245

1

23

24

245

2

234

23

24

245

2

234
35

345

3

34

35

345

3

34

4

45

4

45
5

D DD D D

Figure 6.2: Skipping bins

6.1.3 Bins

We can reduce the number of infeasible allocations considered by partitioning bids

into bins . First, we must choose an ordering on the goods. We create one bin for

each good, and we place each bid into the bin corresponding to its lowest-order good.

For an example, see Figure 6.1. The example shows input from an auction with

five goods, G = {1, 2, 3, 4, 5}. Circles in the figure represent bids, the concatenated

numbers in the circles represent the goods named in each bid, and prices are omitted

from the bids for clarity.

Rather than always trying to add each bid to our allocation, we add at most one

bid from every bin since all bids in a given bin are mutually exclusive. In fact, we

can often skip bins entirely. While considering bin Di, if we observe that good j > i

is already part of the allocation then we do not need to consider any of the bids in

Dj. In general, instead of considering each bin in turn, skip to Dk where k /∈ g(π)

and ∀i < k, i ∈ g(π). To avoid the situation where it is possible to enter a bin that

we cannot leave, we augment the set of bids. If there is no bid requesting a single

unit of any good γj ∈ G then we add a dummy bid b = (0, γj).

Continuing our example, see Figure 6.2. The first bid we add contains goods

{1, 2, 4}, so we skip all remaining bids in bin D1 and all bids in bin D2, since all of

these bids will conflict. We thus consider bin D3. The first bid we encounter requests

106 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

goods {3, 4}, which also conflicts with our partial allocation. We move to the next

bid in D3, which requests goods {3, 5}. We have found our first full allocation, so we

update our lower bound and backtrack.

The main benefit of bins is not the ability to avoid consideration of conflicting

bids, however. Bins are powerful because they allow the pruning function to con-

sider context without significant computational cost. If bids in bin Di are currently

being considered then the pruning function must only take into account bids in bins

{Di, . . . , Dm}. Since most bids will belong to a low-order bin1 but the search will

spend most of its time in higher-order bins, this can allow us to generate very tight

upper bounds. Furthermore, because the partitioning of bids into bins is fixed we

can compute the upper bound information for each bin in a preprocessing step; this

makes the upper bound fast to evaluate during search.

6.1.4 Upper Bound

We now describe the construction of the function h(π). For every remaining good j we

calculate a value v(j), the maximum over all the remaining bids requesting good j that

do not conflict with π of the bid’s price divided by the number of goods requested by

the bid. The sum of v(j) values for all goods is an upper bound on optimal revenue

because it relaxes the constraint that the bids in the optimal allocation may not

conflict.

More formally, consider that we have built up a partial allocation π and reached

bin Dσ. For each bid bi, let a(bi) = p(bi)/m be the average price per good of bid bi.

Notice that the average price per good may change dramatically from bid to bid, and

it is a non-trivial notion; our technique will work for any arbitrary average price per

good. Let Lσ(j) be a list of the bids that refer to good j and that belong to bins Dφ

with φ ≥ σ (i.e., the bids that can be encountered in the remainder of the search).

The list is sorted in a monotonically decreasing manner according to the ai’s. Observe

1To see why bids are not spread evenly across the bins, consider what happens when we receive
a bid for every bundle. Half of the bids will involve good γ1 and will thus belong to bin D1; half
the bids that do not involve γ1 will involve γ2 and belong to bin D2, and so on. Clearly, each bin
Di+1 will contain half as many bids as its predecessor Di.

6.1. CASS ALGORITHM 107

that Lσ(j) can be precomputed before search begins. v(j) is defined as a(bok
j), where

bok
j is the first bid in Lσ(j) that does not conflict with π.

Theorem 6.1 Let B∗ = {b∗1, . . . , b∗s} be the bids in an optimal allocation. Then,

r∗ = Σb∈B∗p(b) ≤ Σ1≤j≤mv(j).

Remark: In the multi-unit special case where when all goods happen to have only

one unit, the upper bound function in Section 6.2.4 computes exactly the same upper

bounds as the function presented above. Thus Theorem 6.2 considers a more general

case, and so the proof to Theorem 6.1 can be deduced from that proof.

6.1.5 Caching

CASS’s caching scheme is a form of dynamic programming that allows the algorithm

to use experience from earlier in the search to tighten its upper bound function; it is

illustrated in Figure 6.3. Consider a partial allocation π1 that is reached during the

search phase. If the search proceeds beyond π1 then h(π1) was not sufficiently small

to allow us to backtrack. Later in the search we may reach an allocation π2 which, by

combining different bids, achieves the same allocation π1. CASS incorporates a mech-

anism for caching the results of the search beyond π1 to generate a better estimate

for the revenue given π2 than is given by h(π2). (Since π1 and π2 do not differ in the

units of goods that remain, h(π1) = h(π2).) Consider all the allocations extending π1

upon consideration of which the algorithm backtracked, denoted s1, . . . , sf . When

we backtracked at each si we did so because p(si) + h(si) ≤ p(πbest), as explained

above, or because si was a full allocation. It follows that maxi(p(si) + h(si))− p(π1)

is an overestimate of the revenue attainable beyond π1, and that it is a smaller over-

estimate than h(π1). If it were not, we would have backtracked at π1 rather than

searching this subtree. We cache the value c(g(π)) = maxi(p(si) + h(si))− p(π1) and

backtrack when p(π2) + c(g(π2)) ≤ p(πbest).

Our cache is implemented as a hash table, since caching is only beneficial to the

overall search if lookup time is inconsequential. A consequence of this choice of data

structure is that cache data may sometimes be overwritten; we overwrite an old entry

108 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

Di

partial allocation π2, g(πi) = g(π2)

one search path: partial
allocation π1 at bin Di

best solution
given π1 or π2

Figure 6.3: Caching

Di

Dj

partial allocation π’

partial allocation π

Figure 6.4: Cache Pruning

in the cache when the search associated with the new entry examined more nodes.2

Even when we do overwrite useful data the error is not catastrophic, however: in the

worst case we must simply search a subtree that we might otherwise have pruned.

In order to reduce the cost of writing useless entries to the cache, and to reduce the

chance that useful entries will be overwritten, partial allocations are only stored in the

cache if the search tree below that point involved at least one backtrack. (Because of

the exponential character of search trees, the vast majority of nodes that are eligible

for caching will be one step away from leaf nodes, which means that caching these

nodes would give a negligible performance gain.)

We can also use the cache to prune even when we reach a new partial allocation

π2 that has never been reached before, as shown in Figure 6.4. The search path

is provably unable to lead to a new best allocation whenever g(π1) ⊂ g(π2) and

p(π2)+c(g(π1)) ≤ p(πbest). (Since our cache is implemented as a hash table, we detect

this case by checking the cache for each π1 that differs from π2 by the exclusion of

each a single good; this requires a linear number of cache lookups.) In this case, the

sum of the revenue from the cached path beyond π1 and the revenue leading up to

π2 is less than the revenue from πbest. Note that since π2 allocates a superset of the

goods allocated in π1, the goods in g(π2) \ g(π1) ∩ g(π2) are counted both in p(π2)

2We must, however, store g(π) in the hash table along with c(g(π)), so that we can detect cache
collisions.

6.1. CASS ALGORITHM 109

and c(g(π1)), corresponding to an overestimate of revenue.3 Therefore, no allocation

better than πbest could be found by expanding the search tree below π2.

6.1.6 Good Ordering Heuristic

We must determine an ordering of the goods; that is, decide which good will cor-

respond to the first bin, which will correspond to the second, etc. For each good

i we compute scorei = numbidsi/avggoodsi, where numbidsi is the number of bids

that request good i and avggoodsi is the average number of goods requested by these

bids. We designate the lowest-order good as the good with the lowest score, then we

recalculate the score for the remaining goods and repeat. The intuition behind this

heuristic is as follows:

• We want to minimize the number of bids in low-order bins, to minimize early

branching and thus to make each individual prune more effective.

• We want to maximize the total number of goods requested by bids in low-order

bins. Taking these bids moves us more quickly towards the leaves of the search

tree, again providing the pruning function with more contextual information.

6.1.7 Bid Ordering Heuristic

Our second heuristic determines the ordering of bids within bins. We sort bids

dynamically—i.e., bids may be ordered differently when there is a different partial

allocation π. Bids are sorted in a given bin in descending order of score(bj), where

(abusing notation slightly):

score(bj) =
p(bj)

|g(bj)| + h(π ∪ bj).

The intuition behind this heuristic is that the average price per good of bj is a

measure of how promising the bid is, while the upper bound h(π∪bj) is an estimate of

3In fact, this bound can be tightened. Let G = g(π2) \ g(π1) ∩ g(π2). We can actually backtrack
whenever p(π2)+ c(g(π1))− `(π2,G) ≤ p(πbest), where `(π2,G) is a lower bound on the revenue that
could be achieved from the goods G given the allocation π. A simple implementation of `() would
be the sum of the singleton bids for each of the goods in G.

110 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

Process dominated bids.
Determine an ordering on the goods, according to the good-ordering
heuristic.

Partition all bids into bins, according to the good ordering.
Precompute pruning information for each bin.
Set i = 1 and π = {}.
Recursive entry point:

π = π ∪ bj.
If (p(π) + c(g(π)) ≤ p(πbest)) backtrack.
If (p(π) + h(π) ≤ p(πbest)) backtrack.
If (|goods(π)| = total) update πbest if necessary; backtrack.
Set i to the index of the lowest-order good absent from π.
Dynamically order the bids in bin i, and remove bids that
conflict with π.

Recurse to the recursive entry point above.
π = π \ bj.

Return the optimal allocation: πbest.

Figure 6.5: CASS Pseudocode

how promising the unallocated units are, given the partial allocation. This heuristic

helps CASS to find good allocations quickly, improving anytime performance and also

increasing πbest, making pruning more effective. Observe that dynamic reordering of

the goods in each bin allows us to make use of an upper bound which depends on π.

6.2 CAMUS Algorithm

We now present a generalization of CASS which can solve Problem 5.3: the general

multi-unit WDP. This algorithm is termed CAMUS (Combinatorial Auction Multi-

Unit Search), and was introduced in [Leyton-Brown et al., 2000b]. We explain char-

acteristics of CAMUS that differ from CASS, and then give pseudocode for CAMUS.

In this section we make use of the following notation specific to the multi-unit case.

Let units(j) denote the total number of units of good j. Redefine the set of bids B =

{b1, . . . , bn} so that bid bi is a pair (p(bi), e(bi)), where e(bi) = (e(bi)1, e(bi)2, . . . , e(bi)m)

and e(bi)j is the number of requested units of good γj in bi. We overload the function

units to refer to allocations: given an allocation π we denote the total number of

6.2. CAMUS ALGORITHM 111

units allocated as units(π), and given both an allocation π and a good γi we denote

the total number of units of good γi allocated in π by unitsi(π).

6.2.1 Dominated Bids

In the multi-unit case we must handle domination in a different way than we did in

the single-unit case. We say that bid b1 dominates b2 whenever p(b1) ≥ p(b2) and

e(b1)j ≤ e(b2)j for every good j. Although b2 is never preferable to b1, it is possible

that an optimal allocation could contain both b1 and b2. For this reason we store

b2 in a secondary data structure associated with b1, and consider adding it to those

allocations which include b1.

6.2.2 Subbins

In the multi-unit setting, we will often need to select more than one bid from a

given bin. This leads to the idea of subbins . A subbin is a subset of the bids in

a bin that is constructed during the search. Since subbins are created dynamically

they cannot provide precomputed contextual information; rather, they facilitate the

efficient selection of multiple bids from a given bin. Every time we add a bid to

our partial allocation we create a new subbin containing the next set of bids to

consider. If the search moves to a new bin, the new subbin is generated from the

new bin by removing all bids that conflict with the current partial allocation. If the

search remains in the same bin, the new subbin is created from the current subbin

by removing conflicting bids as above, and additionally: if b1, b2, . . . , bi is the ordered

set of elements in the current subbin and bj is the bid that was just chosen, then we

remove all bk, k ≤ j. In this way we consider all combinations of non-conflicting bids

in each bin rather than all permutations.

6.2.3 Dynamic Programming

Singleton bids (that is, bids that name units from only one good) deserve special

attention. These bids will generally be among the most computationally expensive

112 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

to consider—the number of nodes to search after adding a very short bid is nearly

the same as the number of nodes to search after skipping the bid, because a short

bid allocates few units and hence conflicts with few other bids. Unfortunately, we

expect that singleton bids will be quite common in a variety of real-world multi-unit

CA’s. CAMUS simplifies the problem of singleton bids by applying a polynomial-

time dynamic programming technique as a preprocessing step. We construct a vector

singletonγ for each good γ, where each element of the vector is a set of singleton

bids naming only good γ. singletonγ(j) evaluates to the revenue-maximizing set

of singleton bids totaling j units of good γ. This frees us from having to consider

singleton bids individually; instead, we consider only elements of the singleton vector

and treat these elements as atomic bids during the search. Also, there is never a

need to add more than one element from each singleton vector. To see why, imagine

that we add both singletonγ(j) and singletonγ(k) to our partial allocation. These

two elements may have bids in common, and additionally there may be singleton bids

with more than max(j, k) elements that would not conflict with our partial allocation

but that we have not considered. Clearly, we would be better off adding the single

element singletonγ(j + k).

We now show how to construct the singleton vector. Let b1, . . . , b` be bids for a

single good γ. Our aim is to compute the optimal selection of bi’s in order to allocate

k units of good γ, for 1 ≤ k ≤ units(γ). Consider a two dimensional grid of size

[1 . . . `] × [1 . . . units(γ)] where the (i, j)-th entry, denoted by U(i, j), is the optimal

allocation of j units considering only bids b1, . . . , bi. The value of U(i, j), denoted

by V (i, j), is the sum of the price offers of the bids in U(i, j). U(1, j) will be b1 if

b1 requests no more than j units, and otherwise will be the empty set. A recursive

definition of U(i, j) is given in Figure 6.6. This dynamic programming procedure is

polynomial, and yields the desired result; the optimal allocation of k units is given

by U(`, k). Set singletonγ(k) = U(`, k), 1 ≤ k ≤ units(γ).

6.2. CAMUS ALGORITHM 113

e(bi) > j:
U(i, j) = U(i− 1, j);

e(bi) = j:
if p(bi) > V (i− 1, j)

then U(i, j) = bi.
Else U(i, j) = U(i− 1, j).

e(bi) < j:
if V (i− 1, j) ≥ p(bi) + V (i− 1, j − e(bi))

then U(i, j) = U(i− 1, j).
Else U(i, j) = bi ∪ U(i− 1, j − e(bi)).

Figure 6.6: Singleton Pre-processing Algorithm

Let v(j)=0
Let m(j)=0
For i = 1 to |Lσ(j)|:

if m(j) < unitsj(π) and Lσ(j)k ∩ π = ∅ then
let d := min(e(Lσ(j)i)j , units(j)−m(j))
m(j) = m(j) + d
v(j) = v(j) + a(Lσ(j)i) · d

Figure 6.7: Upper Bound Algorithm

6.2.4 Upper Bound

CAMUS’s upper bound function generalizes the CASS upper bound function de-

scribed in Section 6.1.4, considering average price per unit rather than average price

per good. Let π be the current allocation; recall that unitsi(π) denotes the number

of available units of good j. Redefine a(bi) = p(bi)
Σm

j=1e(bi)j
: the average price per unit of

bid bi. Define Lσ(j) as before. Let |Lσ(j)| denote the number of elements in Lσ(j),

and let Lσ(j)k denote the kth element of Lσ(j). v(j) is determined by the algorithm

given in Figure 6.7.

Theorem 6.2 Let B∗ = {b∗1, b∗2, . . . , b∗s} be the bids in an optimal allocation. Then,

r∗ = Σb∈B∗p(b) ≤ Σ1≤j≤mv(j).

Proof. Consider the bid b∗ ∈ B∗. Then, p(b∗) = Σ1≤j≤ma(b∗)e(b∗)j. Hence,

r∗ = Σb∈B∗p(b) = Σb∈B∗Σ1≤j≤ma(b)e(b)j. By changing the order of summation we get

that r∗ = Σ1≤j≤mΣb∈B∗a(b)e(b)j. Notice that, given a particular j, the contribution

of bid b to Σb∈B∗a(b)e(b)j is a(b)e(b)j. Recall now that v(j) has been constructed

114 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

from the set of all bids that refer to good j by choosing the maximal available units

of good j from the bids in Lσ(j), where these bids are sorted according to the average

price per unit of good. Hence, we get v(j) ≥ Σb∈B∗a(b)e(b)j. Given that the above

holds for every good j, this implies that Σ1≤j≤mv(j) ≥ Σb∈B∗p(b), as requested.

6.2.5 Heuristics

We must update our good- and bid-ordering heuristics for the multi-unit case. For

our good-ordering heuristic we compute scorei = numbidsi·units(i)
avgunitsi

, where numbidsi is

the number of bids that request good i and avgunitsi is the average number of total

units (i.e., not just units of good i) requested by these bids. The intuition here is

similar to the intuition described in Section 6.1.6:

• We want to minimize the number of bids in low-order bins, to minimize early

branching and thus to make each individual prune more effective.

• We want to minimize the number of units of goods corresponding to low-order

bins, so that we will more quickly move beyond the first few bins. As a result, the

pruning function will be able to take into account more contextual information.

• We want to maximize the total number of units requested by bids in low-order

bins. Taking these bids moves us more quickly towards the leaves of the search

tree, again providing the pruning function with more contextual information.

Given current partial allocation π, we sort bids in a given bin in descending order

of score(bj), where score(bj) =
p(bj)

units(bj)
+ h(π ∪ bj), which is a direct generalization of

the heuristic discussed in Section 6.1.7.

6.3 Conclusions

We have presented CASS and CAMUS, algorithms that solve the single-unit and

multi-unit WDPs respectively. In the next chapter, we discuss test data for evaluating

such algorithms. We go on to evaluate CASS using this data in Chapter 8.

6.3. CONCLUSIONS 115

Process dominated bids.
Determine an ordering on the goods, according to the good-ordering
heuristic.

Using the dynamic programming technique, determine the optimal
combination of singleton bids totaling 1 . . . units(j) for each good
j.

Partition all non-singleton bids into bins, according to the good
ordering.

Precompute pruning information for each bin.
Set i = 1 and π = {}.
Recursive entry point:

For j = 1 ...number of bids in the current subbin of
bini.

π = π ∪ bj.
If (p(π) + c(g(π)) ≤ p(πbest)) backtrack.
If (p(π) + h(π) ≤ p(πbest)) backtrack.
If (units(π) =

∑
γ∈G units(γ)) record π if it is the best;

backtrack.
Set i to the index of the lowest-order good in π where
unitsi(π) < units(i). (i may or may not change)

Construct a new subbin based on the previous subbin of bini

(which is bini itself if i changed above):
Include all bk from current subbin, where k > j.
Include all dominated bids associated with bj.
Include singletoni(units(i)− unitsi(π)).
Sort the subbin according to the subbin-ordering
heuristic.

Recurse to the recursive entry point, above, and search
this new subbin.

π = π \ bj.
End For

Return the optimal allocation: πbest.

Figure 6.8: CAMUS Pseudocode

Chapter 7

Benchmarks for the Combinatorial

Auction Winner Determination

Problem

There has been much interest in the construction of algorithms for determining the

winners of a general combinatorial auction. Before it is possible to decide the extent

to which such an effort has been successful, however, it is necessary to evaluate the

algorithm using some sort of test data. Since general CA’s have never been widely

held, there is little data recording the bidding behavior of real bidders upon which

such test data may be built. In the absence of such natural benchmarks, we are left

only with the option of generating artificial data that is representative of the sort of

scenarios one is likely to encounter. This chapter describes such a test suite.

7.1 Past Work on Testing CA Algorithms

7.1.1 Experiments with Human Subjects

One approach to experimental work on combinatorial auctions uses human subjects.

These experiments assign valuation functions to subjects, then have them partici-

pate in auctions using various mechanisms [Banks et al., 1989; Ledyard et al., 1997;

116

7.1. PAST WORK ON TESTING CA ALGORITHMS 117

DeMartini et al., 1998]. Such tests can be useful for understanding how real people

bid under different auction mechanisms; however, they are less suitable for evaluat-

ing the mechanisms’ computational characteristics. In particular, this sort of test is

only as good as the subjects’ valuation functions, which in the above papers were

hand-crafted. As a result, this technique does not easily permit arbitrary scaling

of the problem size, a feature that is important for characterizing an algorithm’s

performance. In addition, this method relies on relatively naive subjects to behave

rationally given their valuation functions, which may be unreasonable when subjects

are faced with complex and unfamiliar mechanisms.

7.1.2 Particular Problems

A parallel line of research has examined particular problems to which CA’s seem well

suited. For example, researchers have considered auctions for the right to use railroad

tracks [Brewer & Plott, 1996], real estate [Quan, 1994], pollution rights [Ledyard &

Szakaly, 1994], airport time slot allocation [Rassenti et al., 1982] and distributed

scheduling of machine time [Wellman et al., 1998]. Most of these papers do not

suggest holding an unrestricted general CA, presumably because of the computational

obstacles. Instead, they tend to discuss alternative mechanisms that are tailored to

the particular problem. None of them proposes a method of generating test data,

nor does any of them describe how the problem’s difficulty scales with the number of

bids and goods. However, they still remain useful to researchers interested in general

CA’s because they give specific descriptions of problem domains to which CA’s may

be applied.

7.1.3 Artificial Distributions

A number of researchers have proposed algorithms for determining the winners of

general CA’s. In the absence of test suites, some have suggested novel bid generation

techniques, parameterized by number of bids and goods [Sandholm, 1999; Fujishima

et al., 1999; Boutilier et al., 1999; de Vries & Vohra, 2003]. (Other researchers have

used one or more of these distributions, e.g., [Parkes, 1999; Sandholm et al., 2001],

118 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

while still others have refrained from testing their algorithms altogether, e.g., [Nisan,

2000; Lehmann et al., 1999].) Parameterization represents a step forward, making it

possible to describe performance with respect to the problem size. However, there are

several ways in which each of these bid generation techniques falls short of realism,

concerning the selection of which goods and how many goods to request in a bundle,

what price to offer for the bundle, and which bids to combine in an XOR’ed set.

More fundamentally, however, all of these approaches suffer from failing to model

bidders explicitly, and from attempting to represent an economic situation with an

non-economic model.

Which goods

First, each of the distributions for generating test data discussed above has the prop-

erty that all bundles of the same size are equally likely to be requested. This assump-

tion is clearly violated in almost any real-world auction: most of the time, certain

goods (for which “natural” complementarities exist) will be more likely to appear

together than others.

Number of goods

Likewise, each of the distributions for generating test data determines the number of

goods in a bundle completely independently from determining which goods appear

in the bundle. While this assumption may appear more reasonable, there are many

domains in which the expected number of items in a bundle will be related to which

goods it contains. (For example, people buying computers will tend to make long

combinatorial bids, requesting monitors, printers, etc., while people buying refriger-

ators will tend to make short bids.)

Price

Next, there are problems with the schemes for generating price offers used by all four

techniques. Pricing is especially crucial: if prices are not chosen carefully then an

otherwise hard distribution can become computationally easy.

7.1. PAST WORK ON TESTING CA ALGORITHMS 119

In Sandholm [Sandholm, 1999] prices are drawn randomly from either [0, 1] or

from [0, g], where g is the number of goods requested. The first method is clearly

unreasonable (and computationally trivial) since price is unrelated to the number of

goods in a bid—note that a bid for many goods and for a small subset of the same

bid will have exactly the same price on expectation. The second is better, but has

the disadvantage that average and range are parameterized by the same variable.

In Boutilier et al.[Boutilier et al., 1999] prices of bids are distributed normally

with mean 16 and standard deviation 3, giving rise to the same problem as the [0, 1]

case above.

In Fujishima et al.[Fujishima et al., 1999] prices are drawn from [g(1 − d), g(1 +

d)], d = 0.5. While this scheme avoids the problems described above, prices are

simply additive in g and are unrelated to which goods are requested in a bundle, both

unrealistic assumptions in some domains.

More fundamentally, Anderson et al.[Anderson et al., 2000] note a critical pricing

problem that arises in several of the schemes discussed above. As the number of bids

to be generated becomes large, a given short bid will be drawn much more frequently

than a given long bid. Since the highest-priced bid for a bundle dominates all other

bids for the same bundle, short bids end up being much more competitive. Indeed, it

is pointed out that for extremely large numbers of bids a good approximation to the

optimal solution is simply to take the best singleton bid for each good. One solution

to this problem is to guarantee that only the first bid for each bundle will be retained.

However, this solution has the drawback that it is unrealistic: different real bidders

are likely to place bids on some of the same bundles.

Another solution to this problem is to make bundle prices superadditive in the

number of goods they request—an assumption that may also be reasonable in many

CA domains. A similar approach is taken by deVries and Vohra [de Vries & Vohra,

2003], who make the price for a bid a quadratic function of the prices of bids for

subsets. For some domains this pricing scheme may result in too large an increase in

price as a function of bundle length. The distributions presented in this chapter will

include a pricing scheme that may be configured to be superadditive or subadditive

in bundle length, where appropriate, parameterized to control how rapidly the price

120 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

offered increases or decreases as a function of bundle length.

XOR bids

Finally, while most of the bid-generation techniques discussed above permit bidders

to submit sets of bids XOR’ed together, they have no way of generating meaningful

sets of such bids. As a consequence the computational impact of XOR’ed bids has

been very difficult to characterize.

7.2 Generating Realistic Bids

While the lack of standardized, realistic test cases does not make it impossible to

evaluate or compare algorithms, it does make it difficult to know what magnitude

of real-world problems each algorithm is capable of solving, or what features of real-

world problems each algorithm is capable of exploiting. This second ambiguity is

particularly troubling: it is likely that algorithms would be designed differently if

they took the features of more realistic1 bidding into account.

7.2.1 Prices, price offers and valuations

The term “price” has traditionally been used by researchers constructing artificial

distributions to describe the amount offered for a bundle. However, this term re-

ally refers to the amount a bidder is made to pay for a bundle, which is of course

mechanism-specific and is often not the same as the amount offered. Indeed, it is

impossible to model bidders’ price offers at all without committing to a particular

auction mechanism. In the distributions described in this chapter, we will assume

a sealed-bid incentive-compatible mechanism, where the price offered for a bundle is

equal to the bidder’s valuation. Hence, in the rest of this chapter, we will use the

1There does exist a body of previous work characterizing hard cases for weighted set packing,
which is of course equivalent to the combinatorial auction problem. Real-world bidding is likely to
exhibit various regularities, however, as discussed throughout this chapter. A data set designed to
include the same regularities may be more useful for predicting the performance of an algorithm in
a real-world combinatorial auction.

7.2. GENERATING REALISTIC BIDS 121

terms price offer and valuation interchangeably. Researchers wanting to model bid-

ding behavior in other mechanisms could transform the valuation generated by our

distributions according to bidders’ equilibrium strategies in the new mechanism.

7.2.2 The CATS suite

In this chapter we present CATS (Combinatorial Auction Test Suite), a suite of distri-

butions for modeling realistic bidding behavior. This suite is grounded in previous re-

search on specific applications of combinatorial auctions, as described in section 7.1.1

above. At the same time, all of our distributions are parameterized by number of

goods and bids, facilitating the study of algorithm performance. This suite repre-

sents a move beyond previous work on modeling bidding in combinatorial auctions

because we provide an economic motivation for both the contents and the valuation

of a bundle, deriving them from basic bidder preferences. In particular, in each of

our distributions:

• Certain goods are more likely to appear together than others.

• The number of goods appearing in the bundle is often related to which goods

appear in the bundle.

• Valuations are related to which goods appear in the bundle. Where appropriate,

valuations can be configured to be subadditive, additive or superadditive in the

number of goods requested.

• Sets of XOR’ed bids are constructed in meaningful ways, on a per-bidder basis.

CATS suite contains a legacy section including all bid generation techniques de-

scribed above, so that new algorithms may easily be compared to previously-published

results. More information on the test suite, including executable versions of our dis-

tributions for Linux and Windows may be found on the CATS website [2000].

In section 7.3, below, we present distributions based on five real-world situations.

For most of our distributions, the mechanism for generating bids requires first building

a graph representing adjacency relationships between goods. Later, the mechanism

122 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

uses the graph, generated in an economically-motivated way, to derive complemen-

tarity properties between goods and substitutability properties for bids. Of the five

real-world situations we model, the first three concern complementarity based on ad-

jacency in (physical or conceptual) space, while the final two concern complementarity

based on correlation in time. Our first example (section 7.3.1) models shipping, rail

and bandwidth auctions. Goods are represented as edges in a nearly planar graph,

with agents submitting an XOR’ed set of bids for paths connecting two nodes. Our

second example (section 7.3.2) models an auction of real estate, or more generally

of any goods over which two-dimensional adjacency is the basis of complementar-

ity. Again the relationship between goods is represented by a graph, in this case

strictly planar. In Section 7.3.3 we relax the planarity assumption from the previ-

ous example in order to model arbitrary complementarities between discrete goods

such as electronics parts or collectables. Our fourth example (section 7.3.4) concerns

the matching of time-slots for a fixed number of different goods; this case applies to

airline take-off and landing rights auctions. In Section 7.3.5 we discuss the genera-

tion of bids for a distributed job-shop scheduling domain, and also its application to

power generation auctions. Finally, in Section 7.3.7, we provide a legacy suite of bid

generation techniques, including all those discussed in Section 7.1.3 above.

In the description of the distributions that follow, let rand(a, b) represent a real

number drawn uniformly from [a, b]. Let rand int(a, b) represent a random integer

drawn uniformly from the same interval. With respect to a given graph, let e(x, y)

represent the proposition that an edge exists between nodes x and y. All of the

distributions presented here are parameterized by the number of goods (num goods)

and number of bids (num bids).

7.3 CATS in Detail

7.3.1 Paths in Space

There are many real-world problems that involve bidding on paths in space. Generally,

this class may be characterized as the problem of purchasing a connection between

7.3. CATS IN DETAIL 123

two points. Examples include truck routes [Sanholm, 1993], natural gas pipeline

networks [Rassenti et al., 1994], network bandwidth allocation, and the right to use

railway tracks [Brewer & Plott, 1996].2 In particular, spatial path problems consist

of a set of points and accessibility relations between them. Although the distribution

we propose may be configured to model bidding in any of the above domains, we

will use the railway domain as our motivating example since it is both intuitive and

well-understood.

More formally, we will represent this railroad auction by a graph in which each

node represents a location on a plane, and an edge represents a connection between

locations. The goods at auction are therefore the edges of the graph, and bids request

a set of edges that form a path between two nodes. We assume that no bidder will

desire more than one path connecting the same two nodes, although the bidder may

value each path differently.

Building the Graph

The first step in modeling bidding behavior for this problem is determining the graph

of spatial and connective relationships between cities. One approach would be to use

an actual railroad map, which has the advantage that the resulting graph would be

unarguably realistic. However, it would be difficult to find a set of real-world maps

that could be said to exhibit a similar sort of connectivity and would encompass sub-

stantial variation in the number of cities. Since scalability of input data is of great

importance to the testing of new CA algorithms, we have chosen to propose gener-

ating such graphs randomly. Figure 7.1 shows a representative example of a graph

generated using our technique.

We begin with num cities nodes randomly placed on a plane. We add edges to this

graph, G, starting by connecting each node to a fixed number of its nearest neighbors.

2Electric power distribution is a frequently discussed real world problem which seems superficially
similar to the problems discussed here. However, many of the complementarities in this domain arise
from physical laws governing power flow in a network. Consideration of these laws becomes very
complex in networks of interesting size. Also, because these laws are taken into account during
the construction of power networks, the networks themselves are difficult to model using randomly
generated graphs. For these reasons, we do not attempt to model this domain.

124 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"cities2"
"edges2"

Figure 7.1: Sample Railroad Graph

Next, we iteratively consider random pairs of nodes and examine the shortest path

connecting them, if any. To compare, we also compute various alternative paths that

would require one or more edges to be added to the graph, given a penalty proportional

to distance for adding new edges. (We do this by considering a complete graph C, an

augmentation of G with new edges weighted to reflect the distance penalty.) If the

shortest path involves new edges—despite the penalty—then the new edges (without

penalty) are added to G, and replace the existing edges in C. This process models

our simplifying assumption that there will exist uniform demand for shipping between

any pair of cities, though of course it does not mimic the way new links would actually

be added to a rail network. The process continues until slightly more edges have been

created than the number of goods in the auction being modeled. (This is achieved by

the “1.05” in the first line of Figure 7.2.) The reason more edges than are necessary

are created is that some edges will not appear in bids, hence should not be considered

as goods.

Our technique produces slightly non-planar graphs—graphs on a plane in which

edges occasionally cross at points other than nodes. We consider this to be reasonable,

as the same phenomenon may be observed in real-world rail lines, highways, network

wiring, etc. Determining the “reasonableness” of a graph is of course a subjective task

7.3. CATS IN DETAIL 125

Let num cities = num goods÷ edge density × 1.05
Randomly place nodes (cities) on a unit box
Connect each node to its initial connections nearest neighbors
While num edges < num cities× edge density

C = G
For every pair of nodes n1, n2 ∈ G where ¬e(n1, n2)

Add an edge to C of length
building penalty · Euclidean distance(n1, n2)

End For
Choose two nodes at random, and find the shortest path between
them in C

If shortest path uses edges that do not exist in G
For every such pair of nodes n1, n2 ∈ G add an edge to G with
length Euclidean distance(n1, n2)

End If
End For

Figure 7.2: Graph-Building Technique

unless more quantitative metrics are used to assess quality; we see the identification

and application of such metrics (for this and other distributions) as an important

topic for future work.

Generating Bids

Given a map of cities and the connectivity between them, there is the orthogonal

problem of modeling bidding itself. We propose a method which generates a set of

substitutable bids from a hypothetical agent’s point of view. We start with the value

to an agent for shipping from one city to another and with a shipping cost which

we make equal to the Euclidean distance between the cities. We then place XOR

bids on all paths on which the agent would make a profit (i.e., those paths where

utility− cost > 0). The path’s value is random, in (parameterized) proportion to the

Euclidean distance between the chosen cities. Since the shipping cost is the Euclidean

distance between two cities, we use this as the lower bound for value as well, since

only bidders with such valuations would actually place bids.

There will occasionally be edges that are useful only for shipping directly between

the two cities they connect. These edges are clearly unrealistic; also, because they

126 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

will only be selected for singleton bids, they will not increase the size of the search

space. In fact, the same argument can be made about any small groups of bids that

do not conflict with any bids outside of the group: they are better modeled as a sep-

arate auction, and contribute very little to the difficulty of the winner determination

problem. Recall that we started out with more goods than we want to generate. At

some point in the bid generation process—usually before we have generated all of the

bids—the total number of goods requested across all bids will meet our target. At

this point we check for edges that are used only in singleton bids or isolated groups of

bids, and delete those bids. Once we reach the target number of goods without delet-

ing any bids, we delete all goods that are uninvolved in the bids we have generated

so far, and continue with bid generation.

If we reach our target number of bids without making use of the target number of

goods, we must restart graph generation. When restarting, we increase the number of

goods and cities to increase the expected number of different goods used as a fraction

of bids generated.

Note that this distribution, and indeed all others presented in this chapter, may

generate slightly more than num bids bids. In our experience CA optimization algo-

rithms tend not to be highly sensitive in the number of bids, so we judged it more

important to build economically sensible sets of substitutable bids. When generating

a precise number of bids is important, an appropriate number of bids may be removed

after all bids have been generated so that the total will be met exactly.

Note that 1 is used as a lower bound for d because any bidder with d < 1 would

find no profitable paths and therefore would not bid.

Multi-Unit Extensions: Bandwidth Allocation, Commodity Flow

This model may also be used to generate realistic data for multi-unit CA problems

such as network bandwidth allocation and general commodity flow. The graph may

be created as above, but with a number of units (capacity) assigned to each edge.

Likewise, the bidding technique remains unchanged except for the assignment of a

number of units to each bid.

7.3. CATS IN DETAIL 127

finished = true
Do

While num generated bids < num bids
Randomly choose two nodes, n1 and n2

d = rand(1, shipping cost factor)
cost = Euclidean distance(city1, city2)
value = d · Euclidean distance(city1, city2)
Make XOR bids of value− cost on every path from city1 to city2

having cost < value
If there are more than max bid set size such paths, bid on the
max bid set size paths that maximize value− cost.

If number of goods receiving bids ≥ num goods
remove isolated singleton bids and isolated bid groups
remove from the city map all edges that do not
participate in any bid

End If
End While
If number of goods receiving bids < num goods

delete all bids
delete graph
num cities = num cities + 1
run graph generation
finished = false

End While
While ¬finished

Figure 7.3: Bid-Generation Technique

7.3.2 Proximity in Space

There is a second broad class of real-world problems in which complementarity arises

from adjacency in two-dimensional space. An intuitive example is the sale of adjacent

pieces of real estate [Quan, 1994]. Another example is drilling rights, where it is much

cheaper for an oil company to drill in adjacent lots than in lots that are far from each

other. In this section, we first propose a graph-generation mechanism that builds

a model of adjacency between goods, and then describe a technique for generating

realistic bids on these goods. Note that in this section nodes of the graph represent

the goods at auction, while edges represent the adjacency relationship.

128 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

Place nodes at integer vertices (i, j) in a plane, where
1 ≤ i, j ≤ d

√
(num goods)e

For each node n
If n is on the edge of the map

Connect n to as many hv-neighbors as possible
Else

If rand(0, 1) ≤ three prob
Connect n to a random set of three of its four
hv-neighbors

Else
Connect n to all four of its hv-neighbors

While rand(0, 1) ≤ additional neighbor
Connect g to one of its d-neighbors, provided that the
new diagonal edge will not cross another diagonal edge

End While
End For

Figure 7.4: Graph-Building Technique

Building the Graph

There are a number of ways we could build an adjacency graph. The simplest would

be to place all the goods (locations, nodes) in a grid, and connect each to its four

neighbors. We propose a slightly more complex method in order to permit a variable

number of neighbors per node (corresponding, for example, to non-rectangular pieces

of real estate). As above we place all goods on a grid, but with some probability

we omit a connection between goods that would otherwise represent vertical or hori-

zontal adjacency, and with some probability we introduce a connection representing

diagonal adjacency. (We call horizontally- or vertically-adjacent nodes hv-neighbors

and diagonally-adjacent nodes d-neighbors.)

Figure 7.5 shows a sample real estate graph, generated by the technique described

in Figure 7.4. Nodes of the graph are shown with asterisks, while edges are represented

by solid lines. The dashed lines show one set of property boundaries that would be

represented by this graph. Note that one node falls inside each piece of property, and

that two pieces of property border each other iff their nodes share an edge.

7.3. CATS IN DETAIL 129

Figure 7.5: Sample Real Estate Graph

Generating Bids

To model realistic bidding behavior, we generate a set of common values for each

good, and private values for each good for each bidder. The common value represents

the appraised or expected resale value of each individual good. The private value

represents how much one particular bidder values that good, as an offset to the

common value (e.g., a private value of 0 for a good represents agreement with the

common value). These private valuations describe a bidder’s preferences, and so they

are used to determine both a value for a given bid and the likelihood that a bidder

will request a bundle that includes that good. There are two additional components

to each bidder’s preferences: a minimum total common value, and a budget. The

former reflects the idea that a bidder may only wish to acquire goods of a certain

recognized value. The latter reflects the fact that a bidder may not be able to afford

every bundle that is of interest to him.

To generate bids, we first add a random good, weighted by a bidder’s preferences,

to the bidder’s bid. Next, we determine whether another good should be added

by drawing a value uniformly from [0,1], and adding another good if this value is

smaller than a threshold. This is equivalent to drawing the number of goods in a

130 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

bid from a decay distribution.34 We must now decide which good to add. First we

allow a small chance that a new good will be added uniformly at random from the

set of goods, without the requirement that it be adjacent to a good in the current

bundle B . (This permits bundles requesting unconnected regions of the graph: for

example, a hotel company may only wish to build in a city if it can acquire land

for two hotels on opposite sides of the city.) Otherwise, we select a good from the

set of nodes bordering the goods in B. The probability that some adjacent good n1

will be added depends on how many edges n1 shares with the current bundle, and

on the bidder’s relative private valuations for n1 and n2. For example, if nodes n1

and n2 are each connected to B by one edge, and the private valuation for n1 is twice

that for n2 then the probability of adding n1 to B, p(n1), is 2p(n2). Further, if n1

has 3 edges to nodes in B while n2 is connected to B by only 1 edge, and the goods

have equivalent private values, then p(n1) = 3p(n2). Once we have determined all the

goods in a bundle we set the price offered for the bundle, which depends on the sum

of common and private valuations for the goods in the bundle, and also includes a

function that is superadditive (with our parameter settings) in the number of goods.5

Finally, we generate additional bids that are substitutable for the original bid, with

the constraint that each bid in the set requests at least one good from the original

bid.

Spectrum Auctions

A related problem is the auction of radio spectrum, in which a government sells the

right to use specific segments of spectrum in different geographical areas[Plott &

Cason, 1996; Ausubel et al., 1997]. It is possible to approximate bidding behavior in

spectrum auctions by making the assumption that all complementarity arises from

3We use Sandholm’s [Sandholm, 1999] term “decay” here, though the distribution goes by various
names—for a description of the distribution please see Section 7.3.6.

4There are two reasons we use a decay distribution here. First, we expect that more bids will
request small bundles than large bundles. Second, we require a distribution where the expected
bundle size is (relatively) unaffected by changes in the total number of goods.

5Recall the discussion in Section 7.1.3 motivating the use of superadditive valuations.

7.3. CATS IN DETAIL 131

Routine Add Good to Bundle(bundle B)
If rand(0, 1) ≤ jump prob

Add a good g /∈ b to B, chosen uniformly at random
Else

Compute s =
∑

x/∈B,y∈B,e(x,y) pn(x) [pn() is defined below]
Choose a random node x /∈ B from the distribution∑

y∈B,e(x,y)
pn(x)

s
Add x to B

End If
End Routine

Figure 7.6: Add Good to Bundle for Spatial Proximity

spatial proximity.6 In this case, our spatial proximity model can also be used to

generate bidding distributions for spectrum auctions. The main difference between

this problem and the real estate problem is that in a spectrum auction each good

may have multiple units (frequency bands) for sale. It is insufficient to model this as

a multi-unit CA problem, however, if bidders have the constraint that they want the

same frequency in each region.7 Instead, the problem can be modeled with multiple

distinct goods per node in the graph, and bids constructed so that all nodes added

to a bundle belong to the same ‘frequency’. With this method, it is also easy to

incorporate other preferences, such as preferences for different types of goods. For

instance, if two different types of frequency bands are being sold, one 5 megahertz

wide and one 2.5 megahertz wide, an agent only wanting 5 megahertz bands could

make substitutable bids for each such band in the set of regions desired (generating

the bids so that the agent will acquire the same frequency in all the regions).

The scheme for generating price offers used in our real estate example may be

inappropriate for the spectrum auction domain. Research indicates that while price

offers will still tend to be superadditive, this superadditivity may be quadratic in the

6This assumption would be violated, for example, if some bidders wanted to secure the right to
broadcast at the same frequency in several adjacent areas.

7To see why this cannot be modeled as a multi-unit CA, consider an auction for three regions
with two units each, and three bidders each wanting one unit of two goods. In the optimal allocation,
b1 gets 1 unit of g1 and 1 unit of g2, b2 gets 1 unit of g2 and 1 unit of g3, and b3 gets 1 unit of g3

and 1 unit of g1. In this example there is no way of assigning frequencies to the units so that each
bidder gets the same frequency in both regions.

132 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

For all g, c(g) = rand(1,max good value)
While num generated bids < num bids

For each good, reset
p(g) = rand(−deviation ·max good value, deviation + max good value)

pn(g) = p(g)+deviation·max good value
2·deviation·max good value

Normalize pn(g) so that
∑

g pn(g) = 1
B = {}
Choose a node g at random, weighted by pn(), and add it to B
While rand(0, 1) ≤ additional location

Add Good to Bundle(B)
value(B) =

∑
x∈B(c(x) + p(x)) + S(|B|)

If value(B) ≤ 0 on B, restart bundle generation for this bidder
Bid value(B) on B
budget = budget factor · value(B)
min resale value = resale factor ·∑x∈B c(x)
Construct substitutable bids. For each good gi ∈ B

Initialize a new bundle, Bi = {gi}
While |Bi| < |B|

Add Good to Bundle(Bi)
Compute ci =

∑
x∈Bi

c(x)
End For
Make XOR bids on all Bi where 0 ≤ value(B) ≤ budget and
ci ≥ min resale value.

If there are more than max substitutable bids such bundles, bid on
the max substitutable bids bundles having the largest value

End While

Figure 7.7: Bid-Generation Technique

population of the region rather than exponential in the number of regions [Ausubel

et al., 1997].

7.3.3 Arbitrary Relationships

Sometimes complementarities between goods will not be as universal as geographical

adjacency, but some kind of regularity in the complementarity relationships between

goods will still exist. Consider an auction of different, indivisible goods, e.g., for

semiconductor parts or collectables, or for distinct multi-unit goods such as the right

to emit some quantity of two different pollutants produced by the same industrial

7.3. CATS IN DETAIL 133

Build a fully-connected graph with one node for each good
Label each edge from n1 to n2 with a weight d(n1, n2) = rand(0, 1)

Figure 7.8: Graph-Building Technique

process. In this section we discuss a general way of modeling such arbitrary relation-

ships.

Building the Graph

We express the likelihood that a particular pair of goods will appear together in

a bundle as being proportional to the weight of the appropriate edge of a fully-

connected graph. That is, the weight of an edge between n1 and n2 is proportional

to the probability that, having only n1 in our bundle, we will add n2. Weights are

only proportional to probabilities because we must normalize the sum of all weights

from a given good to sum to 1.

Generating Bids

Our technique for modeling bidding is a generalization of the technique presented in

the previous section. We choose a first good and then proceed to add goods one by

one, with the probability of each new good being added depending on the current

bundle. Note that, since in this section the graph is fully-connected, there is no need

for the ‘jumping’ mechanism described above. The likelihood of adding a new good g

to bundle B is proportional to
∑

y∈B d(x, y) · pi(x). The first term d(x, y) represents

the likelihood (independent of a particular bidder) that goods x and y will appear in a

bundle together; the second, pi(x), represents bidder i’s private valuation of the good

x. We implement this new mechanism by changing the routine Add Good to Bundle().

We are thus able to use the same techniques for assigning a value to a bundle, as well

as for determining other bundles with which it is substitutable.

134 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

Routine Add Good to Bundle(bundle B)
Compute s =

∑
x/∈b,y∈B d(x, y) · pn(x)

Choose a random node x /∈ B from the distribution
∑

y∈B d(x, y) · pn(x)
s

Add x to B
End Routine

Figure 7.9: Routine Add Good to Bundle for Arbitrary Relationships

7.3.4 Temporal Matching

We now consider real-world domains in which complementarity arises from a tem-

poral relationship between goods. In this section we discuss matching problems, in

which corresponding time slices must be secured on multiple resources. The gen-

eral form of temporal matching includes m sets of resources, in which each bid-

der wants 1 time slice from each of j ≤ m sets subject to certain constraints on

how the times may relate to one another (e.g., the time in set 2 must be at least

two units later than the time in set 3). Here we concern ourselves with the prob-

lem in which j = 2, and model the problem of airport take-off and landing rights.

Rassenti et al. [Rassenti et al., 1982] made the first study of auctions in this do-

main. The problem has been the topic for much other work; in particular [Grether

et al., 1989] includes detailed experiments and an excellent characterization of bidder

behavior.

The airport take-off and landing problem arises because certain high-traffic air-

ports require airlines to purchase the right to take off or land during a given time

slice. However, if an airline buys the right for a plane to take off at one airport then

it must also purchase the right for the plane to land at its destination an appropriate

amount of time later. Thus, complementarity exists between certain pairs of goods,

where goods are the right to use the runway at a particular airport at a particular

time. Substitutable bids are different departure/arrival packages; therefore bids will

only be substitutable within certain limits.

7.3. CATS IN DETAIL 135

38.5

39

39.5

40

40.5

41

41.5

42

42.5

-88 -86 -84 -82 -80 -78 -76 -74 -72

La
tit

ud
e

Longitude

O’Hare

Reagan

Kennedy

LaGuardia

"airports"
"airways"

Figure 7.10: Map of Airport Locations

Building the Graph

Departing from our graph-based approach above, we ground this example in the real

map of high-traffic US airports for which the Federal Aviation Administration auc-

tions take-off and landing rights, described in [Grether et al., 1989]. These are the

four busiest airports in the United States: La Guardia International, Ronald Rea-

gan Washington National, John F. Kennedy International, and O’Hare International.

This map is shown below.

We chose not to use a random graph in this example because the number of bids

and goods is dependent on the number of bidders and time slices at the given airports;

it is not necessary to modify the number of airports in order to vary the problem size.

Thus, num cities = 4 and num times = bnum goods/num citiesc.

Generating Bids

Our bidding mechanism presumes that airlines have a certain tolerance for when

a plane can take off and land (early takeoff deviation, late takeoff deviation,

early land deviation, late land deviation), as related to their most preferred take-off

and landing times (start time, start time + min flight length). We generate bids

136 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

for all bundles that fit these criteria. The value of a bundle is derived from a particu-

lar agent’s utility function. We define a utility umax for an agent, which corresponds

to the utility the agent receives for flying from city1 to city2 if it receives the ideal

takeoff and landing times. This utility depends on a common value for a time slot

at the given airport, and deviates by a random amount. Next we construct a utility

function which reduces umax according to how late the plane will arrive, and how

much the flight time deviates from optimal.

Set the average valuation for each city’s airport:
cost(city) = rand(0,max airport value)

Let max l = length of longest distance between any two cities
While num generated bids < num bids

Randomly select city1 and city2 where e(city1, city2)
l = distance(city1, city2)
min flight length = round(longest flight length · 1

max l)
start time = rand int(1, num times−min flight length)
dev = rand(1− deviation, 1 + deviation)
Make substitutable (XOR) bids. For
takeoff = max(1, start time− early takeoff deviation) to
min(num times, start time + late takeoff deviation)

For land = takeoff + min flight length to
min(start time + min flight length + late land deviation, num times)

amount late = min(land− (start time + min flight length), 0)
delay = land− takeoff −min flight length
Bid dev · (cost(city1) + cost(city2)) · delay coeffdelay ·
amount late coeffamount late for takeoff at time takeoff at
city1 and landing at time land at city2

End For
End For

End While

Figure 7.11: Bid-Generation Technique

7.3.5 Temporal Scheduling

Wellman et al. [Wellman et al., 1998] proposed distributed job-shop scheduling with

one resource as a CA problem. We provide a distribution that mirrors this problem.

7.3. CATS IN DETAIL 137

While there exist many algorithms for solving job-shop scheduling problems, the

distributed formulation of this problem places it in an economic context. Wellman et

al. describe a factory conducting an auction for time-slices on some resource. Each

bidder has a job requiring some amount of machine time, and a deadline by which

the job must be completed. Some jobs may have additional, later deadlines which are

less desirable to the bidder and so for which the bidder is willing to pay less.

Generating Bids

In the CA formulation of this problem, each good represents a specific time slice.

Two bids are substitutable if they constitute different possible schedules for the same

job. We determine the number of deadlines for a given job according to a decay

distribution, and then generate a set of substitutable bids satisfying the deadline

constraints. Specifically, let the set of deadlines of a particular job be d1 < · · · < dn

and the value of a job completed by d1 be v1, superadditive in the job length. We

define the value of a job completed by deadline di as vi = v1 · d1

di
, reflecting the intuition

that the decrease in value for a later deadline is proportional to its ‘lateness’. Like

Wellman et al., we assume that all jobs are eligible to be started in the first time

slot. Our formulation of the problem differs in only one respect—we consider only

allocations in which jobs receive continuous blocks of time. However, this constraint

is not restrictive because for any arbitrary allocation of time slots to jobs there exists

a new allocation in which each job receives a continuous block of time and no job

finishes later than in the original allocation. (This may be achieved by numbering the

winning bids in increasing order of scheduled end time, and then allocating continuous

time-blocks to jobs in this order. Clearly no job will be rescheduled to finish later

than its original scheduled time.) Note also that this problem cannot be translated

to a trivial one-good multi-unit CA problem because jobs have different deadlines.

7.3.6 Legacy Distributions

To aid researchers designing new CA algorithms by facilitating comparison with pre-

vious work, CATS includes the ability to generate bids according to all previous

138 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

While num generated bids < num bids
l = rand int(1, max length)
d1 = rand int(l, num goods)
dev = rand(1− deviation, 1 + deviation)
cur max deadline = 0
new d = d1

To generate substitutable (XOR) bids. Do
Make bids with price offered = dev · l1+additivity · d1/new d for all
blocks [start, end] where start ≥ 1, end ≤ new d,
end > cur max deadline, end− start = l

cur max deadline = new d
new d = rand int(cur max deadline + 1, num goods)

While rand(0, 1) ≤ prob additional deadline
End While

Figure 7.12: Bid-Generation Technique

published test distributions of which we are aware, that are able to scale with the

number of goods and bids. Each of these distributions may be seen as an answer to

three questions: what number of goods to request in a bundle, which goods to request,

and the price offered for a bundle. We begin by describing different techniques for

answering each of these three questions, and then show how they have been combined

in previously published work.

Number of Goods

Uniform: Uniformly distributed on [1, num goods]

Normal: Normally distributed with µ = µ goods and σ = σ goods

Constant: Fixed at constant goods

Decay: Starting with 1, repeatedly increment the size of the bundle until rand(0, 1)

exceeds α

Binomial: Request n goods with probability pn(1− p)num goods−n
(

num goods
n

)

Exponential: Request n goods with probability C exp−n/q

7.3. CATS IN DETAIL 139

Which Goods

Random: Draw n goods uniformly at random from the set of all goods, without

replacement8

Price Offer

Fixed Random: Uniform on [low fixed, hi fixed]

Linear Random: Uniform on [low linearly · n, hi linearly · n]

Normal: Draw from a normal distribution with µ = µ price and σ = σ price

Quadratic9: For each good k and each bidder i set the value vi
k = rand(0, 1); then

i’s price offer for a set of goods S is
∑

k∈S vi
k +

∑
k,q vi

kv
i
q

7.3.7 Previously Published Distributions

The following is a list of the distributions used in all published tests of which we

are aware. In each case we describe first the method used to choose the number

of goods, followed by the method used to choose the price offer. In all cases the

‘random’ technique was used to determine which goods should be requested in a

bundle. Each case is labeled with its corresponding CATS legacy suite number; very

similar distributions are given similar numbers and identical distributions are given

the same number.

[L1] Sandholm: Uniform, fixed random with low fixed = 0, hi fixed = 1

[L1a] Anderson et al.: Uniform, fixed random with low fixed = 0, hi fixed = 1000

[L2] Sandholm: Uniform, linearly random with low linearly = 0, hi linearly = 1

[L2a] Anderson et al.: Uniform, linearly random with low linearly = 500,

hi linearly = 1500

[L3] Sandholm: Constant with constant goods = 3, fixed random with low fixed =

8Although in principle the problem of which goods to request could be answered in many ways,
all legacy distributions of which we are aware use this technique.

9DeVries and Vohra [de Vries & Vohra, 2003] briefly describe a more general version of this
price offer scheme, but do not describe how to set all the parameters (e.g., defining which goods
are complementary); hence we do not include it here. Quadratic price offers may be particularly
applicable to spectrum auctions; see [Ausubel et al., 1997].

140 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

0, hi fixed = 1

[L3] deVries and Vohra: Constant with constant goods = 3, fixed random with

low fixed = 0, hi fixed = 1

[L4] Sandholm: Decay with α = 0.55, linearly random with low linearly = 0,

hi linearly = 1

[L4] deVries and Vohra: Decay with α = 0.55, linearly random with low linearly = 0,

hi linearly = 1

[L4a] Anderson et al.: Decay with α = 0.55, linearly random with low linearly = 1,

hi linearly = 1000

[L5] Boutilier et al.: Normal with µ goods = 4 and σ goods = 1, normal with

µ price = 16 and σ price = 3

[L6] Fujishima et al.: Exponential with q = 5, linearly random with low linearly =

0.5, hi linearly = 1.5

[L6a] Anderson et al.: Exponential with q = 5, linearly random with low linearly =

500, hi linearly = 1500

[L7] Fujishima et al.: Binomial with p = 0.2, linearly random with low linearly =

0.5, hi linearly = 1.5

[L7a] Anderson et al.: Binomial with p = 0.2, linearly random with low linearly =

500, hi linearly = 1500

[L8] deVries and Vohra: Constant with constant goods = 3, quadratic

Parkes [Parkes, 1999] used many of the test sets described above (particularly

those described by Sandholm and Boutilier et al.), but tested with fixed numbers of

goods and bids rather than scaling these parameters.

Since the publication of [Leyton-Brown et al., 2000a], the CATS distributions have

also been widely used, for example by [Sandholm et al., 2001; Gonen & Lehmann,

2001; Gonen & Lehmann, 2000; Holte, 2001; Schuurmans et al., 2001; Kastner et al.,

2002; Zurel & Nisan, 2000].

7.4. TUNING DISTRIBUTIONS 141

7.4 Tuning Distributions

7.4.1 Removing Dominated Bids

For the WDP, it is well known that problems become harder as the number of goods

and bids increases.10 For this reason, researchers have traditionally reported the

performance of their WDP algorithms in terms of the number of bids and goods of

the input instances. While it is easy to fix the number of goods, holding the number

of bids constant is not as straightforward as it might appear. Most special-purpose

algorithms make use of a polynomial-time preprocessing step which removes bids that

are strictly dominated by one other bid. More precisely, bid i is dominated by bid j

if the goods requested by i are a (non-strict) superset of the goods requested by j,

and the price offer of i is smaller than or equal to the price offer of j. (This is similar

in flavor to the use of arc-consistency as a preprocessing step for a CSP or weighted

CSP problem.) It is thus possible for the size of problems given as input to the WDP

algorithm to vary even if all generated instances had the same number of bids.

It is not obvious whether this domination procedure ought to remove many bids,

or whether the relationship between the average number of non-dominated bids and

total bids ought to vary substantially from one distribution to another, so we set out

to measure this relationship. Figure 7.4.1 shows the number of non-dominated bids

as a function of the total number of bids generated. In these experiments, with each

line representing an average over 20 runs, bids were generated for an auction with

64 goods, and the program stopped after 2000 non-dominated bids had been made.

We observe that some of the legacy distributions are considerably more likely than

others to generate non-dominated bids; we do not show the CATS distributions in

this graph as all five generated virtually no dominated bids.

Of course, many other polynomial-time preprocessing steps are possible, e.g., a

check for bids that are dominated by a pair of other bids. Indeed, CPLEX employs

10An exception is that problems generally become easier when the number of bids grows very large
in distributions favoring small bundles, because each small bundle is sampled much more often than
each large bundle, giving rise to a new distribution for which the optimal allocation tends to involve
only small bundles; cf., [Anderson et al., 2000].

142 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000
Raw Number of Bids

N
um

be
r

of
 N

on
-D

om
in

at
ed

 B
id

s
(a

ve
ra

ge
 o

ve
r

20
 r

un
s)

L1 L2 L3 L4 L5 L6 L7

L1: Uniform Random

L4: Decay

L5: Normal

L6: Exponential
L2: Weighted Random

L7: Binomial
L3: Uniform

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000
Raw Number of Bids

N
um

be
r

of
 N

on
-D

om
in

at
ed

 B
id

s
(a

ve
ra

ge
 o

ve
r

20
 r

un
s)

L1 L2 L3 L4 L5 L6 L7

L1: Uniform Random

L4: Decay

L5: Normal

L6: Exponential
L2: Weighted Random

L7: Binomial
L3: Uniform

Figure 7.13: Non-Dominated Bids vs. Raw Bids

many, much more complex preprocessing steps before initiating its own branch-and-

bound search. Our own experience with algorithms for the WDP has suggested that

other polynomial-time preprocessing steps offer much poorer performance in terms of

the number of bids discarded in a given amount of time. In any case, the results above

suggest that strict domination checking should not be disregarded, since distributions

differ substantially in the ratio between the number of non-dominated bids and the

raw number of bids. The CATS software has the ability to generate instances for

all CATS and legacy distributions with a specified number of non-dominated bids:

the software iteratively generates bids and removes dominated bids until the specified

target is reached. Observe that if we want to be able to generate any given number

of non-dominated bids then we will be unable to use the distributions L1 and L5,

because they often fail to generate a target number of non-dominated bids even after

millions of bids were created. (This helps explain why L1 and L5 have been found

empirically easy by other researchers.)

7.4.2 Sampling Parameters

In our original paper on CATS [Leyton-Brown et al., 2000a], we suggested default

values for the parameters of each generator. These defaults represented reasonable

7.4. TUNING DISTRIBUTIONS 143

0.1
1

10

100

1000

10000

100000 Matching

Scheduling

Exponent ial

W
e ighted Random

Regions

Decay

Arbitrary

Binomial

Uniform

0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
n

ta
g

e
In

 c
la

s
s

Runtim e
(order of

m agnitude)

Figure 7.14: Gross Hardness

choices for the parameter values; however, the parameter space is large and the com-

putational characteristics of the different CATS distributions may vary substantially

throughout this space. An alternative to the use of default values for each parameter

is the establishment of reasonable ranges for each parameter. Whenever an instance

is created, a value for each parameter can be sampled uniformly at random from this

range, ensuring that the whole parameter space is explored. Newer versions of the

CATS software support this sort of parameter sampling.

7.4.3 Making CATS Harder

There has been discussion in the combinatorial auctions literature about whether

CATS is computationally hard (see, e.g., [Gonen & Lehmann, 2000; Sandholm et al.,

2001]). We performed tests on both CATS and legacy distributions with ILOG’s

CPLEX solver, sampling parameters as described above. Figure 7.14 shows the results

144 CHAPTER 7. COMBINATORIAL AUCTION BENCHMARKS

of 500 runs for each distribution on problems with 256 goods and 1000 non-dominated

bids, indicating the number of instances with the same order-of-magnitude runtime—

i.e., blog10(runtime)c. Each instance of each distribution had different parameters,

each of which was sampled from a range of acceptable values.

We can see that several of the CATS distributions are quite easy for CPLEX,

and that others vary from easy to hard. It is interesting that most distributions

had instances that varied in hardness by several orders of magnitude, despite the

fact that all instances had the same problem size. This gives rise to the question of

whether we can tune CATS so that in addition to generating “realistic” instances,

it also generates the hardest possible instances? We present techniques that answer

this question in Section 10.4.1 in Chapter 10.

Our interest in generating the hardest possible instances notwithstanding, we

should not be discouraged by the fact that some CATS distributions are computa-

tionally easy. On the contrary, this evidence suggests that realistic bidding patterns

may often lead to much more tractable winner determination problems than the hard-

est unrealistic distributions such as “uniform”. This is good news for those who hope

to run practical combinatorial auctions.

7.5 Conclusions

In this chapter we introduced CATS, a test suite for combinatorial auction optimiza-

tion algorithms. The distributions in CATS represent a step beyond previous CA

testing techniques because they are economically motivated and model real-world

problems. In the next chapter we use these distributions to evaluate CASS.

Chapter 8

Evaluating Combinatorial Auction

Algorithms

This chapter presents experimental results for CASS.1 First, scaling experiments

demonstrate that CASS can scale exponentially in the number of goods, but appears

to scale subexponentially in the number of bids. Second, CASS’s anytime perfor-

mance is examined: CASS can find nearly-optimal solutions orders of magnitude

sooner than it terminates, and can spend considerable time proving optimality after

finding the optimal solution. Third, CASS is contrasted with the Bidtree algorithm,

another widely-cited WDP algorithm. Finally, CASS is contrasted with the latest

version of ILOG’s CPLEX software.

8.1 Original CASS Experiments

All the experiments in this section were run a 450MHz Pentium II with 256MB of

RAM running Windows NT 4.0. CASS was implemented in ANSI C++, and is

publicly available. While these experiments were run on older hardware, they are

still useful for gaining an understanding of the algorithm. They examine all legacy

1We do not present experimental results for CAMUS here, since Chapter 7 focused on single-unit
distributions, and Chapter 9 will go on to consider only the single-unit WDP. For an experimental
evaluation of CAMUS, please see [Leyton-Brown et al., 2000b].

145

146 CHAPTER 8. EVALUATING CA ALGORITHMS

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Bids (Exponentially Distributed)

Ru
nn

ing
 ti

me
 (m

ed
ian

 ov
er

20
 ru

ns
, s

eco
nd

s)

30 goods 40 goods 50 goods 60 goods 70 goods

Figure 8.1: CASS Scaling: L6

0.1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids (Binomially Distributed)

Ru
nn
ing

 ti
me

 (m
ed
ian

 ov
er

20
 ru

ns
, s
eco

nd
s)

200 goods 300 goods 400 goods 500 goods

Figure 8.2: CASS Scaling: L7

distributions discussed in Section 7.3.7 except for L5 and L8.

8.1.1 Scaling Performance

The experiments in this section help us to understand CASS’s performance as the

number of bids2 and goods is varied. Figures 8.1 and 8.2 show CASS’s performance

on the L6 and L7 distributions. Observe that for L6 runtime appears to scale expo-

nentially in the number of goods (the four plots, representing linear increases in the

number of goods, are spaced roughly equally on the log plot); for L7 runtime appears

to scale sub-exponentially in the number of goods. For both L6 and L7 runtime

clearly scales polynomially in the number of bids, as all the curves are sublinear on a

linear axis.

8.1.2 Anytime Performance

Figure 8.3 shows CASS’s anytime performance. Observe that the time it takes CASS

to find the optimal solution is nearly of an order of magnitude smaller than the time

at which it terminates: this is because proving optimality occupies most of the search.

(Contrast this behavior with other optimization algorithms such as A∗, which never

finds the optimal solution before optimality is proven.) Also observe that the time it

2Unlike the data in Section 8.2 and in later chapters, the experiments in this section consider
raw numbers of bids rather than numbers of undominated bids.

8.1. ORIGINAL CASS EXPERIMENTS 147

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Bids (Always 60 Goods, Exponentially Distributed)

El
ap
sed

 ti
me

 (m
ed
ian

 ov
er
20
 ru

ns
, s
eco

nd
s)

0.8 0.9 0.95 0.96 0.97 0.98 0.99 1 Completed

Figure 8.3: CASS Anytime Performance: L6

takes CASS to finds a solution within 99% of optimality is usually much smaller—as

much as two orders of magnitude. This means that CASS can be very useful as an

anytime algorithm even in situations where it does not terminate in a reasonable

amount of time. Of course, however, there is no theoretical guarantee that CASS will

always find a solution that is close to optimal.

8.1.3 CASS vs. Bidtree

Besides CASS, Bidtree is the other special-purpose WDP algorithm that has been

most widely studied and cited in the literature. It was presented in the same con-

ference proceedings as CASS [Sandholm, 1999]. The Bidtree algorithm is similar to

CASS in several ways, but important differences hold. In particular, Bidtree per-

forms a secondary depth-first search to identify non-conflicting bids, whereas CASS’s

structured approach provides context to the upper bound function as well as allowing

it to avoid considering most conflicting bids. Bidtree also performs no caching or

cache pruning. On the other hand, Bidtree uses an IDA∗ search strategy rather than

CASS’s branch-and-bound approach, and does more preprocessing.

Figures 8.4, 8.5, 8.6 and 8.7 contrast CASS and Bidtree’s performance on the L1,

L2, L3 and L4 distributions respectively. The Bidtree algorithm has never been made

148 CHAPTER 8. EVALUATING CA ALGORITHMS

0.1

1

10

100

1000

10000

500 750 1000
Number of Bids (Random Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve
r 2

0 r
un

s,
sec

on
ds
)

CASS - 100 goods CASS - 200 goods CASS - 300 goods CASS - 400 goods
BidTree - 100 goods BidTree - 200 goods BidTree - 300 goods BidTree - 400 goods

Figure 8.4: CASS vs. Bidtree: L1

0.1

1

10

100

1000

10000

500 1000 1500 2000
Number of Bids (Weighted Random Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve
r 2

0 r
un

s,
sec

on
ds
)

CASS - 100 goods CASS - 200 goods CASS - 300 goods CASS - 400 goods
BidTree - 100 goods Bidtree - 200 goods BidTree - 300 goods BidTree - 400 goods

Figure 8.5: CASS vs. Bidtree: L2

0.001

0.01

0.1

1

10

100

1000

10000

100000

50 100 150
Number of Bids (Uniform Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve
r 2

0 r
un

s,
sec

on
ds
)

CASS - 25 goods CASS - 50 goods CASS - 75 goods CASS - 100 goods
BidTree - 25 goods BidTree - 50 goods BidTree - 75 goods BidTree - 100 goods

Figure 8.6: CASS vs. Bidtree: L3

0.001

0.01

0.1

1

10

100

1000

10000

50 100 150 200
Number of Bids (Decay Distribution)

Ru
nn
ing

 ti
me

 (a
ve
rag

e o
ve
r 2

0 r
un
s,

sec
on
ds
)

CASS - 50 goods CASS - 100 goods CASS - 150 goods CASS - 200 goods
BidTree - 50 goods BidTree - 100 goods BidTree - 150 goods BidTree - 200 goods

Figure 8.7: CASS vs. Bidtree: L4

publicly available; Bidtree performance for these figures was taken from [Sandholm,

1999]. It is therefore impossible to rerun these experiments on other distributions or

varying the number of nondominated bids instead of the number of raw bids. Observe

that overall, CASS dramatically outperforms Bidtree: CASS is between 2 and 500

times faster than Bidtree on the data points shown here, and is never slower.

8.2 CASS vs. CPLEX

When CASS and Bidtree were proposed, ILOG’s CPLEX 5 mixed integer program-

ming package (the industry standard) was unable to solve most WDP problems within

8.2. CASS VS. CPLEX 149

a reasonable amount of time. Since that time, however, CPLEX’s mixed integer pro-

gramming module improved substantially with version 6 (released 2000), and sub-

stantially again with version 7 (released 2001). Now that CPLEX is in version 8,

there has been general convergence in the research community towards using CPLEX

as the default approach for solving the WDP.

The only ongoing effort at competition with CPLEX has come from the authors of

Bidtree, who have written an updated algorithm called CABOB which they claim is

much faster [Sandholm et al., 2001]. However, like Bidtree, CABOB is not available to

researchers. This is a serious impediment because published runtime data for CABOB

is insufficient for our purposes: from this point forward we analyze algorithms in

more detail than simply comparing average or median running times. In any case,

CABOB’s reported performance is similar to CPLEX’s, and CABOB is also similar

to CPLEX in its construction: it makes use of CPLEX’s linear programming package

as a subroutine and uses a similar search strategy. For these reasons, we present no

experiments with CABOB.

In this section we compare the performance of CASS and CPLEX 8.0. These

experiments were run on a cluster of 12 dual 2.4 Ghz Xeon machines with 1 GB

RAM running Redhat Linux. We tested on 10 of the distributions provided by the

CATS suite: all those distributions capable of generating an arbitrary number of

nondominated bids. Specifically, we used all five of the CATS distributions (paths,

regions, arbitrary, matching, scheduling) as well as five of the legacy distributions (L2,

L3, L4, L6, L7). We sampled each of the distributions’ parameters from a hand-chosen

range of “reasonable” parameters as described in Section 7.4.2. We also sampled the

problem size parameters: number of goods was chosen uniformly from [40, 400] and

number of nondominated bids was chosen uniformly from [50, 2000]. The full dataset

had roughly 100 data points per distribution for a total of about 1000 data points,

and took nearly 8 months of CPU time to collect. In order to increase the number of

data points we were able to collect during this time, we capped CASS’s runtime at

12 hours.

Figure 8.8 shows the mean runtime of CASS and CPLEX on each distribution.

Note that the vertical axis uses a logarithmic scale so that all the bars can be seen on

150 CHAPTER 8. EVALUATING CA ALGORITHMS

0.01

0.1

1

10

100

1000

10000

100000

L 2 L 3 L 4 L 6 L 7
P a t

h s
R e g

i o n
s

A r b
i t r a

r y

M a
t c h

i n g

S c h
e d u

l i n g

CASS CPLEX

Figure 8.8: CASS vs. CPLEX: mean runtime per distribution

0.01
0.1
1

10
100

1000
10000

100000
1000000

L 2 L 3 L 4 L 6 L 7
P a t

h s
R e g

i o n
s

A r b
i t r a

r y

M a
t c h

i n g

S c h
e d u

l i n g

CASS CPLEX

Figure 8.9: CASS vs. CPLEX: first, second and third quartiles

the same graph. Judging from this picture CPLEX seems to be a better choice than

CASS most of the time. Exceptions are L3 and L7, where CASS does much better

than CPLEX, and L2 where the difference is less pronounced.

Average performance can be overwhelmed by a relatively small fraction of runs

that take a very long time. To learn more about how CASS and CPLEX 8.0 compare,

we can graph medians instead of means. Figure 8.9 shows medians for each distribu-

tion; the error bars indicate first and third quartiles (of course, median is the second

8.3. CONCLUSIONS 151

quartile). We can see several things from this graph. First, on the whole CPLEX

still appears to be much faster than CASS. Note L3: while CASS had better average

performance on this distribution, CPLEX has better median performance. On L7

CASS’s advantage is now shown to be much larger, with the two algorithms’ error

bars not even overlapping. On this distribution it does seem that a small number of

very hard instances skewed CASS’s average upwards; the same is true for CASS on

L4 and scheduling, and for CPLEX on L4, L7, regions and arbitrary. Overall, we can

see from the error bars that most distributions exhibit substantial runtime variation.

In Figure 8.9 it is also the case that the error bars often overlap. This raises the

question of the extent to which the algorithms’ runtimes are uncorrelated. If this

level is high then there could be great benefit to running both CASS and CPLEX

in parallel (or in choosing between the algorithms in a more sophisticated way: see

Chapter 10). To investigate the level of correlation between CASS and CPLEX on a

per-instance basis, we plotted the algorithms’ runtimes on separate axes of a scatter

plot in Figure 8.10. For 5% of the instances, CASS and CPLEX had the same running

time within two significant digits, and on 6% of the instances both CASS and CPLEX

took longer than CASS’s cap time of 12 hours, making it impossible to compare the

algorithms. As we expected given its much better running times in Figures 8.8 and 8.9,

CPLEX outperformed CASS a large fraction of the time (67%). The surprise is that

there remained a substantial fraction (22%) of instances on which CASS outperforms

CPLEX; on many instances the performance difference was very significant.

8.3 Conclusions

This chapter detailed experimental investigations of the CASS algorithm’s perfor-

mance. First, it was shown to have good anytime performance, finding good solu-

tions almost immediately and finding an optimal solution long before optimality is

proven. Second, it was compared to Sandholm’s Bidtree algorithm, which it consis-

tently and significantly outperformed. Finally, it was compared to a more modern

algorithm, ILOG’s CPLEX 8.0. On most (but not all) test distributions, CPLEX

exhibited considerably better performance. However, a more careful analysis showed

152 CHAPTER 8. EVALUATING CA ALGORITHMS

0.
010.
111010
0

10
00

10
00

0

10
00

00

0.
01

0.
1

1
10

10
0

10
00

10
00
0

10
00

00
CP

LE
X
 T
im
e

CASS Time

L2
L3

L4
L6

L7
Pa
ths

Re
gio
ns

Ar
bit
rar
y

Ma
tch

ing
Sc
he
du
lin
g

CA
SS
 is
 fa
st
er

(22
%
of
ins
tan

ces
)

CP
LE
X
is
fa
st
er

(67
%
of
ins
tan

ces
)

CA
SS
 cu
t o
ff a

t 1
2 h

ou
rs
 (4
2%
 of
 in
sta
nce

s)

No
tes
:

CA
SS
 an

d C
PL
EX

ha
d e
qu
al
run

tim
es

on
 5%

 of
 in
sta
nce

s
CA

SS
 an

d C
PL
EX

bo
th
exc

eed
ed
12h

rs
on
 6%

 of
 in
sta
nce

s

Figure 8.10: CASS vs. CPLEX: Scatter Plot

8.3. CONCLUSIONS 153

that the two algorithms’ performance was often uncorrelated, and that there were

a substantial fraction of these instances on which CASS dramatically outperformed

CPLEX. In Chapter 10 we will revisit this uncorrelation between CASS and CPLEX

and explore ways of leveraging it to build a better WDP algorithm. First, however,

we will study ways of explaining why an algorithm (such as CPLEX) shows so much

runtime variation on similar problems.

Chapter 9

Empirical Hardness Models

We propose a new approach for understanding the algorithm-specific empirical hard-

ness of NP-hard problems. We use machine learning models to build regression

models that predict an algorithm’s runtime given a novel problem instance. We also

discuss techniques for interpreting these models to gain understanding of the charac-

teristics that cause instances to be hard or easy.

This chapter maintains our focus on the WDP, describing our attempts to build

models to predict CPLEX’s performance on nine1 of the CATS distributions. How-

ever, we also attempt to emphasize the generality of our methodology in order to

encourage its application to other NP-hard problems.

9.1 Empirical Hardness

It is often the case that particular instances of NP-hard problems can be quite easy

to solve in practice. In recent years researchers in the constraint programming and

artificial intelligence communities have studied the empirical hardness of individual

instances or distributions of NP-hard problems, and have often managed to find

simple mathematical relationships between features of the problem instances and the

hardness of the problem. The majority of this work has focused on decision problems:

1The paths distribution is missing from this chapter and the next because of a technical glitch.
It will appear in the final version of this thesis.

154

9.1. EMPIRICAL HARDNESS 155

that is, problems that ask a yes/no question of the form, “Does there exist a solution

meeting the given constraints?”. The most successful approach for understanding

the empirical hardness of such problems—taken for example in [Cheeseman et al.,

1991; Achlioptas et al., 2000]—is to vary some parameter of the input looking for

a hard-easy-hard transition corresponding to a phase transition in the solvability of

the problem. This approach uncovered the famous result that 3-SAT instances are

hardest when the ratio of clauses to variables is about 4.3; it has also been applied

to other decision problems such as quasigroup completion [Gomes & Selman, 1997].

Another approach rests on a notion of backbone [Monasson et al., 1998; Achlioptas

et al., 2000], which is the set of solution invariants.

9.1.1 Optimization Problems

Some researchers have also examined the empirical hardness of optimization problems,

which ask a real-numbered question of the form, “What is the best solution meeting

the given constraints?”. These problems are clearly different from decision problems,

since they always have solutions and hence cannot give rise to phase transitions in

solvability. One way of finding hardness transitions related to optimization problems

is to transform them into decision problems of the form, “Does there exist a solution

with the value of the objective function ≥ x?” This approach has yielded promising

results when applied to MAX-SAT and TSP. Other experimentally-oriented work

includes the extension of the concept of backbone to optimization problems [Slaney

& Walsh, 2001], although it is often difficult to define for arbitrary problems and can

be costly to compute.

A second approach is to attack the problem analytically rather than experimen-

tally. For example, Zhang [1999] performed average case theoretical analysis of par-

ticular classes of search algorithms. Though his results rely on independence assump-

tions about the branching factor and heuristic performance at each node of the search

tree that do not generally hold, the approach has made theoretical contributions—

describing a polynomial/exponential-time transition in average-case complexity—and

shed light on real-world problems. Korf and Reid [1998] predict the average number

156 CHAPTER 9. EMPIRICAL HARDNESS MODELS

of nodes expanded by a simple heuristic search algorithm such as A* on a particular

problem class by making use of the distribution of heuristic values in the problem

space. As above, strong assumptions are required: e.g., that the branching factor is

constant and node-independent, and that edge costs are uniform throughout the tree.

Both experimental and theoretical approaches have sets of problems to which they

are not well suited. Existing experimental techniques have trouble when problems

have high-dimensional parameter spaces, as it is impractical to manually explore the

space of all relations between parameters in search of a phase transition or some

other predictor of an instance’s hardness. This trouble is compounded when many

different data distributions exist for a problem, each with its own set of parameters.

Theoretical approaches are also difficult when the input distribution is complex or is

otherwise hard to characterize, but they also have other weaknesses. They tend to

become intractable when applied to complex algorithms, or to problems with variable

and interdependent edge costs and branching factors. Furthermore, they are generally

unsuited to making predictions about the empirical hardness of individual problem

instances, instead concentrating on average (or worst-case) performance on a class of

instances.

9.1.2 The WDP

The WDP is a good example of a problem that is ill-suited to study by either existing

experimental or theoretical approaches: instances are characterized by a large number

of apparently relevant features, many, highly parameterized distributions exist, there

is significant variation in edge costs throughout the search tree and it is desirable

to predict the empirical hardness of individual problem instances. It has often been

observed that WDP algorithms vary by many orders of magnitude in their running

times for different problems of the same size—even for different instances drawn from

the same distribution. However, little is known about what causes WDP instances to

vary so substantially in their empirical hardness. Understanding what characteristics

of data instances are predictive of long running times would be useful for predicting

9.2. BUILDING HARDNESS MODELS 157

how long an auction will take to clear, tuning data distributions for hardness, con-

structing algorithm portfolios, designing package bidding rules to reduce the chances

of long clearing times and possibly for improving the design of WDP algorithms.

9.2 Building Hardness Models

9.2.1 Our Methodology

We propose a novel experimental approach for predicting the running time of a given

algorithm on individual instances of such a problem, drawn from one of many different

distributions. Our methodology follows:

1. An optimization algorithm is selected.

2. A set of problem instance distributions is selected. For each parameter of each

distribution a range of acceptable values is established.

3. Problem size is defined and a size is chosen. Problem size will be held constant

to focus on unknown sources of hardness.

4. A set of polytime-computable, distribution-independent features is selected.

5. To generate instances, a distribution is chosen at random and then the range

of acceptable values for each parameter is sampled. This step is repeated until

the desired number of problem instances have been generated.

6. For each problem instance the running time of the optimization algorithm is

determined, and all features are computed.

7. Redundant or uninformative features are eliminated.

8. A function of the features is learned to predict running time (or some other

measure of empirical hardness), and prediction error is analyzed.

158 CHAPTER 9. EMPIRICAL HARDNESS MODELS

9.2.2 Problem Size

Some sources of empirical hardness in NP-hard problem instances are well under-

stood. Our goal in this chapter is to understand what other features of instances

are predictive of hardness so we hold these parameters constant, concentrating on

variations in other features.

For the WDP, it is known that instances generally become harder as the problem

gets larger: i.e., as the number of bids and goods increases. Our goal is to understand

what other features of instances are predictive of hardness so we hold these parameters

constant, concentrating on variations in other features. As argued in Chapter 7, the

removal of dominated bids can have a significant effect. We therefore defined problem

size as the pair (number of goods, number of non-dominated bids).

9.2.3 Features

In order to learn a model we must first characterize each problem instance with a set

of features, obtained using domain knowledge to identify properties of the instance

that appear likely to provide useful information about empirical hardness. We only

consider features that can be generated from any problem instance, without knowl-

edge of how that instance was constructed. Furthermore we restrict ourselves to those

features that are computable in polynomial time, since the computation of the fea-

tures should scale well as compared to solving the optimization problem. Although

features must be manually selected, there are statistical techniques for identifying

useless features. Identifying such features is important because highly correlated fea-

tures can unnecessarily increase the dimensionality of the hypothesis space: this can

degrade the performance of some regression algorithms and also makes the resulting

formula harder to interpret.

For our WDP case study, we determined 35 features which we thought could be

relevant to the empirical hardness of the optimization, ranging in their computational

complexity from linear to cubic time. After feature selection we were left with 25 fea-

tures: these are summarized in Figure 9.1. We describe our features in more detail

below, and also mention some of the features that we dropped.

9.2. BUILDING HARDNESS MODELS 159

Bid-Good Graph Features:

1-3. Bid nodes degree statistics: max and min degree of
the bid nodes, and standard deviations.

4-7. Good nodes degree statistics: average, maximum,
minimum degree of the good nodes, and their standard de-
viations.

Bid Graph Features:

8. Edge Density: number of edges in the BG divided by
the number of edges in a complete graph with the same
number of nodes.

9-11. Node degree statistics: the max and min node de-
grees in the BG, and their standard deviation.

12-13. Clustering Coefficient and Deviation. A measure
of “local cliqueness.” For each node calculate the num-
ber of edges among its neighbors divided by k(k − 1)/2,
where k is the number of neighbors. We record average
(the clustering coefficient) and standard deviation.

14. Average minimum path length: the average mini-
mum path length, over all pairs of bids.

15. Ratio of the clustering coefficient to the aver-
age minimum path length: One of the measures of
the smallness of the BG.

16-19. Node eccentricity statistics: The eccentricity of a
node is the length of a shortest path to a node furthest from
it. We calculate the maximum eccentricity of BG (graph
diameter), the minimum eccentricity of BG (graph radius),
average eccentricity, and standard deviation of eccentricity.

LP-Based Features:

20-22. `1, `2, `∞ norms of the integer slack vector.

Price-Based Features:

23. Standard deviation of prices among all bids:
stdev(pi)

24. Deviation of price per number of goods:
stdev(pi/|bi|)

25. Deviation of price per square root of the num-

ber of goods: stdev(pi/
√
|bi|).

Figure 9.1: Four Groups of Features for the WDP

There are two natural graphs associated with each instance. First, is the bid-

good graph (BGG): a bipartite graph having a node for each bid, a node for each

good and an edge between a bid and a good node for each good in the given bid.

We measure a variety of BGG’s properties: extremal and average degrees and their

standard deviations for each group of nodes. The average number of goods per bid

was perfectly correlated with another feature, and so did not survive our feature

selection.

The bid graph (BG) represents conflicts among bids (thus it is the constraint

graph for the associated CSP). As is true for all CSPs, the BG captures a lot of

useful information about the problem instance. Our second group of features are

concerned with structural properties of the BG. We originally measured the first

and third quartiles and the median of the BG node degrees, but they turned out

to be highly correlated with edge density. We also measured the average number of

conflicts per bid, but since the number of bids was held constant this feature was

always proportional to edge density. We considered using the number of connected

components of the BG to measure whether the problem is decomposable into simpler

160 CHAPTER 9. EMPIRICAL HARDNESS MODELS

instances, but found that nearly every instance consisted of a single component.

Finally, it would be desirable to include some measure of the size of the (unpruned)

search space. For some problems branching factor and search depth are used; for WDP

neither is easily estimated. A related measure is the number of maximal independent

sets of BG, which corresponds to the number of feasible solutions. However, this

counting problem is hard, and to our knowledge does not have a polynomial-time

approximation.

The third group of features is calculated from the solution vector of the LP re-

laxation linear programming relaxation of the WDP. We calculate the integer slack

vector by replacing each component xi with min(|xi|, |1 − xi|). These features ap-

peared particularly useful both because the slack gives insight into the quality of

CPLEX’s initial solution and because CPLEX uses LP as its search heuristic. Origi-

nally we also included median integer slack, but excluded the feature when we found

that it was always zero.

Our last group of features is the only one to explicitly consider the prices associated

with bids. While the scale of the prices has no effect on hardness the spread is crucial,

since it impacts pruning. We note that feature 25 was shown to be an optimal bid-

ordering heuristic for branch-and-bound search on the WDP in [Gonen & Lehmann,

2000].

9.3 Evaluating Hardness Models

We generated three separate data sets of different problem sizes, to ensure that our

results were not artifacts of one particular choice of problem size. The first data

set contained runs on instances of 1000 bids and 256 goods each, with a total of

4500 instances (500 instances per distribution). The second data set with 1000 bids

and 144 goods had a total of 2080 instances; the third data set with 2000 bids and

64 goods contained 1964 instances. Where we present results for only a single data

set, the first data set was always used. All of our runtime data was collected by

9.3. EVALUATING HARDNESS MODELS 161

running CPLEX 7.1 with preprocessing turned off.2 We used a cluster of 4 machines,

each of which had 8 Pentium III Xeon 550 MHz processors and 4G RAM and was

running Linux 2.2.12. Since many of the instances turned out to be exceptionally

hard, we stopped CPLEX after it had expanded 130,000 nodes (reaching this point

took between 2 hours and 22 hours, averaging 9 hours). Overall, solution times varied

from as little as 0.01 seconds to as much as 22 hours. We estimate that we consumed

approximately 3 years of CPU time collecting this data. We also computed our 35

features for each instance. (Recall that feature selection took place after all instances

had been generated.) Each feature in each data set was normalized to have a mean

of 0 and a standard deviation of 1. Regression was performed using the open-source

R package (see www.r-project.org).

Since we wanted to learn a continuous-valued model of the features, we used

statistical regression techniques.3 We chose the logarithm of CPLEX running time as

our response variable—the value to be predicted—rather than absolute running time,

because we wanted the model to be penalized according to whether the predicted and

actual values had the same order of magnitude. If we had tried to predict absolute

running times then the model would have been penalized very little for dramatically

mispredicting the running time of very easy instances, and would have been penalized

heavily for slightly mispredicting the running time of the hardest instances. We

performed regression on a training set consisting of 80% of a dataset, and then tested

our model on the remaining 20% to evaluate its ability to generalize to unseen data.

9.3.1 Linear Models

One of the simplest and most widely-studied regression techniques is linear regression.

This technique finds a hyperplane in the feature space that minimizes root mean

squared error (RMSE), the square root of the average squared difference between

2When the work described in this chapter was performed, CPLEX 7.1 was the latest version.
Unfortunately, it’s not easy to rerun 3 CPU-years worth of experiments! On the bright side, limited
experiments suggest that CPLEX 8.0 is not a huge improvement over CPLEX 7.1, at least for our
WDP benchmark distributions.

3A large literature addresses the statistical techniques we used; for an introduction see,
e.g., [Hastie et al., 2001].

162 CHAPTER 9. EMPIRICAL HARDNESS MODELS

Data point Mean Abs Err RMSE Adj-R2

1000 Bids/256 Goods 0.399 0.543 0.938
1000 Bids/144 Goods 0.437 0.579 0.909
2000 Bids/64 Goods 0.254 0.368 0.912

Table 9.1: Linear Regression: Errors and Adjusted R2

0

100

200

300

400

500

0 0.3 0.6 0.9 1.2 1.5 1.8

Figure 9.2: Linear Regression: Squared
Error (test data)

-3

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5 6

log(Actual Runtime)

Pr
edi
cte
d l
og(

Ru
nti
me
)

Figure 9.3: Linear Regression: Abso-
lute Error Scatterplot (test data)

the predicted value and the true value of the response variable. Minimizing RMSE

is reasonable because it conforms to the intuition that, holding mean absolute error

constant, models that mispredict all instances equally should be preferred to models

that vary in their mispredictions. Although we go on to consider nonlinear regression,

it is useful to consider the results of linear regression for two reasons. First, one of our

main goals was to understand the factors that influence hardness, and insights gained

from a linear model are useful even if other, more accurate models can be found.

Second, our linear regression model serves as a baseline to which we can compare the

performance of more complex regression techniques.

In Figure 9.1 we report both RMSE and mean absolute error, since the latter is

often more intuitive. A third measure, adjusted R2, is the fraction of the original

variance in the response variable that is explained by the model, with a penalty for

more complex models. Adjusted R2 is a measure of fit to the training set and cannot

entirely correct for overfitting; nevertheless, it can be an informative measure when

9.3. EVALUATING HARDNESS MODELS 163

Data point Mean Abs. Err. RMSE R2

1000 Bids/256 Goods 0.183 0.297 0.987
1000 Bids/144 Goods 0.272 0.475 0.974
2000 Bids/64 Goods 0.163 0.272 0.981

Table 9.2: Quadratic Regression: Errors and Adjusted R2

0
100
200
300
400
500
600
700
800

0 0.3 0.6 0.9 1.2 1.5 1.8

Figure 9.4: Quadratic Regression:
Squared Error (test data)

-3

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5 6
log(Actual Runtime)

Pr
edi
cte
d l
og(

Ru
nti
me
)

Figure 9.5: Quadratic Regression: Er-
ror Scatterplot (test data)

presented along with test set error. Figure 9.2 shows a histogram of the RMS error,

with bin width 0.1. Figure 9.3 shows a scatterplot of predicted log10 runtime vs.

actual log10 runtime. We can see from these two figures that most instances are

predicted very accurately, and few instances are dramatically mispredicted. Overall,

these results show that our linear model would be able to do a good job of classifying

instances into the bins shown in Figure 7.14 in Section 7.4.3, despite the fact that it is

not given the distribution from which each instance was drawn: 93% of the time the

log running times of the data instances in our test set were predicted to the correct

order of magnitude (i.e., with an absolute error of less than 1.0).

9.3.2 Nonlinear Models

Although our linear model was quite effective, we expected that nonlinear interactions

between our features would be important, and therefore we investigated nonlinear

models. A simple way of performing nonlinear regression is to compute new features

164 CHAPTER 9. EMPIRICAL HARDNESS MODELS

based on nonlinear interactions between the original features, and then to perform

linear regression on the union of both sets of features. We added all products of pairs

of features to our linear model, including squares of individual features, which gave

us a total of 350 features. This allowed us to fit a 2nd degree polynomial instead of

our previous linear model. For all three of our datasets this model gave considerably

better error measurements on the test set and also explained nearly all the variance

in the training set, as shown in Table 9.2. As above, Figures 9.4 and 9.5 show a

histogram of root mean squared error and a scatterplot of predicted log runtime vs.

actual log runtime. Comparing these figures to Figures 9.2 and 9.3 confirms our

judgment that the quadratic model is substantially better overall.

We also explored another nonlinear regression technique, Multivariate Adaptive

Regression Splines (MARS) [Friedman, 1991]. MARS models are linear combinations

of the products of one or more basis functions, where basis functions are the positive

parts of linear functions of single features. The RMSE on our MARS models differed

from the RMSE on our second-order model only in the second decimal place; as MARS

models can be unstable and difficult to interpret, we focus on our second-order model.

9.4 Analyzing Hardness Models

The results summarized above demonstrate that it is possible to learn a model of our

features that accurately predicts the log of CPLEX running time on novel instances.

For some applications (e.g., predicting the time it will take for an auction to clear;

building an algorithm portfolio) accurate prediction is all that is required. For other

applications it is necessary to understand what makes an instance empirically hard.

In this section we set out to interpret our models.

9.4.1 Cost of Omission

It is tempting to interpret a model by comparing the coefficients assigned to the

different features; since all features have the same mean and standard deviations, more

important features should tend to have larger coefficients. The reason that this does

9.4. ANALYZING HARDNESS MODELS 165

not work is that most of our features are at least somewhat correlated. Two perfectly

correlated but entirely unimportant features can have large coefficients with opposite

signs in a linear model; in practice, since imperfect correlation and correlations among

larger sets of variables are common, it is difficult to untangle the effects of correlation

and importance in explaining a given coefficient’s magnitude. One solution is to force

the model to have smaller coefficients and/or to contain fewer variables. Requiring

smaller coefficients reduces interactions between correlated variables; two popular

techniques are ridge regression and lasso regression. We evaluated these techniques

using cross validation and found no significant effect on errors or on interpretability

of the model, so we do not present these results here. Likewise, single-variable models

were not informative on our data: the best such model had an RMSE error of nearly

2 in predicting log10 running time.

Another family of techniques allows interpretation without the consideration of

coefficient magnitudes. These techniques select “good” subsets of the features, es-

sentially performing exhaustive enumeration when possible and various greedy search

techniques otherwise. Small models are desirable for analysis because they are easier

to interpret directly and because a small, optimal subset will tend to contain fewer

highly covariant features than a larger model. (For a detailed discussion of techniques

for selecting relevant feature subsets and for comparisons of different definitions of

“relevant,” focusing on classification problems, see [Kohavi & John, 1997].)

We plotted subset size (from 1 to the total number of variables) versus the RMSE

of the best model built from a subset of each size. We then chose the smallest subset

size at which there was little incremental benefit gained by moving to the next larger

subset size. We examined the features in the model, and also measured each variable’s

cost of omission—the (normalized) difference between the RMSE of the model on the

original subset and a model omitting the given variable. It is important to note that

because of correlation between features many different subsets may achieve nearly

the same RMSE, and that very little can be inferred from what particular variables

are included in the best subset of a given size. This is of little concern, however,

when subset selection is used only to gain a conceptual understanding of the features

that are important for predicting empirical hardness; in this case the substitution of

166 CHAPTER 9. EMPIRICAL HARDNESS MODELS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

Subset size 7
Complete model

Figure 9.6: Linear Regression: Sub-
set size vs. RMSE.

0 20 40 60 80 100

BGG minimum bid
degree

BG degree deviation

Integer slack L1 norm

BGG min good
degree

BGG average good
degree

Clustering coefficient

BG edge density

Figure 9.7: Linear Regression: Cost of
omission for subset size 7.

one feature for another covariant feature is irrelevant because the inclusion of either

feature in the model should have the same intuitive meaning. It is also worth noting

that subset selection and cost of omission were both evaluated using the test set, but

that all model selection was evaluated using cross validation, and all analysis was

performed after our models had been learned.

9.4.2 Experimental Results

Figure 9.6 shows the RMSE of the best subset containing between 1 and 25 features

for linear models; since we had only 25 features in total we selected the best subsets by

exhaustive comparison. We chose to examine the model with seven features because it

was the first for which adding another feature did not cause a large decrease in RMSE.

Figure 9.7 shows the seven features in this model and their respective costs of omission

(scaled to 100). The most striking conclusion is that structural features are the most

important. Edge density of BG is essentially a measure of the constrainedness of the

problem, so it is not surprising to find that this feature is the most costly to omit.

Clustering coefficient, the second feature, is a measure of average cliquiness of BG;

this feature gives an indication of how local the problem’s constraints are. All but

one of the remaining features concern node degrees in BG or BGG; the final feature

9.4. ANALYZING HARDNESS MODELS 167

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Subset Size

R
o

o
t

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

RMSE with all features

Subset size 6

Figure 9.8: Quadratic Regression: Sub-
set size vs. RMSE.

0 20 40 60 80 100

Clustering coefficient
* Average minimum

path length

BGG min good
degree * BGG max

bid degree

Clustering deviation *
Integer slack L1

norm

BGG min good
degree * Clustering

coefficient

Integer slack L1
norm

BG edge density *
Integer slack L1

norm

Figure 9.9: Quadratic Regression: Cost
of omission for subset size 6.

is the `1 norm of the linear programming slack vector.

Figure 9.8 shows the best subsets containing between 1 and 60 features for second-

order models. In this case we had 350 features, making exhaustive exploration of

feature subsets impossible. Instead, we used three different greedy subset selection

methods (forward selection; backward selection; sequential replacement) and at each

size chose the best subset among the three. The subsets shown in Figure 9.8 are likely

not the RMSE-minimizing subsets of the given sizes, but since our goal was only to

understand what sorts of features are important this likely lack of optimality is not a

serious problem. We observe that allowing interactions between features dramatically

improved RMSE on very small subsets: our 5-feature quadratic model outperformed

our 25-feature linear model.

Figure 9.9 shows the costs of omission for the variables from the best six-feature

subset. As for our linear model, we observe that most critical features are structural:

edge density of BG, the clustering coefficient and node degrees. Overall many second-

order features were selected. The `1 norm becomes more important than in the linear

model when it is allowed to interact with other features; in the second-order model

it is also sufficiently important to be kept as the only first-order feature.

We can look at the features that were important to our quadratic and linear models

168 CHAPTER 9. EMPIRICAL HARDNESS MODELS

in order to gain understanding about how our models work. The importance of the `1

norm is quite intuitive: the easiest problems can be completely solved by LP, yielding

an `1 norm of 0; the norm is close to 0 for problems that are almost completely solved

by LP (and hence often require less search to resolve), and larger for more difficult

problems. The BG edge density feature describes the overall constrainedness of the

problem. Generally, we would expect that very highly constrained problems would be

easy, since more constraints imply a smaller search space; however, our experimental

results show that CPLEX takes a long time on such problems. It seems that CPLEX’s

calculation of the LP bound at each node becomes much more expensive when the

number of constraints in the LP increases substantially, and this cost overwhelms the

savings that come from searching in a smaller space. Some other important features

are intuitively similar to BG edge density. For example, the node degree statistics

describe the max, min, average and standard deviation of the number of constraints

in which each variable is involved; they indicate how quickly the search space can

be expected to narrow as variables are given values (i.e., as bids are assigned to the

allocation). Similarly, the clustering coefficient features measure the extent to which

variables that conflict with a given variable also conflict with each other, another

indication as to the speed with which the search space will narrow as variables are

assigned. Finally, we can now understand the importance of the feature which was by

far the most important in our 6-feature quadratic model, the product of the BG edge

density and the integer slack `1 norm. Note that this feature takes a large value only

when both BG edge density and `1 norm are large; the explanations above show that

problems are easy for CPLEX whenever either of these features has a small value.

Since BG edge density and `1 norm are relatively uncorrelated on our data, their

product gives a powerful prediction of an instance’s hardness.

It is also interesting to notice which features were consistently excluded by sub-

set selection. In particular, it is striking that no price features were important in

either our first- or second-order models (except implicitly, as part of LP relaxation

features). Although price-based features do appear in larger models, they seem not

to be as critically important as structural or LP-based features. This may be par-

tially explained by the fact that the removal of dominated bids eliminates the bids

9.5. CONCLUSIONS 169

that deviate most substantially on price, and indeed caused us to eliminate the dis-

tribution (L1) in which average price per good varied most dramatically across bids.

Another group of features that were generally not chosen for small subsets were path

length features: graph radius, diameter, average minimum path length, etc. It seems

that statistics derived from neighbor relations in constraint graphs are much more

meaningful for predicting hardness than other graph-theoretic statistics derived from

notions of proximity or connectedness.

9.5 Conclusions

We performed an extensive experimental investigation into the empirical hardness

of the WDP. We identified structural, distribution-independent features of WDP in-

stances and showed that, somewhat surprisingly, they contain enough information to

predict CPLEX running time with high accuracy.

More importantly, we proposed a new, general methodology for understanding the

empirical hardness of complex, high-dimensional NP-hard problems. We believe that

our methodology, based on using machine learning techniques to identify hard regions

of the feature space, is applicable to a wide variety of hard problems. In the next

chapter we will discuss ways of applying these models to build algorithm portfolios

and to tune benchmark distributions for hardness.

Chapter 10

Applications of Hardness Models

This chapter describes techniques for building an algorithm portfolio that can out-

perform its constituent algorithms, and a method for generating test distributions to

focus future algorithm design work on problems that are hard for an existing portfo-

lio. We demonstrate the effectiveness of our techniques on the WDP. First, we show

that a portfolio of CASS, CPLEX and GL [Gonen & Lehmann, 2001] outperforms

CPLEX alone by a factor of three; second, we show that we are able to tune the

CATS distributions to make them much harder for our portfolio.

10.1 Introduction

Although some algorithms are better than others on average, there is rarely a best

algorithm for a given problem. Instead, it is often the case that different algorithms

perform well on different problem instances. Not surprisingly, this phenomenon is

most pronounced among algorithms for solving NP-hard problems, because run-

times for these algorithms are often highly variable from instance to instance. When

algorithms exhibit high runtime variance, one is faced with the problem of deciding

which algorithm to use; Rice dubbed this the “algorithm selection problem” [Rice,

1976]. In the nearly three decades that have followed, the issue of algorithm selection

has failed to receive widespread study, though of course some excellent work does

170

10.1. INTRODUCTION 171

exist. By far, the most common approach to algorithm selection has been to mea-

sure different algorithms’ performance on a given problem distribution, and then to

use only the algorithm having the lowest average runtime. This approach, to which

we refer as “winner-take-all,” has driven recent advances in algorithm design and

refinement, but has resulted in the neglect of many algorithms that, while uncom-

petitive on average, offer excellent performance on particular problem instances. Our

consideration of the algorithm selection literature, and our dissatisfaction with the

winner-take-all approach, has led us to ask the following two questions. First, what

general techniques can we use to perform per-instance (rather than per-distribution)

algorithm selection? Second, once we have rejected the notion of winner-take-all al-

gorithm evaluation, how ought novel algorithms to be evaluated? Taking the idea of

boosting from machine learning as our guiding metaphor, we strive to answer both

questions.

10.1.1 The Boosting Metaphor

Boosting is a machine learning paradigm due to Schapire [1990] and widely studied

since. Although this chapter does not make use of any technical results from the

boosting literature, it takes its inspiration from the boosting philosophy. Stated

simply, boosting is based on two insights:

1. Poor classifiers can be combined to form an accurate ensemble when the classi-

fiers’ areas of effectiveness are sufficiently uncorrelated.

2. New classifiers should be trained on problems on which the current aggregate

classifier performs poorly.

In this chapter, we argue that algorithm design should be informed by two analogous

ideas:

1. Algorithms with high average running times can be combined to form an algo-

rithm portfolio with low average running time when the algorithms’ easy inputs

are sufficiently uncorrelated.

172 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

2. New algorithm design should focus on problems on which the current algorithm

portfolio performs poorly.

Of course the analogy to boosting is imperfect; we discuss differences in Section 10.5.

10.2 Algorithm Portfolios

Our work described in Chapter 9 demonstrated that statistical regression can be used

to learn surprisingly accurate algorithm-specific models of the empirical hardness of

given distributions of problem instances. Given these techniques, we propose building

portfolios of multiple algorithms as follows:

1. Train a model for each algorithm, as described above.

2. Given an instance:

(a) Compute feature values

(b) Predict each algorithm’s running time using runtime models.

(c) Run the algorithm predicted to be fastest

Unlike the models discussed in Chapter 9, for constructing algorithm portfolios

we use models that predict actual running time rather than log running time. Other

transformations of the response variable, including the log transformation, are eval-

uated in Section 10.3.2. Overall, while we will show experimentally that our port-

folios can dramatically outperform the algorithms of which they are composed, our

techniques are also deceptively simple. For discussion and comparison with other

approaches in the literature, please see Section 10.5.1.

10.2.1 Experimental Results

In this chapter we consider three algorithms for solving the WDP: CPLEX 7.1; GL

[Gonen & Lehmann, 2001], a simple branch-and-bound algorithm with CPLEX’s LP

solver as its heuristic; and CASS. First, we used the methodology described in Chapter

10.2. ALGORITHM PORTFOLIOS 173

0
100
200
300
400
500
600
700
800

CPLEX
0

100
200
300
400
500
600
700
800

CPLEX Optimal Portfolio
0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

Tim
e (
s)

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

Tim
e (
s)

Figure 10.1: Algorithm and Portfolio Runtimes

Figure 10.2: Optimal Figure 10.3: Selected

9 to build regression models for GL and CASS. Figure 10.1 compares the average

runtimes of our three algorithms (CPLEX, CASS, GL) to that of the portfolio1. As

we would expect from the results in Section 8.2, CPLEX would be chosen under

winner-take-all algorithm selection. The “optimal” bar shows the performance of an

ideal portfolio where algorithm selection is performed perfectly and with no overhead.

The portfolio bar shows the time taken to compute features (light portion) and the

time taken to run the selected algorithm (dark portion). Despite the fact that CASS

and GL are much slower than CPLEX on average, the portfolio outperforms CPLEX

by roughly a factor of 3. Moreover, neglecting the cost of computing features, our

portfolio’s selections take only 5% longer to run than the optimal selections.

Figs. 10.2 and 10.3 show the frequency with which each algorithm is selected in

the ideal portfolio and in our portfolio. They illustrate the quality of our algorithm

1Note the change of scale on the graph, and the repeated CPLEX bar

174 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

selection and the relative value of the three algorithms. We know from Figure 8.10

that CASS is often significantly uncorrelated with CPLEX; it turns out that most

of the speedup in our portfolio comes from choosing CASS on appropriate instances.

Observe that our portfolio does not always make the right choice (in particular, it

selects GL much more often than it should). However, most of the mistakes made

by our models occur when both algorithms have very similar running times; these

mistakes are not very costly, explaining why our portfolio’s choices have a running

time so close to optimal.

Observe that our variable importance analysis from Chapter 9.4.2 gives us some

insight about why an algorithm like CASS is able to provide such large gains over

algorithms like CPLEX and GL on a significant fraction of instances. Unlike either

CPLEX or GL, CASS does not use an LP heuristic, and so does not incur a sub-

stantially higher per-node cost when the number of constraints (and thus the bid

graph edge density feature) increases. Like any search algorithm, CASS does benefit

whenever the search space becomes smaller; thus, CASS can achieve better overall

performance on problems with a very large number of constraints.

These results show that our portfolio methodology can work very well even with

a small number of algorithms, and when one algorithm’s average performance is

considerably better than the others’. We suspect that our techniques could be even

more effective in other settings.2

10.3 Extending our Portfolio Methodology

Once it has been demonstrated that algorithm portfolios can offer significant speedups

over winner-take-all algorithm selection, it is worthwhile to consider modifications

to the methodology that make it more useful in practice. Specifically, we describe

methods for reducing the amount of time spent computing features, transforming the

response variable, and capping runs of some or all algorithms.

2Although it is not presented in this thesis, we have had success applying the same techniques to
the satisfiability problem, even placing second and third in several categories in the 2003 International
SAT Competition.

10.3. EXTENDING OUR PORTFOLIO METHODOLOGY 175

10.3.1 Smart Feature Computation

Feature values must be computed before the portfolio can choose an algorithm to run.

We expect that portfolios will be most useful when they combine several exponential-

time algorithms having high runtime variance, and that fast polynomial-time features

should be sufficient for most models. Nevertheless, on some instances the computation

of individual features may take substantially longer than one or even all algorithms

would take to run. In such cases it would be desirable to perform algorithm selection

without spending as much time computing features, even at the expense of some

accuracy in choosing the fastest algorithm. In order to achieve this, we partition the

features into sets ordered by time complexity, S1, . . . , Sl, with i > j implying that

each feature in Si takes significantly longer to compute than each feature in Sj.
3 The

portfolio can start by computing the easiest features, and iteratively compute the

next set only if the expected benefit to selection exceeds the cost of computation.

More precisely:

1. For each set Sj learn or provide a model c(Sj) that estimates time required to

compute it. Often, this could be a simple average time scaled by input size.

2. Divide the training examples into two sets. Using the first set, train models

M i
1 . . .M i

l , with M i
k predicting algorithm i’s runtime using features in

⋃k
j=1 Sj.

Note that M i
l is the same as the model for algorithm i in our basic portfolio

methodology. Let Mk be a portfolio which selects arg mini M
i
k.

3. Using the second training set, learn models D1 . . . Dl−1, with Dk predicting the

difference in runtime between the algorithms selected by Mk and Mk+1 based

on Sk. The second set must be used to avoid training the difference models on

data to which the runtime models were fit.

Given an instance x, the portfolio now works as follows:

4. For j = 1 to l

3We assume here that features will have low runtime variance. We have found this assumption to
hold for the WDP. If feature runtime variance makes it difficult to partition the features into time
complexity sets, smart feature computation is more difficult.

176 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

(a) Compute features in Sj

(b) If Dj[x] > c(Sj+1)[x], continue.

(c) Otherwise, return with the algorithm predicted to be fastest according to

Mj.

10.3.2 Transforming the Response Variable

Average runtime is an obvious measure of portfolio performance if one’s goal is to

minimize computation time over a large number of instances. Since our models min-

imize root mean squared error on predictions of runtime, they appropriately penalize

20 seconds of error equally on instances that take 1 second or 10 hours to run. That

is, they penalize the same absolute error in the same way regardless of the magnitude

of the instance’s runtime. However, another motivation is to achieve good relative

error on every instance regardless of its hardness—we might thus consider that a 20

second error is more significant on a 1 second instance than on a 10 hour instance. Let

rp
i and r∗i be the portfolio’s runtime and the optimal runtime respectively on instance

i, let n be the number of instances, and as defined in Equation (3.10) let δ be the

Kronecker delta, an indicator function. One measure that gives an insight into the

portfolio’s relative error is percent optimal :

1

n

∑
i

δr∗i (r
p
i). (10.1)

Another measure of relative error is average percent suboptimal :

1

n

∑
i

rp
i − r∗i
r∗i

. (10.2)

Taking a logarithm of runtime before running the regression allows our minimiza-

tion of root mean squared error to concentrate more on relative error than on absolute

error, roughly equalizing the importance of errors on easy and hard instances. Thus,

models that predict a log of runtime achieve better performance in terms of the av-

erage percent suboptimal, but worse performance in terms of average runtime. It is

also possible to consider other functions between log and linear (identity) that offer

10.3. EXTENDING OUR PORTFOLIO METHODOLOGY 177

different tradeoffs between the relative importance of small and large instances. Fig-

ure 10.5 (overleaf) shows linear, log and cube root, one such intermediate function.

We found that the cube root function achieved a particularly effective tradeoff on

our WDP data: see Section 10.3.4. The functions are normalized by their maximum

value, since this does not affect regression, but allows us to better visualize their

effects.

10.3.3 Capping Runs

The methodology of Section 10.2 requires gathering runtime data for every algorithm

on every problem instance in the training set. While the time cost of this step is fun-

damentally unavoidable for our approach, gathering perfect data for every instance

can take an unreasonably long time. For example, if algorithm a1 is usually much

slower than a2 but in some cases dramatically outperforms a2, a perfect model of

a1’s runtime on hard instances may not be needed to discriminate between the two

algorithms. The process of gathering data can be made much easier by capping the

runtime of each algorithm at some maximum and recording these runs as having ter-

minated at the captime. This approach is safe if the captime is chosen so that it is

(almost) always significantly greater than the minimum of the algorithms’ runtimes; if

not, it might still be preferable to sacrifice some predictive accuracy for dramatically

reduced model-building time. Note that if any algorithm is capped, it can be danger-

ous (particularly without a log transformation) to gather data for any other algorithm

without capping at the same time, because the portfolio could inappropriately select

the algorithm with the smaller captime.

10.3.4 Experimental Results

Fig. 10.4 shows the performance of the smart feature computation discussed in Section

10.3.1, with the upper part of the bar indicating the time spent computing features.

Compared to computing all features, we reduce overhead by almost half with nearly

no cost in running time.

Table 10.1 shows the effect of our response variable transformations on average

178 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

0

50

100

150

200

250

300

Regular Smart

T
im

e
(s

)

Figure 10.4: Smart Features

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Runtime (% of max)

T
ra

n
sf

o
rm

at
io

n

Linear

Cube Root

Log

Figure 10.5: Transformation
F’ns (normalized)

 Average Runtime % Optimal Average % Suboptimal

(Optimal) 216.4 s 100 0

Log 236.5 s 97 9

Cuberoot 225.6 s 89 17

Linear 225.1 s 81 1284

Table 10.1: Portfolio Results

runtime, percent optimal and average percent suboptimal. The first row has results

that would be obtained by a perfect portfolio. As discussed in Section 10.3.2, the

linear (identity) transformation yields the best average runtime, while the log function

leads to better algorithm selection. We tried several transformation functions between

linear and log. Here we only show the best, cube root: it has nearly the same average

runtime performance as linear, but also made choices nearly as accurately as log.

10.4 Focused Algorithm Design

Once we have decided to select among existing algorithms using a portfolio approach,

it makes sense to reexamine the way we design and evaluate algorithms. Since the

purpose of designing a new algorithm is to reduce the time that it will take to solve

problems, designers should aim to produce new algorithms that complement an exist-

ing portfolio. In order to understand what this means it is first essential to choose a

distribution D that reflects the problems that will be encountered in practice. Given

a portfolio, the greatest opportunity for improvement is on instances that are hard

10.4. FOCUSED ALGORITHM DESIGN 179

for that portfolio, common in D, or both. More precisely, the importance of a region

of problem space is proportional to the amount of time the current portfolio spends

working on instances in that region. This is analogous to the principle from boost-

ing that new classifiers should be trained on instances that are hard for the existing

ensemble, in the proportion that they occur in the original training set.

10.4.1 Inducing Hard Distributions

Let Hf be a model of portfolio runtime based on instance features, constructed as

the minimum of the models that constitute the portfolio. By normalizing, we can

reinterpret this model as a density function hf . By the argument above, we should

generate instances from the product of this distribution and our original distribution,

D (let D · hf (x) =
D(x)hf (x)∫

Dhf
). However, it is problematic to sample from D · hf : D

may be non-analytic (an instance generator), while hf depends on features and so

can only be evaluated after an instance has been created.

One way to sample from D ·hf is rejection sampling [Doucet et al., 2001]: generate

problems from D and keep them with probability proportional to hf . This method

works best when another distribution is available to guide the sampling process toward

hard instances. Test distributions usually have some tunable parameters −→p , and

although the hardness of instances generated with the same parameter values can

vary widely, −→p will often be somewhat predictive of hardness. We can generate

instances from D · hf in the following way:4

1. Create a new hardness model Hp, trained using only −→p as features, and nor-

malize it so that it can be used as a pdf, hp.

2. Generate a large number of instances from D · hp. Observe that we can sample

from this distribution: hp is a polynomial, so we can sample from it directly;

this gives us parameter values that we can pass to the generator.

4In true rejection sampling step 2 would generate a single instance that would be then accepted
or rejected in step 3. Our technique approximates this process, but doesn’t require us to normalize
Hf and allows us to output an instance after generating a constant number of samples.

180 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

3. Construct a distribution over instances by assigning each instance s probability

proportional to
Hf (s)

hp(s)
, and select an instance by sampling from this distribution.

Observe that if hp turns out to be helpful, hard instances from D · hf will be

encountered quickly. Even in the worst case where hp directs the search away from

hard instances, observe that we still sample from the correct distribution because the

weights are divided by hp(s).

In practice, D may be factored as Dg · Dpi
, where Dg is a distribution over oth-

erwise unrelated instance generators with different parameter spaces, and Dpi
is a

distribution over the parameters of the chosen instance generator i. In this case it

is difficult to learn a single Hp. A good solution is to factor hp as hg · hpi
, where hg

is a hardness model using only the choice of instance generator as a feature, and hpi

is a hardness model in instance generator i’s parameter space. Likewise, instead of

using a single feature-space hardness model Hf , we can train a separate model for

each generator Hf,i and normalize each to a pdf hf,i.
5 The goal is now to generate

instances from the distribution Dg ·Dpi
· hf,i, which can be done as follows:

1. For every instance generator i, create a hardness model Hpi
with features −→pi ,

and normalize it to create a pdf, hpi
.

2. Construct a distribution over instance generators hg, where the probability of

each generator i is proportional to the average hardness of instances generated

by i.

3. Generate a large number of instances from (Dg · hg) · (Dpi
· hpi

)

(a) select a generator i by sampling from Dg · hg

(b) select parameters for the generator by sampling from Dpi
· hpi

(c) run generator i with the chosen parameters to generate an instance.

5However, the experimental results presented in Figures 10.6–10.8 use hardness models Hf trained
on the whole dataset rather than using models trained on individual distributions. Learning new
models would probably yield even better results.

10.4. FOCUSED ALGORITHM DESIGN 181

4. Construct a distribution over instances by assigning each instance s from gener-

ator i probability proportional to
Hf,i(s)

hg(s)·hpi(s)
, and select an instance by sampling

from this distribution.

10.4.2 Inducing Realistic Distributions

It is important for our portfolio methodology that we begin with a “realistic” D:

that is, a distribution accurately reflecting the sorts of problems expected to occur

in practice. Care must always be taken to construct a generator or set of genera-

tors producing instances that are representative of problems from the target domain.

Sometimes, it is possible to construct a function Rf that scores the realism of a gen-

erated instance based on features of that instance; such a function can sometimes

encode additional information about the nature of realistic data that cannot easily be

expressed in a generator. If a function Rf is provided, we can construct D from a pa-

rameterized set of instance generators by using Rf in place of Hf above and learning

rp in the same way we learned hp. Given these distributions, the techniques described

in Section 10.4.1 are guaranteed to generate instances with increased average realism

scores.

10.4.3 Experimental Results

Due to the wide spread of runtimes in our composite distribution D (7 orders of

magnitude) and the high accuracy of our model hf , it is quite easy for our technique

to generate harder instances. These results are presented in Figure 10.6. Because

our runtime data was capped, there is no way to know if the hardest instances in the

new distribution are harder than the hardest instances in the original distribution;

note, however, that very few easy instances are generated. Instances in the induced

distribution came predominantly from the CATS arbitrary distribution, with most of

the rest from L3.

To demonstrate that our technique also works in more challenging settings, we

sought a different distribution with small runtime variance. As described in Section

7.4.3, there has been ongoing discussion in the WDP literature about whether those

182 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

0%

10%

20%

30%

40%

50%

60%

70%

80%

-1 0 1 2 3 4 5
Log Runtime (s)

Original
Harder

10

Figure 10.6: Inducing Harder Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10
Runtime (s)

Original
Harder

Figure 10.7: Matching

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5 31
Runtime (s)

Original
Harder

Figure 10.8: Scheduling

CATS distributions that are relatively easy could be configured to be harder. We

consider two easy distributions with low variance from CATS, matching and schedul-

ing, and show that they indeed can be made much harder than originally proposed.

Figures 10.7 and 10.8 show the histograms of the runtimes of the ideal portfolio before

and after our technique was applied. In fact, for these two distributions we generated

instances that were (respectively) 100 and 50 times harder than anything we had

previously seen! Moreover, the average runtime for the new distributions was greater

than the observed maximum running time on the original distribution.

10.5. DISCUSSION AND RELATED WORK 183

10.5 Discussion and Related Work

10.5.1 Algorithm Selection

It has long been understood that algorithm performance can vary substantially across

different classes of problems. Rice [1976] was the first to formalize algorithm selection

as a computational problem, framing it in terms of function approximation. Broadly,

he identified the goal of selecting a mapping S(x) from the space of instances to

the space of algorithms, to maximize some performance measure perf(S(x), x). Rice

offered few concrete techniques, but all subsequent work on algorithm selection can

be seen as falling into his framework. We explain our choice of methodology by

relating it to other approaches for algorithm selection that have been proposed in the

literature.

Parallel Execution

One tempting alternative to portfolios that select a single algorithm is the parallel

execution of all available algorithms. While it is often true that additional proces-

sors are readily available, it is also often the case that these processors can be put

to uses besides running different algorithms in parallel, such as parallelizing a single

search algorithm or solving multiple problem instances at the same time. Meaning-

ful comparisons of running time between parallel and non-parallel portfolios require

that computational resources be fixed, with parallel execution modelled as ideal (no-

overhead) task swapping on a single processor. Let t∗(x) be the time it takes to run

the algorithm that is fastest on instance x, and let n be the number of algorithms. A

portfolio that executes all algorithms in parallel on instance x will always take time

nt∗(x). On our WDP data such parallel execution has roughly the same average run-

time as winner-take-all algorithm selection (we have three algorithms and CPLEX is

three times slower than the optimal portfolio), while our techniques do much better,

achieving running times of roughly 1.05t∗(x).

In some domains, parallel execution can be a very effective technique. Gomes

and Selman [2001] proposed such an approach for incomplete SAT algorithms, using

184 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

the term portfolio to describe a set of algorithms run in parallel. In this domain

runtime depends heavily on variables such as random seed, making runtime difficult

to predict; thus parallel execution is likely to outperform a portfolio that chooses

a single algorithm. In such cases it is possible to extend our methodology to allow

for parallel execution. We can add one or more new algorithms to our portfolio,

with algorithm i standing as a placeholder for the parallel execution of ki of the

original algorithms; in the training data i would be given a running time of ki times

the minimum of its constituents. This approach would allow portfolios to choose to

task-swap sets of algorithms in parts of the feature space where the minimums of

individual algorithms’ runtimes are much smaller than their means, but to choose

single algorithms in other parts of the feature space. Our use of the term “portfolio”

may thus be seen as an extension of the term coined by Gomes and Selman, referring

to a set of algorithms and a strategy for selecting a subset (perhaps one) for parallel

execution.

Classification

Since algorithm selection is fundamentally discriminative—it entails choosing the al-

gorithm that will exhibit minimal runtime—classification is an obvious approach to

consider. Any standard classification algorithm (e.g., a decision tree) could be used

to learn which algorithm to choose given features of the instance and labelled training

examples. The problem is that such non-cost-sensitive classification algorithms use

the wrong error metric: they penalize misclassifications equally regardless of their

cost. We want to minimize a portfolio’s average runtime, not its accuracy in choosing

the optimal algorithm. Thus we should penalize misclassifications more when the

difference between the runtimes of the chosen and fastest algorithms is large than

when it is small. This is just what happens when our decision criterion is to select

the smallest prediction among a set of regression models that were fit to minimize

root mean squared error.

A second classification approach entails dividing running times into two or more

bins, predicting the bin that contains the algorithm’s runtime, and then choosing the

best algorithm. For example, Horvitz et al. [2001; 2002] used classification to predict

10.5. DISCUSSION AND RELATED WORK 185

runtime of CSP and SAT solvers with inherently high runtime variance (heavy tails).

Despite its similarity to our portfolio methodology, this approach suffers from the use

of a classification algorithm to predict runtime. First, the learning algorithm does

not use an error function that penalizes large misclassifications (off by more than

one bin) more heavily than small misclassifications (off by one bin). Second, this

approach is unable to discriminate between algorithms when multiple predictions fall

into the same bin. Finally, since runtime is a continuous variable, class boundaries

are artificial. Instances with runtimes lying very close to a boundary are likely to be

misclassified even by a very accurate model, making accurate models harder to learn.

Markov Decision Processes

Perhaps most related to our methodology is work by Lagoudakis and Littman [2000;

2001]. They worked within the MDP framework, and concentrated on recursive algo-

rithms (e.g., sorting, SAT), sequentially solving the algorithm selection problem on

each subproblem. This work demonstrates encouraging results; however, its generality

is limited by several factors. First, the use of algorithm selection at each stage of a re-

cursive algorithm can require extensive recoding, and may simply be impossible with

‘black-box’ commercial or proprietary algorithms, which are often among the most

competitive. Second, solving the algorithm selection problem recursively requires that

the value functions be very inexpensive to compute; for the WDP we found that more

computationally expensive features were required for accurate predictions of runtime.

Finally, these techniques can be undermined by non-Markovian algorithms, such as

those using clause learning, taboo lists or other forms of dynamic programming. Of

course, our approach could also be characterized as an MDP; we do not do so as the

framework is redundant in the absence of a sequential decision-making problem.

Different Regression Approaches

Lobjois and Lemâıtre [1998] select among several simple branch-and-bound algo-

rithms based on a prediction of running time. This work is similar in spirit to our

186 CHAPTER 10. APPLICATIONS OF HARDNESS MODELS

own; however, their prediction is based on a single feature and works only on a par-

ticular class of branch-and-bound algorithms.

Since our goal is to discriminate among algorithms, it might seem more appropri-

ate to learn models of pairwise differences between algorithm runtimes, rather than

models of absolute runtimes. For linear regression (and the forms of nonlinear regres-

sion used in our work) it is easy to show that the two approaches are mathematically

equivalent.

10.5.2 Inducing Hard Distributions

It is widely recognized that the choice of test distribution is important for algorithm

development. In the absence of general techniques for generating instances that are

both realistic and hard, the development of new distributions has usually been per-

formed manually. An excellent example of such work is Selman et al. [1996], which

describes a method of generating SAT instances near the phase transition threshold,

which are known to be hard for most SAT solvers.

10.5.3 The Boosting Metaphor Revisited

Although it is helpful, our analogy to boosting is clearly not perfect. One key dif-

ference lies in the way components are aggregated in boosting: classifiers can be

combined through majority voting, whereas the whole point of algorithm selection

is to run only a single algorithm. We instead advocate the use of learned models of

runtime as the basis for algorithm selection, which leads to another important differ-

ence. It is not enough for the easy problems of multiple algorithms to be uncorrelated;

the models must also be accurate enough to reliably recommend against the slower

algorithms on these uncorrelated instances. Finally, while it is impossible to improve

on correctly classifying an instance, it is almost always possible to solve a problem

instance more quickly. Thus improvement is possible on easy instances as well as

on hard instances; the analogy to boosting holds in the sense that focusing on hard

regions of the problem space increases the potential gain in terms of reduced average

portfolio runtimes.

10.6. CONCLUSIONS 187

10.6 Conclusions

Empirical hardness models can be used to combine algorithms together into a portfolio

that outperforms its constituents. We have described how to build such portfolios, also

presenting techniques for reducing the cost of computing features, reducing the time

spent gathering training data by capping runs, and striking the right balance between

the penalties for mispredicting easy and hard instances. We argued that algorithm

design should focus on problem instances upon which a portfolio of existing algorithms

spends most of its time, and provided techniques for using empirical hardness models

to automatically induce such distributions.

We performed experiments on WDP algorithms, and showed that a portfolio com-

posed of CPLEX, CASS and GL outperformed CPLEX alone by a factor of 3—despite

the fact that CASS and GL are much slower than CPLEX on average. We were also

able to induce test data that was much harder for our portfolio, and were even able

to make specific CATS distributions much harder.

Bibliography

Achlioptas, D., Gomes, C. P., Kautz, H. A., & Selman, B. (2000). Generating satis-

fiable problem instances. AAAI.

Anderson, A., Tenhunen, M., & Ygge, F. (2000). Integer programming for combina-

torial auction winner determination. ICMAS (pp. 39–46).

Ausubel, L., Cramption, P., McAfee, R., & McMillan, J. (1997). Synergies in wireless

telephony: Evidence from the broadband PCS auctions. Journal of Economics and

Management Strategy, 6(3), 497–527.

Banks, J., Ledyard, J., & Porter, D. (1989). Allocating uncertain and unresponsive

resources: An experimental approach. RAND Journal of Economics, 20, 1–23.

Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T., &

Szafron, D. (2003). Approximating game-theoretic optimal strategies for full-scale

poker. IJCAI.

Blair, D. (1998). Impact of the Internet on core switching network. Proc. of ENPW’98.

Les Arcs, France.

Blum, B., Shelton, C., & Koller, D. (2003). A continuation method for Nash equilibria

in structured games. IJCAI.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision pro-

cesses. Theoretical Aspects of Rationality and Knowledge (pp. 195–201).

Boutilier, C., Goldszmidt, M., & Sabata, B. (1999). Sequential auctions for the

allocation of resources with complementarities. IJCAI.

188

BIBLIOGRAPHY 189

Brewer, P., & Plott, C. (1996). A binary conflict ascending price (BICAP) mechanism

for the decentralized allocation of the right to use railroad tracks. International

Journal of Industrial Organization, 14, 857–886.

Bykowsky, M., Cull, R., & Ledyard, J. (1995). Mutually destructive bidding: The

FCC auction design problem (Technical Report Social Science Working Paper 916).

California Institute of Technology, Pasadena.

CATS Website (2000). http://robotics.stanford.edu/CATS.

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the Really Hard

Problems Are. IJCAI-91.

Conitzer, V., & Sandholm, T. (2002). Complexity Results about Nash Equilibria

(Technical Report CM-CS-02-135). CMU.

Cramton, P., & Palfrey, T. (1990). Cartel enforcement with uncertainty about costs.

International Economic Review, 31(1), 17–47.

Crawford, V., & Sobel, J. (1982). Strategic information transmission. Econometrica,

50(6), 1431–1451.

de Vries, S., & Vohra, R. (2003). Combinatorial auctions: A survey. INFORMS

Journal on Computing, 15(3).

DeMartini, C., Kwasnica, A., Ledyard, J., & Porter, D. (1998). A new and improved

design for multi-object iterative auctions (Technical Report Social Science Working

Paper 1054). California Institute of Technology, Pasadena.

Demers, A., Keshav, S., & Shenker, S. (1990). Analysis and simulation of a fair

queuing algorithm. Journal of internetworking research and experience, 3–26.

Doucet, A., de Freitas, N., & (ed.), N. G. (2001). Sequential monte carlo methods in

practice. Springer-Verlag.

Feinstein, J., Block, M., & Nold, F. (1985). Asymmetric behavior and collusive

behavior in auction markets. American Economic Review, 75(3), 441–460.

190 BIBLIOGRAPHY

Floyd, S. (1994). TCP and explicit congestion notification. ACM Computer Commu-

nication Review, 24(5), 10–23.

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics,

19.

Fudenberg, D., & Tirole, J. (1991). Game theory. MIT Press.

Fujishima, Y., Leyton-Brown, K., & Shoham, Y. (1999). Taming the computational

complexity of combinatorial auctions: Optimal and approximate approaches. IJ-

CAI.

Gibbens, R., & Kelly, F. (1999). Resource pricing and the evolution of congestion

control. Automatica, 35, 1969–1985.

Gibbens, R., & Key, P. (1999). The use of games to assess user strategies for dif-

ferential quality of service in the internet (Technical Report). Microsoft Research,

Cambridge.

Gomes, C., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126(1-

2), 43–62.

Gomes, C. P., & Selman, B. (1997). Problem structure in the presence of perturba-

tions. AAAI/IAAI.

Gonen, R., & Lehmann, D. (2000). Optimal solutions for multi-unit combinatorial

auctions: Branch and bound heuristics. ACM Conference on Electronic Commerce.

Gonen, R., & Lehmann, D. (2001). Linear programming helps solving large multi-unit

combinatorial auctions (Technical Report TR-2001-8). Leibniz Center for Research

in Computer Science.

Graham, D., & Marshall, R. (1987). Collusive bidder behavior at single-object second-

price and English auctions. Journal of Political Economy, 95, 579–599.

BIBLIOGRAPHY 191

Graham, D., Marshall, R., & Richard, J.-F. (1990). Differential payments within a

bidder coalition and the Shapley value. American Economic Review, 80(3), 493–510.

Grether, D., Isaac, R. M., & Plott, C. (1989). The allocation of scarce resources:

Experimental economics and the problem of allocating airport slots. Boulder, CO:

Westview Press.

Guestrin, C. E., Koller, D., & Parr, R. (2001). Multiagent planning with factored

MDPs. 14th Neural Information Processing Systems (NIPS-14) (pp. 1523–1530).

Vancouver, Canada.

Harstad, R., Kagel, J., & Levin, D. (1990). Equilibrium bid functions for auctions

with an uncertain number of bidders. Economic Letters, 33(1), 35–40.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). Elements of statistical learning.

Springer.

Hendricks, K., & Porter, R. (1989). Collusion in auctions. Annales d’Économie et de

Statistique, 15/16, 216–229.

Holte, R. C. (2001). Combinatorial auctions, knapsack problems, and hill-climbing

search. Canadian Conference on AI.

Hoos, H., & Boutilier, C. (2000). Solving combinatorial auctions using stochastic

local search. The 17th national conference on artificial intelligence (pp. 22–29).

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., & Chickering, M. (2001).

A Bayesian approach to tackling hard computational problems. UAI.

Hotelling, H. (1929). Stability in competition. Economic Journal, 39, 41–57.

Kastner, R., Hsieh, C., Potkonjak, M., & Sarrafzadeh, M. (2002). On the sensitivity of

incremental algorithms for combinatorial auctions. UCLA CS Tech. Report 020000.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory.

UAI.

192 BIBLIOGRAPHY

Kearns, M., & Mansour, Y. (2002). Efficient nash computation in large population

games with bounded influence. UAI.

Key, P., & McAuley, D. (1999). Differential QoS and pricing in networks: Where flow

control meets game theory. IEE Proc Software 146..

Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial

Intelligence Journal, special issue on relevance, 97(1–2), 273–324.

Koller, D., & Milch, B. (2001). Multi-agent influence diagrams for representing and

solving games. IJCAI.

Korf, R., & Reid, M. (1998). Complexity analysis of admissible heuristic search.

AAAI-98.

Lagoudakis, M., & Littman, M. (2000). Algorithm selection using reinforcement

learning. ICML.

Lagoudakis, M., & Littman, M. (2001). Learning to select branching rules in the

DPLL procedure for satisfiability. LICS/SAT.

Ledyard, J., & Szakaly, K. (1994). Designing organizations for trading pollution

rights. Journal of Economic Behavior and Organization, 25, 167–196.

Ledyard, J. O., Porter, D., & Rangel, A. (1997). Experiments testing multiobject

allocation mechanisms. Journal of Economics & Management Strategy, 6(3), 639–

675.

Lehmann, D., O’Callaghan, L., & Shoham, Y. (1999). Truth revalation in rapid, ap-

proximately efficient combinatorial auctions. ACM Conference on Electronic Com-

merce.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003a).

Boosting as a metaphor for algorithm design. Constraint Programming.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003b).

A portfolio approach to algorithm selection. IJCAI.

BIBLIOGRAPHY 193

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002a). Learning the empirical

hardness of optimization problems: The case of combinatorial auctions. CP.

Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000a). Towards a universal test

suite for combinatorial auction algorithms. ACM EC.

Leyton-Brown, K., Porter, R., Venkataraman, S., & Prabhakar, B. (2001). Smoothing

out focused demand for network resources (short paper). ACM Conference on

Electronic Commerce.

Leyton-Brown, K., Porter, R., Venkataraman, S., Prabhakar, B., & Shoham, Y.

(2003c). Incentive mechanisms for smoothing out a focused demand for network

resources. Computer Communications, 26, 237–250.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000b). An algorithm for multi-

unit combinatorial auctions. Proceedings of AAAI-00.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000c). Bidding clubs: institu-

tionalized collusion in auctions. ACM Conference on Electronic Commerce.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2002b). Bidding clubs in first-

price auctions. The 19th National Conference on Artificial Intelligence.

Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effect games. IJCAI.

Lobjois, L., & Lemâıtre, M. (1998). Branch and bound algorithm selection by per-

formance prediction. AAAI.

MacKie-Mason, J., & Varian, H. (1994). Pricing the internet. In B. Kahin and

J. Keller (Eds.), Public access to the internet. Prentice-Hall.

Mailath, G., & Zemsky, P. (1991). Collusion in second-price auctions with heteroge-

neous bidders. Games and Economic Behavior, 3, 467–486.

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New

York: Oxford University Press.

194 BIBLIOGRAPHY

McAfee, R., & McMillan, J. (1987). Auctions with a stochastic number of bidders.

Journal of Economic Theory, 43, 1–19.

McAfee, R., & McMillan, J. (1992). Bidding rings. American Economic Review, 82,

579–599.

Milgrom, P. (1998). Putting auction theory to work: The simultaneous ascending

auction. Technical Report 98-0002, Department of Economics, Stanford University.

Mitchell, B. (1978). Pricing policies in selected European telephone systems. Pro-

ceedings of 6th Conference on Telecommunications Policy Research (pp. 437–475).

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., & Troyansky, L. (1998). De-

termining computational complexity for characteristic ’phase transitions’. Nature,

400.

Monderer, D., & Shapley, L. (1996). Potential games. Games and Economic Behavior,

14, 124–143.

Monderer, D., & Tennenholtz, M. (2000). Optimal Auctions Revisited. Artificial

Intelligence, 120(1), 29–42.

Mura, P. L. (2000). Game networks. UAI.

Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences of the United States of America, 36, 48–49.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization.

New York, NY: Wiley.

Nisan, N. (2000). Bidding and allocation in combinatorial auctions. ACM Conference

on Electronic Commerce.

Nisan, N., & Ronen, A. (2000). Computationally feasible VCG mechanisms. ACM

Conference on Electronic Commerce.

BIBLIOGRAPHY 195

Odlyzko, A. (1997). A modest proposal for preventing internet congestion (Technical

Report TR 97.35.1). AT&T Research.

Osborne, M., & Pitchik, C. (1987). Equilibrium in Hotelling’s model of competition.

Econometrica, 55, 911–922.

Osborne, M., & Rubinstein, A. (1994). A course in game theory. MIT Press.

Pan, R., Breslau, L., Prabhakar, B., & Shenker, S. (2001). Approximate fairness

through differential dropping. Submitted.

Pan, R., Prabhakar, B., & Psounis, K. (2000). CHOKe: A stateless active queue

management scheme for approximating fair bandwidth allocation. Proceedings of

IEEE INFOCOM 2000 (pp. 942–951).

Parkes, D. C. (1999). iBundle: An efficient ascending price bundle auction. ACM

Conference on Electronic Commerce.

Plott, C., & Cason, T. (1996). EPA’s new emissions trading mechanism: A laboratory

evaluation. Journal of Environmental Economics and Management, 30, 133–160.

Quan, D. (1994). Real estate auctions: A survey of theory and practice. Journal of

Real Estate Finance and Economics, 9, 23–49.

Rassenti, S., Reynolds, S., & Smith, V. (1994). Cotenancy and competition in an

experimental auction market for natural gas pipeline networks. Economic Theory,

4, 41–65.

Rassenti, S., Smith, V., & Bulfin, R. (1982). A combinatorial auction mechanism for

airport time slot allocation. Bell Journal of Economics, 13, 402–417.

Reeves, D., & Wellman, M. (2003). Computing equilibrium strategies in infinite

games of incomplete information. Fifth Workshop on Game Theoretic and Decision

Theoretic Agents at the 2nd Conference on Autonomous Agents and Multi-Agent

Systems.

196 BIBLIOGRAPHY

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15,

65–118.

Riley, J., & Samuelson, W. (1981). Optimal auctions. American Economic Review,

71, 381–392.

Robinson, M. (1985). Collusion and the choice of auction. Rand Journal of Economics,

16(1), 141–145.

Rosenthal, R. (1973). A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory, 2, 65–67.

Rothkopf, M., Pekeč, A., & Harstad, R. (1998). Computationally manageable com-

binatorial auctions. Management Science, 44(8), 1131–1147.

Roughgarden, T., & Tardos, E. (2001). Bounding the inefficiency of equilibria in

nonatomic congestion games (Technical Report TR2002-1866). Cornell, Ithaca.

Ruan, Y., Horvitz, E., & Kautz, H. (2002). Restart policies with dependence among

runs: A dynamic programming approach. CP.

S. H. Clearwater, e. (1996). Market-based control: A paradigm for distributed resource

allocation. World Scientific.

Sandholm, T. (1999). An algorithm for optimal winner determination in combinatorial

auctions. IJCAI-99.

Sandholm, T., & Suri, S. (2000). Improved algorithms for optimal winner determi-

nation in combinatorial auctions and generalizations. AAAI-00.

Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2001). CABOB: A fast optimal

algorithm for combinatorial auctions. IJCAI.

Sanholm, T. (1993). An implementation of the contract net protocol based on

marginal cost calculations. Proceedings of AAAI-93 (pp. 256–262).

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.

BIBLIOGRAPHY 197

Schuurmans, D., Southey, F., & Holte, R. C. (2001). The exponentiated subgradient

algorithm for heuristic boolean programming. IJCAI-01.

Selman, B., Mitchell, D. G., & Levesque, H. J. (1996). Generating hard satisfiability

problems. Artificial Intelligence, 81(1-2), 17–29.

Shenker, S. (1995). Making greed work in networks: A game-theoretic analysis of

switch service disciplines. IEEE/ACM Transactions on Networking, 3, 819–831.

Slaney, J., & Walsh, T. (2001). Backbones in optimization and approximation. IJCAI-

01.

Songhurst, D., Stamoulis, G., & Stoer, M. (1999). Usage-based charging using ef-

fective bandwidths: studies and reality. Proceedings of the International Teletraffic

Congress, ITC-16.

Tennenholtz, M. (2000). Some tractable combinatorial auctions. Proceedings of

AAAI-2000.

Varian, H. R. (1995). Economic mechanism design for computerized agents. Proceed-

ings of the First Usenix Conference on Electronic Commerce.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms for solving graphical games.

AAAI.

von Ungern-Sternberg, T. (1988). Cartel stability in sealed bid second price auctions.

The Journal of Industrial Economics, 18(3), 351–358.

Wellman, M. (1993). A market-oriented programming environment and its application

to distributed multicommodity flow problems. Journal of Artificial Intelligence

Research, 1, 1–23.

Wellman, M., Greenwald, A., Stone, P., & Wurman, P. (2003). The 2001 trading

agent competition. Electronic Markets, 13(1).

Wellman, M., Wurman, P., Walsh, W., & MacKie-Mason, J. (1998). Auction protocols

for distributed scheduling. Games and Economic Behavior.

198 BIBLIOGRAPHY

Zhang, W. (1999). State-space search: Algorithms, complexity, extensions, and appli-

cations. Springer.

Zurel, E., & Nisan, N. (2000). An efficient approximate allocation algorithm for

combinatorial auctions. ACM Conference on Electronic Commerce.

Index

absolute error, 176

agents, 1

aligned, an auction with a signal, 50

allocation, 98, 104

anytime algorithm, 103

arbitrary complementarities, 132

auctions, 96

first-price, 44

classical, 46

with participation revelation, 48

with stochastic number of bidders,

47

second-price, 43

average percent suboptimal, 176

bid graph, 159

bid-good graph, 159

bids, 98, 117

Bidtree, 147–148

bins, 105

boosting, 171, 186

branch-and-bound search, 104

bulletin board system, 28

CABOB, 149

caching, 107

CAMUS, 110–114

CASS, 103–110, 145–174

CATS, 121, 143, 149, 154, 181

website, 121

cheap talk, 28

classification, 184

Combinatorial auctions, 97

complementarity, 96

congestion games, 74, 78

context-specific independence, 74

cost of omission, 164

CPLEX, 144, 148–151, 160, 161, 172,

174

dominated bids, 104, 111, 141, 158

dummy goods, 99

edge function, 76

empirical hardness, 154

FAA take-off and landing rights auc-

tion, 135

FCC spectrum auction, 97, 130

focused loading, 12

focused-loading equilibrium, 21

GL, 172, 174

199

200 INDEX

goods, 98, 117

ideal, 20

indicator variable, 98

integer slack vector, 160

job-shop scheduling, 136

knockout procedure, 43

legacy distributions, 137

linear programming relaxation, 101, 160

local-effect game, 75, 76

bidirectional, 77

class of, 77

uniform, 77

location problem, 75

Markov decision processes, 185

multiagent systems, 1

competitive, 2

cooperative, 1

myopic best response, 90

Nash equilibrium, 16

strict, 17

weak, 17

network bandwidth allocation, 11, 126

node function, 76

objects, 1

optimality, mechanism-equilibrium pair,

21

c-optimality, 21

parallel execution, 183

pareto-optimality, 3

participation-safe, 17

paths in space, 122

percent optimal, 176

portfolio, 184

potential function, 78–80, 86

potential functions, 75

potential games, 75

price offer, 98

proximity in space, 127

pruning, 104

pure strategy equilibria, 74

railroad auctions, 97, 123

real estate auctions, 127

regression, 161

linear, 161

MARS, 164

quadratic, 164

regular asymmetric auction, 50

rejection sampling, 179

relative error, 176

resources, 2

revenue maximization, 3

role formation game, 76

singleton bids, 111

social-welfare maximization, 3

subbins, 111

subset selection, 165

substitutability, 97

INDEX 201

superlinear summation functions, 19

symmetry, 74

temporal matching, 134

units, 100

upper bound, 106, 113

Vickrey-Clarke-Groves mechanism, 102

weighted set-packing, 100

winner determination problem, 98

ascending auction mechanisms for,

102

economic mechanisms for approxi-

mate, 102

multi-unit, 100

single-unit, 98

single-unit with XOR constraints,

99

tractable subcases, 101

XOR bids, 99, 118, 120

