
RESOURCE ALLOCATION

IN COMPETITIVE MULTIAGENT SYSTEMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Kevin Leyton-Brown

August 2003

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

kevinlb
Text Box
ALGORITHMS FOR COMBINATORIAL AUCTION WINNER DETERMINATION

Chapter 5

Combinatorial Auctions

5.1 Motivation

Auctions are the most widely studied mechanism in the mechanism design literature

in economics and game theory [Fudenberg & Tirole, 1991]. This is due to the fact that

auctions are basic protocols, serving as the building blocks of more elaborated mech-

anisms. Given the wide popularity of auctions on the Internet and the emergence of

electronic commerce, where auctions serve as the most popular game-theoretic mech-

anism, efficient auction design has become a subject of considerable importance for

researchers in multi-agent systems (e.g., [Wellman et al., 1998; Monderer & Tennen-

holtz, 2000]). The use of auctions in business-to-business trades is also increasing

rapidly. Within AI there is growing interest in using auction mechanisms to solve re-

source allocation problems in competitive multiagent systems. For example, auctions

and other market mechanisms are used in network bandwidth allocation, distributed

configuration design, factory scheduling, and operating system memory allocation

[S. H. Clearwater, 1996; Wellman, 1993].

5.1.1 Complementarity

The value of a good to a potential buyer can depend on what other goods s/he wins.

We say that there exists complementarity between goods γ1 and γ2 to agent a if

96

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

5.1. MOTIVATION 97

ua({γ1, γ2}) > ua({γ2}) + ua({γ2}), where ua(S) is the utility to a of acquiring the

set of goods S. If goods γ1 and γ2 were auctioned separately, it is likely that neither

of the typically desired properties for auctions—efficiency or revenue maximization—

would hold. One way to accommodate complementarity in auctions is to allow bids

for combinations of goods as well as for individual goods. Combinatorial auctions are

a class of auctions that accommodate bidders whose valuations exhibit complemen-

tarities: multiple goods are auctioned simultaneously and bidders place as many bids

as they want for different bundles of goods with the guarantee that these bundles

will be allocated “all-or-nothing”. For example, imagine an auction of used electronic

equipment. A bidder might value a particular TV at x and a particular VCR at y,

but value the pair at z > x + y.

5.1.2 Substitutability

It is also common for bidders to desire a second good less once they have won a first

good. We say that there exists substitutability between goods γ1 and γ2 to agent

a when ua({γ1, γ2}) < ua({γ1}) + ua({γ2}). A common example of substitutability

is for a bidder to be indifferent between several goods but not to want more than

one. In order to be useful, a combinatorial auction mechanism should provide some

way for bidders to indicate that goods (or, more generally, bundles of goods) are

substitutable. Combinatorial auctions that allow the description of valuation func-

tions involving both complementarity and substitutability can be seen as providing

a general framework for allocation and decision-making problems among agents in

competitive multiagent systems.

5.1.3 Applications

Combinatorial auctions are applicable to many real-world situations. In an auction for

the right to use railroad segments a bidder desires a bundle of segments that connect

two particular points; at the same time, there may be alternate paths between these

points and the bidder needs only one [Brewer & Plott, 1996]. Similarly, in the FCC

spectrum auction bidders may desire licenses for multiple geographical regions at the

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

98 CHAPTER 5. COMBINATORIAL AUCTIONS

same frequency band while being indifferent to which particular band they receive

[Milgrom, 1998]. These and other real-world applications of combinatorial auctions

are described in more detail in Chapter 7. While economics and game theory provide

many insights into the potential uses of such auctions, they have little to say about

computational considerations. This is an obstacle to the practical use of combinatorial

auctions, because it turns out that combinatorial auctions often give rise to very hard

computational problems.

5.2 Combinatorial Auction Winner Determination

In a combinatorial auction, a seller is faced with a set of price offers for various

bundles of goods, and his aim is to allocate the goods in a way that maximizes his

revenue. The winner determination problem (WDP) is choosing the subset of bids

that maximizes the seller’s revenue, subject to the constraint that each good can be

allocated at most once.

5.2.1 Formal definition

Let G = {γ1, γ2, . . . , γm} be a set of goods, and let B = {b1, . . . , bn} be a set of bids.

Bid bi is a pair (p(bi), g(bi)) where p(bi) ∈ R+ is the price offer of bid bi and g(bi) ⊆ G

is the set of goods requested by bi. For each bid bi define an indicator variable xi that

encodes the inclusion or exclusion of bid bi from the allocation.

Problem 5.1 The single-unit WDP is the following integer program:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ 1 ∀γ ∈ G

xi ∈ {0, 1} ∀i

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

5.2. COMBINATORIAL AUCTION WINNER DETERMINATION 99

5.2.2 XOR constraints

Problem 5.1 allows bidders to describe complementarities in their valuations; however,

it does not explicitly allow the expression of substitutabilities. To do so, bidders must

have some way of indicating that their interest in two bundles is mutually exclusive.

Let S = {s1, . . . , sκ}, where each si denotes a set of bids which are not allowed to be

allocated together by the optimization algorithm.

Problem 5.2 The single-unit WDP with XOR constraints is the following integer

program:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ 1 ∀γ ∈ G

∑

i|bi∈sj

xi ≤ 1 ∀j ∈ [1, κ]

xi ∈ {0, 1} ∀i

Some algorithms may not provide a way of specifying sets of mutually exclusive

bundles s. Luckily, it is possible to use an encoding trick, introducing dummy goods

[Fujishima et al., 1999]. Dummy goods do not correspond to actual goods in the

auction, but serve to enforce mutual exclusion between bids. For example, if bids

b1 and b2 are intended to be mutually exclusive, we add a dummy good d to each

bundle, defining new bids b′i where g(b′i) = g(bi)∪d. Since the good d can be allocated

only once, at most one of b′1 and b′2 will allocated. More generally, it is possible to

introduce n-unit dummy goods to enforce the condition that no more than n of a

set of bids may be allocated (see Section 5.2.3 for a definition of units), and to use

multiple dummy goods with the same bundles to enforce other complex constraints.

This technique can lead to a combinatorial explosion in the number of bids if many

goods are substitutable, but in many interesting cases this does not occur. While

dummy goods increase the expressive power of the bidding language, making use of

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

100 CHAPTER 5. COMBINATORIAL AUCTIONS

them requires no changes to an optimization algorithm. In fact, observe that Problem

5.2 is exactly the same as Problem 5.1 when XOR constraints are expressed using

dummy goods. Hence, in what follows we do not discuss explicit XOR constraints,

but assume that dummy goods are used where required.

5.2.3 Multi-unit auctions

In some cases, the set of goods at auction will contain subsets of goods among which

all bidders are indifferent. We call these subsets units of a single good. While it

is possible to auction each unit as a separate good, this forces bidders interested in

a subset of the units to specify unnecessary XOR bids. For example, consider an

electronics manufacturer auctioning 100 identical TVs and 100 identical VCRs. A

retailer who wants to buy 70 TVs and 30 VCRs would be indifferent between all

bundles having 70 TVs and 30 VCRs. Rather than having to bid on each of the(
100
70

) · (100
30

)
distinct bundles, she would prefer to place the single bid (price, {70 TVs,

30 VCRs}). This can be achieved by generalizing Problem 5.1. Let q(γ) denote the

number of units of good γ.

Problem 5.3 The multi-unit WDP is the following integer program:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ q(γ) ∀γ ∈ G

xi ∈ {0, 1} ∀i

5.2.4 Asymptotic Hardness

With or without XOR constraints, the WDP is equivalent to weighted set-packing

and is therefore NP-hard even in its single-unit variant: see e.g., [Rothkopf et al.,

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

5.3. RELATED WORK ON THE WDP 101

1998]. Furthermore, it is known that the WDP is inapproximable within any constant

factor: see e.g., [Sandholm, 1999].

5.3 Related Work on the WDP

In recent years many researchers have been interested in the combinatorial auction

winner determination problem. For a survey, see [de Vries & Vohra, 2003].

5.3.1 Tractable Subcases

Rothkopf et al. [1998] identified the following subcases of the single-unit WDP which

may be solved in polynomial time:

1. bids contain no more than two goods;

2. for any two bids, either they are disjoint or one is a subset of the other; or

3. bids only name goods that are consecutive given a one-dimensional ordering.1

More recent work on tractable subcases may be found in [Nisan, 2000; Tennen-

holtz, 2000; de Vries & Vohra, 2003]. The case of infinitely divisible goods may be

solved in polynomial time by using linear programming techniques: we solve the linear

programming relaxation of Problem 5.1, where the integrality constraint is replaced

by the linear constraint 0 ≤ xi ≤ 1.

5.3.2 Approximation algorithms

Some researchers have studied algorithms to approximate the WDP, despite the fact

that the WDP cannot be approximated with guarantees. For example, Hoos and

Boutilier [2000] and Zurel and Nisan [2000] have proposed algorithms with good em-

pirical performance despite their lack of theoretical guarantees. Furthermore others,

1In fact, this case can be extended to the case where goods are placed around a ring and each bid
requests only consecutive goods. Consider adding each bid in turn (and removing all other bids that
conflict with this bid): the remaining subproblem to be solved has only bids that request consecutive
goods given a one-dimensional ordering, because the selection of the first bid breaks the ring.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

102 CHAPTER 5. COMBINATORIAL AUCTIONS

notably Nisan and Ronen [2000] and Lehmann et al. [1999], have proposed alterna-

tive economic mechanisms that are built around approximation algorithms. It is also

possible to make bidders responsible for improving the quality of the approximation.

Banks et al. [1989] and Bykowsky et al. [1995] have reported a mechanism called

AUSM in which non-winning bids are pooled in a stand-by queue. Bidders can com-

bine their bids with other bids currently in the queue to form new allocations. A new

allocation is adopted if it generates more revenue than the previously best allocation.

5.3.3 Solving the WDP to optimality

Although the WDP is NP-hard, in practice it is possible to address interestingly-

large datasets with heuristic methods [Fujishima et al., 1999; Sandholm, 1999; Gonen

& Lehmann, 2000; Leyton-Brown et al., 2000b; Nisan, 2000; Sandholm & Suri, 2000;

Gonen & Lehmann, 2001; Sandholm et al., 2001]. Furthermore, there are reasons why

it can be important to solve the WDP to optimality, and why restrictions to a tractable

subcase may not be acceptable. For example, optimal solutions to the WDP are

required in order for the Vickrey-Clarke-Groves mechanism [Mas-Colell et al., 1995;

Varian, 1995] give rise to dominant strategies. In fact, Nisan and Ronen [2000] show

that the Vickrey-Clarke-Groves mechanism can give rise to arbitrarily bad outcomes

when agents suspect that there is any possibility that any non-optimal solution to the

WDP will be used. As another example, Parkes [1999], among others, has proposed

an ascending auction mechanism that requires a provably-optimal solution to the

WDP. Because of the importance of such applications, we concern ourselves in this

work only with provably-optimal solutions to the WDP.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

Chapter 6

Algorithms for Solving the

Combinatorial Auction Winner

Determination Problem

We present two branch-and-bound algorithms that exploit instances’ particular bid

structures to find optimal solutions to the WDP, using contextual information to

make upper bounds tighter. Upper bounds are further tightened by online caching

of results from unpruned subtrees. The first algorithm, CASS, considers only the

single-unit WDP (i.e., it solves WDP Problem 5.1). The second algorithm, CAMUS,

generalizes CASS, addressing the multi-unit WDP (Problem 5.3).

6.1 CASS Algorithm

In this section we present an algorithm, Combinatorial Auction Structured Search

(CASS), a branch-and-bound search algorithm with a novel heuristic. Most impor-

tantly, CASS structures the search space in a way that provides context to this

heuristic in order to allow more pruning during the search and that avoids consider-

ation of most infeasible allocations. CASS also caches the results of partial searches

and prunes the search tree. Finally, CASS may be used as an anytime algorithm, as

it tends to find good allocations quickly.

103

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

104 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

Before proceeding, we must introduce additional notation pertaining to alloca-

tions. An allocation π ⊆ B is a subset of the bids where ∀b1 ∈ B, b2 6= b1 ∈
B, g(b1) ∩ g(b2) = {}. We overload the functions g() and p() to apply to allocations:

g(π) =
⋃

b∈π g(b) and p(π) =
∑

binπ p(b). A full allocation πfull is an allocation for

which g(πfull) = G, and a partial allocation is an allocation that is not full.

6.1.1 Dominated Bids

Some bids may be removed in a polynomial-time preprocessing step before search

begins. For each pair of bids (b1,b2) where g(b1) ⊆ g(b2) and p(b1) ≥ p(b2), we may

remove b2 from the list of bids to be considered during the search as b2 is never

preferable to b1 (hence we say that b1 dominates b2).

6.1.2 Branch-and-Bound Search

Branch-and-bound search is a general search strategy that is widely used in the op-

erations research community (see e.g., [Nemhauser & Wolsey, 1988]). We explain it

here using the terminology of combinatorial auctions.

Whenever a bid is encountered that does not conflict with the current partial

allocation then the search tree branches, where one branch adds the bid to the partial

allocation and the other does not. CASS performs a depth-first search, meaning that

one branch of the tree is fully explored before the other is considered. (This has the

advantage that CASS requires only linear space to store the search tree.) When a full

allocation π is reached CASS records this allocation as πbest if p(π) > p(πbest), and

then backtracks.

CASS also computes a function h(π) at each node, which gives an upper bound

on the revenue that can be collected from the goods G \ g(π). When h() indicates

that the current subtree cannot lead to a solution better than πbest then the search

tree can be pruned : we can backtrack before a full allocation has been constructed.

More precisely, we backtrack whenever p(π) + h(π) ≤ p(πbest). We will describe the

construction of the function h(π) in Section 6.1.4, but first we must introduce the

concept of bins.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

6.1. CASS ALGORITHM 105

124

12

134

1345

125

14

1245

1

124

12

134

1345

125

14

1245

1

23

24

245

2

234

23

24

245

2

234
35

345

3

34

35

345

3

34

4

45

4

45
5

D D D D D

Figure 6.1: Partition into Bins

124

12

134

1345

125

14

1245

1

124

12

134

1345

125

14

1245

1

23

24

245

2

234

23

24

245

2

234
35

345

3

34

35

345

3

34

4

45

4

45
5

D DD D D

Figure 6.2: Skipping bins

6.1.3 Bins

We can reduce the number of infeasible allocations considered by partitioning bids

into bins . First, we must choose an ordering on the goods. We create one bin for

each good, and we place each bid into the bin corresponding to its lowest-order good.

For an example, see Figure 6.1. The example shows input from an auction with

five goods, G = {1, 2, 3, 4, 5}. Circles in the figure represent bids, the concatenated

numbers in the circles represent the goods named in each bid, and prices are omitted

from the bids for clarity.

Rather than always trying to add each bid to our allocation, we add at most one

bid from every bin since all bids in a given bin are mutually exclusive. In fact, we

can often skip bins entirely. While considering bin Di, if we observe that good j > i

is already part of the allocation then we do not need to consider any of the bids in

Dj. In general, instead of considering each bin in turn, skip to Dk where k /∈ g(π)

and ∀i < k, i ∈ g(π). To avoid the situation where it is possible to enter a bin that

we cannot leave, we augment the set of bids. If there is no bid requesting a single

unit of any good γj ∈ G then we add a dummy bid b = (0, γj).

Continuing our example, see Figure 6.2. The first bid we add contains goods

{1, 2, 4}, so we skip all remaining bids in bin D1 and all bids in bin D2, since all of

these bids will conflict. We thus consider bin D3. The first bid we encounter requests

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

106 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

goods {3, 4}, which also conflicts with our partial allocation. We move to the next

bid in D3, which requests goods {3, 5}. We have found our first full allocation, so we

update our lower bound and backtrack.

The main benefit of bins is not the ability to avoid consideration of conflicting

bids, however. Bins are powerful because they allow the pruning function to con-

sider context without significant computational cost. If bids in bin Di are currently

being considered then the pruning function must only take into account bids in bins

{Di, . . . , Dm}. Since most bids will belong to a low-order bin1 but the search will

spend most of its time in higher-order bins, this can allow us to generate very tight

upper bounds. Furthermore, because the partitioning of bids into bins is fixed we

can compute the upper bound information for each bin in a preprocessing step; this

makes the upper bound fast to evaluate during search.

6.1.4 Upper Bound

We now describe the construction of the function h(π). For every remaining good j we

calculate a value v(j), the maximum over all the remaining bids requesting good j that

do not conflict with π of the bid’s price divided by the number of goods requested by

the bid. The sum of v(j) values for all goods is an upper bound on optimal revenue

because it relaxes the constraint that the bids in the optimal allocation may not

conflict.

More formally, consider that we have built up a partial allocation π and reached

bin Dσ. For each bid bi, let a(bi) = p(bi)/m be the average price per good of bid bi.

Notice that the average price per good may change dramatically from bid to bid, and

it is a non-trivial notion; our technique will work for any arbitrary average price per

good. Let Lσ(j) be a list of the bids that refer to good j and that belong to bins Dφ

with φ ≥ σ (i.e., the bids that can be encountered in the remainder of the search).

The list is sorted in a monotonically decreasing manner according to the ai’s. Observe

1To see why bids are not spread evenly across the bins, consider what happens when we receive
a bid for every bundle. Half of the bids will involve good γ1 and will thus belong to bin D1; half
the bids that do not involve γ1 will involve γ2 and belong to bin D2, and so on. Clearly, each bin
Di+1 will contain half as many bids as its predecessor Di.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

6.1. CASS ALGORITHM 107

that Lσ(j) can be precomputed before search begins. v(j) is defined as a(bok
j), where

bok
j is the first bid in Lσ(j) that does not conflict with π.

Theorem 6.1 Let B∗ = {b∗1, . . . , b∗s} be the bids in an optimal allocation. Then,

r∗ = Σb∈B∗p(b) ≤ Σ1≤j≤mv(j).

Remark: In the multi-unit special case where when all goods happen to have only

one unit, the upper bound function in Section 6.2.4 computes exactly the same upper

bounds as the function presented above. Thus Theorem 6.2 considers a more general

case, and so the proof to Theorem 6.1 can be deduced from that proof.

6.1.5 Caching

CASS’s caching scheme is a form of dynamic programming that allows the algorithm

to use experience from earlier in the search to tighten its upper bound function; it is

illustrated in Figure 6.3. Consider a partial allocation π1 that is reached during the

search phase. If the search proceeds beyond π1 then h(π1) was not sufficiently small

to allow us to backtrack. Later in the search we may reach an allocation π2 which, by

combining different bids, achieves the same allocation π1. CASS incorporates a mech-

anism for caching the results of the search beyond π1 to generate a better estimate

for the revenue given π2 than is given by h(π2). (Since π1 and π2 do not differ in the

units of goods that remain, h(π1) = h(π2).) Consider all the allocations extending π1

upon consideration of which the algorithm backtracked, denoted s1, . . . , sf . When

we backtracked at each si we did so because p(si) + h(si) ≤ p(πbest), as explained

above, or because si was a full allocation. It follows that maxi(p(si) + h(si))− p(π1)

is an overestimate of the revenue attainable beyond π1, and that it is a smaller over-

estimate than h(π1). If it were not, we would have backtracked at π1 rather than

searching this subtree. We cache the value c(g(π)) = maxi(p(si) + h(si))− p(π1) and

backtrack when p(π2) + c(g(π2)) ≤ p(πbest).

Our cache is implemented as a hash table, since caching is only beneficial to the

overall search if lookup time is inconsequential. A consequence of this choice of data

structure is that cache data may sometimes be overwritten; we overwrite an old entry

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

108 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

Di

partial allocation π2, g(πi) = g(π2)

one search path: partial
allocation π1 at bin Di

best solution
given π1 or π2

Figure 6.3: Caching

Di

Dj

partial allocation π’

partial allocation π

Figure 6.4: Cache Pruning

in the cache when the search associated with the new entry examined more nodes.2

Even when we do overwrite useful data the error is not catastrophic, however: in the

worst case we must simply search a subtree that we might otherwise have pruned.

In order to reduce the cost of writing useless entries to the cache, and to reduce the

chance that useful entries will be overwritten, partial allocations are only stored in the

cache if the search tree below that point involved at least one backtrack. (Because of

the exponential character of search trees, the vast majority of nodes that are eligible

for caching will be one step away from leaf nodes, which means that caching these

nodes would give a negligible performance gain.)

We can also use the cache to prune even when we reach a new partial allocation

π2 that has never been reached before, as shown in Figure 6.4. The search path

is provably unable to lead to a new best allocation whenever g(π1) ⊂ g(π2) and

p(π2)+c(g(π1)) ≤ p(πbest). (Since our cache is implemented as a hash table, we detect

this case by checking the cache for each π1 that differs from π2 by the exclusion of

each a single good; this requires a linear number of cache lookups.) In this case, the

sum of the revenue from the cached path beyond π1 and the revenue leading up to

π2 is less than the revenue from πbest. Note that since π2 allocates a superset of the

goods allocated in π1, the goods in g(π2) \ g(π1) ∩ g(π2) are counted both in p(π2)

2We must, however, store g(π) in the hash table along with c(g(π)), so that we can detect cache
collisions.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

6.1. CASS ALGORITHM 109

and c(g(π1)), corresponding to an overestimate of revenue.3 Therefore, no allocation

better than πbest could be found by expanding the search tree below π2.

6.1.6 Good Ordering Heuristic

We must determine an ordering of the goods; that is, decide which good will cor-

respond to the first bin, which will correspond to the second, etc. For each good

i we compute scorei = numbidsi/avggoodsi, where numbidsi is the number of bids

that request good i and avggoodsi is the average number of goods requested by these

bids. We designate the lowest-order good as the good with the lowest score, then we

recalculate the score for the remaining goods and repeat. The intuition behind this

heuristic is as follows:

• We want to minimize the number of bids in low-order bins, to minimize early

branching and thus to make each individual prune more effective.

• We want to maximize the total number of goods requested by bids in low-order

bins. Taking these bids moves us more quickly towards the leaves of the search

tree, again providing the pruning function with more contextual information.

6.1.7 Bid Ordering Heuristic

Our second heuristic determines the ordering of bids within bins. We sort bids

dynamically—i.e., bids may be ordered differently when there is a different partial

allocation π. Bids are sorted in a given bin in descending order of score(bj), where

(abusing notation slightly):

score(bj) =
p(bj)

|g(bj)| + h(π ∪ bj).

The intuition behind this heuristic is that the average price per good of bj is a

measure of how promising the bid is, while the upper bound h(π∪bj) is an estimate of

3In fact, this bound can be tightened. Let G = g(π2) \ g(π1) ∩ g(π2). We can actually backtrack
whenever p(π2)+ c(g(π1))− `(π2,G) ≤ p(πbest), where `(π2,G) is a lower bound on the revenue that
could be achieved from the goods G given the allocation π. A simple implementation of `() would
be the sum of the singleton bids for each of the goods in G.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

110 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

Process dominated bids.
Determine an ordering on the goods, according to the good-ordering
heuristic.

Partition all bids into bins, according to the good ordering.
Precompute pruning information for each bin.
Set i = 1 and π = {}.
Recursive entry point:

π = π ∪ bj.
If (p(π) + c(g(π)) ≤ p(πbest)) backtrack.
If (p(π) + h(π) ≤ p(πbest)) backtrack.
If (|goods(π)| = total) update πbest if necessary; backtrack.
Set i to the index of the lowest-order good absent from π.
Dynamically order the bids in bin i, and remove bids that
conflict with π.

Recurse to the recursive entry point above.
π = π \ bj.

Return the optimal allocation: πbest.

Figure 6.5: CASS Pseudocode

how promising the unallocated units are, given the partial allocation. This heuristic

helps CASS to find good allocations quickly, improving anytime performance and also

increasing πbest, making pruning more effective. Observe that dynamic reordering of

the goods in each bin allows us to make use of an upper bound which depends on π.

6.2 CAMUS Algorithm

We now present a generalization of CASS which can solve Problem 5.3: the general

multi-unit WDP. This algorithm is termed CAMUS (Combinatorial Auction Multi-

Unit Search), and was introduced in [Leyton-Brown et al., 2000b]. We explain char-

acteristics of CAMUS that differ from CASS, and then give pseudocode for CAMUS.

In this section we make use of the following notation specific to the multi-unit case.

Let units(j) denote the total number of units of good j. Redefine the set of bids B =

{b1, . . . , bn} so that bid bi is a pair (p(bi), e(bi)), where e(bi) = (e(bi)1, e(bi)2, . . . , e(bi)m)

and e(bi)j is the number of requested units of good γj in bi. We overload the function

units to refer to allocations: given an allocation π we denote the total number of

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

6.2. CAMUS ALGORITHM 111

units allocated as units(π), and given both an allocation π and a good γi we denote

the total number of units of good γi allocated in π by unitsi(π).

6.2.1 Dominated Bids

In the multi-unit case we must handle domination in a different way than we did in

the single-unit case. We say that bid b1 dominates b2 whenever p(b1) ≥ p(b2) and

e(b1)j ≤ e(b2)j for every good j. Although b2 is never preferable to b1, it is possible

that an optimal allocation could contain both b1 and b2. For this reason we store

b2 in a secondary data structure associated with b1, and consider adding it to those

allocations which include b1.

6.2.2 Subbins

In the multi-unit setting, we will often need to select more than one bid from a

given bin. This leads to the idea of subbins . A subbin is a subset of the bids in

a bin that is constructed during the search. Since subbins are created dynamically

they cannot provide precomputed contextual information; rather, they facilitate the

efficient selection of multiple bids from a given bin. Every time we add a bid to

our partial allocation we create a new subbin containing the next set of bids to

consider. If the search moves to a new bin, the new subbin is generated from the

new bin by removing all bids that conflict with the current partial allocation. If the

search remains in the same bin, the new subbin is created from the current subbin

by removing conflicting bids as above, and additionally: if b1, b2, . . . , bi is the ordered

set of elements in the current subbin and bj is the bid that was just chosen, then we

remove all bk, k ≤ j. In this way we consider all combinations of non-conflicting bids

in each bin rather than all permutations.

6.2.3 Dynamic Programming

Singleton bids (that is, bids that name units from only one good) deserve special

attention. These bids will generally be among the most computationally expensive

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

112 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

to consider—the number of nodes to search after adding a very short bid is nearly

the same as the number of nodes to search after skipping the bid, because a short

bid allocates few units and hence conflicts with few other bids. Unfortunately, we

expect that singleton bids will be quite common in a variety of real-world multi-unit

CA’s. CAMUS simplifies the problem of singleton bids by applying a polynomial-

time dynamic programming technique as a preprocessing step. We construct a vector

singletonγ for each good γ, where each element of the vector is a set of singleton

bids naming only good γ. singletonγ(j) evaluates to the revenue-maximizing set

of singleton bids totaling j units of good γ. This frees us from having to consider

singleton bids individually; instead, we consider only elements of the singleton vector

and treat these elements as atomic bids during the search. Also, there is never a

need to add more than one element from each singleton vector. To see why, imagine

that we add both singletonγ(j) and singletonγ(k) to our partial allocation. These

two elements may have bids in common, and additionally there may be singleton bids

with more than max(j, k) elements that would not conflict with our partial allocation

but that we have not considered. Clearly, we would be better off adding the single

element singletonγ(j + k).

We now show how to construct the singleton vector. Let b1, . . . , b` be bids for a

single good γ. Our aim is to compute the optimal selection of bi’s in order to allocate

k units of good γ, for 1 ≤ k ≤ units(γ). Consider a two dimensional grid of size

[1 . . . `] × [1 . . . units(γ)] where the (i, j)-th entry, denoted by U(i, j), is the optimal

allocation of j units considering only bids b1, . . . , bi. The value of U(i, j), denoted

by V (i, j), is the sum of the price offers of the bids in U(i, j). U(1, j) will be b1 if

b1 requests no more than j units, and otherwise will be the empty set. A recursive

definition of U(i, j) is given in Figure 6.6. This dynamic programming procedure is

polynomial, and yields the desired result; the optimal allocation of k units is given

by U(`, k). Set singletonγ(k) = U(`, k), 1 ≤ k ≤ units(γ).

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

6.2. CAMUS ALGORITHM 113

e(bi) > j:
U(i, j) = U(i− 1, j);

e(bi) = j:
if p(bi) > V (i− 1, j)

then U(i, j) = bi.
Else U(i, j) = U(i− 1, j).

e(bi) < j:
if V (i− 1, j) ≥ p(bi) + V (i− 1, j − e(bi))

then U(i, j) = U(i− 1, j).
Else U(i, j) = bi ∪ U(i− 1, j − e(bi)).

Figure 6.6: Singleton Pre-processing Algorithm

Let v(j)=0
Let m(j)=0
For i = 1 to |Lσ(j)|:

if m(j) < unitsj(π) and Lσ(j)k ∩ π = ∅ then
let d := min(e(Lσ(j)i)j , units(j)−m(j))
m(j) = m(j) + d
v(j) = v(j) + a(Lσ(j)i) · d

Figure 6.7: Upper Bound Algorithm

6.2.4 Upper Bound

CAMUS’s upper bound function generalizes the CASS upper bound function de-

scribed in Section 6.1.4, considering average price per unit rather than average price

per good. Let π be the current allocation; recall that unitsi(π) denotes the number

of available units of good j. Redefine a(bi) = p(bi)
Σm

j=1e(bi)j
: the average price per unit of

bid bi. Define Lσ(j) as before. Let |Lσ(j)| denote the number of elements in Lσ(j),

and let Lσ(j)k denote the kth element of Lσ(j). v(j) is determined by the algorithm

given in Figure 6.7.

Theorem 6.2 Let B∗ = {b∗1, b∗2, . . . , b∗s} be the bids in an optimal allocation. Then,

r∗ = Σb∈B∗p(b) ≤ Σ1≤j≤mv(j).

Proof. Consider the bid b∗ ∈ B∗. Then, p(b∗) = Σ1≤j≤ma(b∗)e(b∗)j. Hence,

r∗ = Σb∈B∗p(b) = Σb∈B∗Σ1≤j≤ma(b)e(b)j. By changing the order of summation we get

that r∗ = Σ1≤j≤mΣb∈B∗a(b)e(b)j. Notice that, given a particular j, the contribution

of bid b to Σb∈B∗a(b)e(b)j is a(b)e(b)j. Recall now that v(j) has been constructed

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

114 CHAPTER 6. COMBINATORIAL AUCTION ALGORITHMS

from the set of all bids that refer to good j by choosing the maximal available units

of good j from the bids in Lσ(j), where these bids are sorted according to the average

price per unit of good. Hence, we get v(j) ≥ Σb∈B∗a(b)e(b)j. Given that the above

holds for every good j, this implies that Σ1≤j≤mv(j) ≥ Σb∈B∗p(b), as requested.

6.2.5 Heuristics

We must update our good- and bid-ordering heuristics for the multi-unit case. For

our good-ordering heuristic we compute scorei = numbidsi·units(i)
avgunitsi

, where numbidsi is

the number of bids that request good i and avgunitsi is the average number of total

units (i.e., not just units of good i) requested by these bids. The intuition here is

similar to the intuition described in Section 6.1.6:

• We want to minimize the number of bids in low-order bins, to minimize early

branching and thus to make each individual prune more effective.

• We want to minimize the number of units of goods corresponding to low-order

bins, so that we will more quickly move beyond the first few bins. As a result, the

pruning function will be able to take into account more contextual information.

• We want to maximize the total number of units requested by bids in low-order

bins. Taking these bids moves us more quickly towards the leaves of the search

tree, again providing the pruning function with more contextual information.

Given current partial allocation π, we sort bids in a given bin in descending order

of score(bj), where score(bj) =
p(bj)

units(bj)
+ h(π ∪ bj), which is a direct generalization of

the heuristic discussed in Section 6.1.7.

6.3 Conclusions

We have presented CASS and CAMUS, algorithms that solve the single-unit and

multi-unit WDPs respectively. In the next chapter, we discuss test data for evaluating

such algorithms. We go on to evaluate CASS using this data in Chapter 8.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

6.3. CONCLUSIONS 115

Process dominated bids.
Determine an ordering on the goods, according to the good-ordering
heuristic.

Using the dynamic programming technique, determine the optimal
combination of singleton bids totaling 1 . . . units(j) for each good
j.

Partition all non-singleton bids into bins, according to the good
ordering.

Precompute pruning information for each bin.
Set i = 1 and π = {}.
Recursive entry point:

For j = 1 ...number of bids in the current subbin of
bini.

π = π ∪ bj.
If (p(π) + c(g(π)) ≤ p(πbest)) backtrack.
If (p(π) + h(π) ≤ p(πbest)) backtrack.
If (units(π) =

∑
γ∈G units(γ)) record π if it is the best;

backtrack.
Set i to the index of the lowest-order good in π where
unitsi(π) < units(i). (i may or may not change)

Construct a new subbin based on the previous subbin of bini

(which is bini itself if i changed above):
Include all bk from current subbin, where k > j.
Include all dominated bids associated with bj.
Include singletoni(units(i)− unitsi(π)).
Sort the subbin according to the subbin-ordering
heuristic.

Recurse to the recursive entry point, above, and search
this new subbin.

π = π \ bj.
End For

Return the optimal allocation: πbest.

Figure 6.8: CAMUS Pseudocode

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

Chapter 8

Evaluating Combinatorial Auction

Algorithms

This chapter presents experimental results for CASS.1 First, scaling experiments

demonstrate that CASS can scale exponentially in the number of goods, but appears

to scale subexponentially in the number of bids. Second, CASS’s anytime perfor-

mance is examined: CASS can find nearly-optimal solutions orders of magnitude

sooner than it terminates, and can spend considerable time proving optimality after

finding the optimal solution. Third, CASS is contrasted with the Bidtree algorithm,

another widely-cited WDP algorithm. Finally, CASS is contrasted with the latest

version of ILOG’s CPLEX software.

8.1 Original CASS Experiments

All the experiments in this section were run a 450MHz Pentium II with 256MB of

RAM running Windows NT 4.0. CASS was implemented in ANSI C++, and is

publicly available. While these experiments were run on older hardware, they are

still useful for gaining an understanding of the algorithm. They examine all legacy

1We do not present experimental results for CAMUS here, since Chapter 7 focused on single-unit
distributions, and Chapter 9 will go on to consider only the single-unit WDP. For an experimental
evaluation of CAMUS, please see [Leyton-Brown et al., 2000b].

145

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

146 CHAPTER 8. EVALUATING CA ALGORITHMS

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Bids (Exponentially Distributed)

Ru
nn

ing
 ti

me
 (m

ed
ian

 ov
er

20
 ru

ns
, s

eco
nd

s)

30 goods 40 goods 50 goods 60 goods 70 goods

Figure 8.1: CASS Scaling: L6

0.1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids (Binomially Distributed)

Ru
nn

ing
 ti

me
 (m

ed
ian

 ov
er

20
 ru

ns
, s

eco
nd

s)

200 goods 300 goods 400 goods 500 goods

Figure 8.2: CASS Scaling: L7

distributions discussed in Section 7.3.7 except for L5 and L8.

8.1.1 Scaling Performance

The experiments in this section help us to understand CASS’s performance as the

number of bids2 and goods is varied. Figures 8.1 and 8.2 show CASS’s performance

on the L6 and L7 distributions. Observe that for L6 runtime appears to scale expo-

nentially in the number of goods (the four plots, representing linear increases in the

number of goods, are spaced roughly equally on the log plot); for L7 runtime appears

to scale sub-exponentially in the number of goods. For both L6 and L7 runtime

clearly scales polynomially in the number of bids, as all the curves are sublinear on a

linear axis.

8.1.2 Anytime Performance

Figure 8.3 shows CASS’s anytime performance. Observe that the time it takes CASS

to find the optimal solution is nearly of an order of magnitude smaller than the time

at which it terminates: this is because proving optimality occupies most of the search.

(Contrast this behavior with other optimization algorithms such as A∗, which never

finds the optimal solution before optimality is proven.) Also observe that the time it

2Unlike the data in Section 8.2 and in later chapters, the experiments in this section consider
raw numbers of bids rather than numbers of undominated bids.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

8.1. ORIGINAL CASS EXPERIMENTS 147

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Bids (Always 60 Goods, Exponentially Distributed)

El
ap

sed
 ti

me
 (m

ed
ian

 ov
er

20
 ru

ns
, s

eco
nd

s)

0.8 0.9 0.95 0.96 0.97 0.98 0.99 1 Completed

Figure 8.3: CASS Anytime Performance: L6

takes CASS to finds a solution within 99% of optimality is usually much smaller—as

much as two orders of magnitude. This means that CASS can be very useful as an

anytime algorithm even in situations where it does not terminate in a reasonable

amount of time. Of course, however, there is no theoretical guarantee that CASS will

always find a solution that is close to optimal.

8.1.3 CASS vs. Bidtree

Besides CASS, Bidtree is the other special-purpose WDP algorithm that has been

most widely studied and cited in the literature. It was presented in the same con-

ference proceedings as CASS [Sandholm, 1999]. The Bidtree algorithm is similar to

CASS in several ways, but important differences hold. In particular, Bidtree per-

forms a secondary depth-first search to identify non-conflicting bids, whereas CASS’s

structured approach provides context to the upper bound function as well as allowing

it to avoid considering most conflicting bids. Bidtree also performs no caching or

cache pruning. On the other hand, Bidtree uses an IDA∗ search strategy rather than

CASS’s branch-and-bound approach, and does more preprocessing.

Figures 8.4, 8.5, 8.6 and 8.7 contrast CASS and Bidtree’s performance on the L1,

L2, L3 and L4 distributions respectively. The Bidtree algorithm has never been made

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

148 CHAPTER 8. EVALUATING CA ALGORITHMS

0.1

1

10

100

1000

10000

500 750 1000
Number of Bids (Random Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve

r 2
0 r

un
s,

sec
on

ds
)

CASS - 100 goods CASS - 200 goods CASS - 300 goods CASS - 400 goods
BidTree - 100 goods BidTree - 200 goods BidTree - 300 goods BidTree - 400 goods

Figure 8.4: CASS vs. Bidtree: L1

0.1

1

10

100

1000

10000

500 1000 1500 2000
Number of Bids (Weighted Random Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve

r 2
0 r

un
s,

sec
on

ds
)

CASS - 100 goods CASS - 200 goods CASS - 300 goods CASS - 400 goods
BidTree - 100 goods Bidtree - 200 goods BidTree - 300 goods BidTree - 400 goods

Figure 8.5: CASS vs. Bidtree: L2

0.001

0.01

0.1

1

10

100

1000

10000

100000

50 100 150
Number of Bids (Uniform Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve

r 2
0 r

un
s,

sec
on

ds
)

CASS - 25 goods CASS - 50 goods CASS - 75 goods CASS - 100 goods
BidTree - 25 goods BidTree - 50 goods BidTree - 75 goods BidTree - 100 goods

Figure 8.6: CASS vs. Bidtree: L3

0.001

0.01

0.1

1

10

100

1000

10000

50 100 150 200
Number of Bids (Decay Distribution)

Ru
nn

ing
 ti

me
 (a

ve
rag

e o
ve

r 2
0 r

un
s,

sec

on
ds

)

CASS - 50 goods CASS - 100 goods CASS - 150 goods CASS - 200 goods
BidTree - 50 goods BidTree - 100 goods BidTree - 150 goods BidTree - 200 goods

Figure 8.7: CASS vs. Bidtree: L4

publicly available; Bidtree performance for these figures was taken from [Sandholm,

1999]. It is therefore impossible to rerun these experiments on other distributions or

varying the number of nondominated bids instead of the number of raw bids. Observe

that overall, CASS dramatically outperforms Bidtree: CASS is between 2 and 500

times faster than Bidtree on the data points shown here, and is never slower.

8.2 CASS vs. CPLEX

When CASS and Bidtree were proposed, ILOG’s CPLEX 5 mixed integer program-

ming package (the industry standard) was unable to solve most WDP problems within

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

8.2. CASS VS. CPLEX 149

a reasonable amount of time. Since that time, however, CPLEX’s mixed integer pro-

gramming module improved substantially with version 6 (released 2000), and sub-

stantially again with version 7 (released 2001). Now that CPLEX is in version 8,

there has been general convergence in the research community towards using CPLEX

as the default approach for solving the WDP.

The only ongoing effort at competition with CPLEX has come from the authors of

Bidtree, who have written an updated algorithm called CABOB which they claim is

much faster [Sandholm et al., 2001]. However, like Bidtree, CABOB is not available to

researchers. This is a serious impediment because published runtime data for CABOB

is insufficient for our purposes: from this point forward we analyze algorithms in

more detail than simply comparing average or median running times. In any case,

CABOB’s reported performance is similar to CPLEX’s, and CABOB is also similar

to CPLEX in its construction: it makes use of CPLEX’s linear programming package

as a subroutine and uses a similar search strategy. For these reasons, we present no

experiments with CABOB.

In this section we compare the performance of CASS and CPLEX 8.0. These

experiments were run on a cluster of 12 dual 2.4 Ghz Xeon machines with 1 GB

RAM running Redhat Linux. We tested on 10 of the distributions provided by the

CATS suite: all those distributions capable of generating an arbitrary number of

nondominated bids. Specifically, we used all five of the CATS distributions (paths,

regions, arbitrary, matching, scheduling) as well as five of the legacy distributions (L2,

L3, L4, L6, L7). We sampled each of the distributions’ parameters from a hand-chosen

range of “reasonable” parameters as described in Section 7.4.2. We also sampled the

problem size parameters: number of goods was chosen uniformly from [40, 400] and

number of nondominated bids was chosen uniformly from [50, 2000]. The full dataset

had roughly 100 data points per distribution for a total of about 1000 data points,

and took nearly 8 months of CPU time to collect. In order to increase the number of

data points we were able to collect during this time, we capped CASS’s runtime at

12 hours.

Figure 8.8 shows the mean runtime of CASS and CPLEX on each distribution.

Note that the vertical axis uses a logarithmic scale so that all the bars can be seen on

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

150 CHAPTER 8. EVALUATING CA ALGORITHMS

0.01

0.1

1

10

100

1000

10000

100000

L 2 L 3 L 4 L 6 L 7
P a t

h s
R e g

i o n
s

A r b
i t r a

r y

M a
t c h

i n g

S c h
e d u

l i n g

CASS CPLEX

Figure 8.8: CASS vs. CPLEX: mean runtime per distribution

0.01
0.1
1

10
100

1000
10000

100000
1000000

L 2 L 3 L 4 L 6 L 7
P a t

h s
R e g

i o n
s

A r b
i t r a

r y

M a
t c h

i n g

S c h
e d u

l i n g

CASS CPLEX

Figure 8.9: CASS vs. CPLEX: first, second and third quartiles

the same graph. Judging from this picture CPLEX seems to be a better choice than

CASS most of the time. Exceptions are L3 and L7, where CASS does much better

than CPLEX, and L2 where the difference is less pronounced.

Average performance can be overwhelmed by a relatively small fraction of runs

that take a very long time. To learn more about how CASS and CPLEX 8.0 compare,

we can graph medians instead of means. Figure 8.9 shows medians for each distribu-

tion; the error bars indicate first and third quartiles (of course, median is the second

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

8.3. CONCLUSIONS 151

quartile). We can see several things from this graph. First, on the whole CPLEX

still appears to be much faster than CASS. Note L3: while CASS had better average

performance on this distribution, CPLEX has better median performance. On L7

CASS’s advantage is now shown to be much larger, with the two algorithms’ error

bars not even overlapping. On this distribution it does seem that a small number of

very hard instances skewed CASS’s average upwards; the same is true for CASS on

L4 and scheduling, and for CPLEX on L4, L7, regions and arbitrary. Overall, we can

see from the error bars that most distributions exhibit substantial runtime variation.

In Figure 8.9 it is also the case that the error bars often overlap. This raises the

question of the extent to which the algorithms’ runtimes are uncorrelated. If this

level is high then there could be great benefit to running both CASS and CPLEX

in parallel (or in choosing between the algorithms in a more sophisticated way: see

Chapter 10). To investigate the level of correlation between CASS and CPLEX on a

per-instance basis, we plotted the algorithms’ runtimes on separate axes of a scatter

plot in Figure 8.10. For 5% of the instances, CASS and CPLEX had the same running

time within two significant digits, and on 6% of the instances both CASS and CPLEX

took longer than CASS’s cap time of 12 hours, making it impossible to compare the

algorithms. As we expected given its much better running times in Figures 8.8 and 8.9,

CPLEX outperformed CASS a large fraction of the time (67%). The surprise is that

there remained a substantial fraction (22%) of instances on which CASS outperforms

CPLEX; on many instances the performance difference was very significant.

8.3 Conclusions

This chapter detailed experimental investigations of the CASS algorithm’s perfor-

mance. First, it was shown to have good anytime performance, finding good solu-

tions almost immediately and finding an optimal solution long before optimality is

proven. Second, it was compared to Sandholm’s Bidtree algorithm, which it consis-

tently and significantly outperformed. Finally, it was compared to a more modern

algorithm, ILOG’s CPLEX 8.0. On most (but not all) test distributions, CPLEX

exhibited considerably better performance. However, a more careful analysis showed

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

152 CHAPTER 8. EVALUATING CA ALGORITHMS

0.
010.
111010
0

10
00

10
00

0

10
00

00

0.
01

0.
1

1
10

10
0

10
00

10
00
0

10
00

00
CP

LE
X

 T
im

e

CASS Time

L2
L3

L4
L6

L7
Pa

ths
Re

gio
ns

Ar
bit

rar
y

Ma
tch

ing
Sc

he
du

lin
g

CA
SS

 is
 fa

st
er

(22
%

of
ins

tan
ces

)

CP
LE

X
is

fa
st

er

(67
%

of
ins

tan
ces

)

CA
SS

 cu
t o

ff a
t 1

2 h
ou

rs
 (4

2%
 of

 in
sta

nce
s)

No
tes

:
CA

SS
 an

d C
PL

EX
ha

d e
qu

al
run

tim
es

on
 5%

 of
 in

sta
nce

s
CA

SS
 an

d C
PL

EX

bo
th

exc
eed

ed
12h

rs
on

 6%
 of

 in
sta

nce
s

Figure 8.10: CASS vs. CPLEX: Scatter Plot

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

8.3. CONCLUSIONS 153

that the two algorithms’ performance was often uncorrelated, and that there were

a substantial fraction of these instances on which CASS dramatically outperformed

CPLEX. In Chapter 10 we will revisit this uncorrelation between CASS and CPLEX

and explore ways of leveraging it to build a better WDP algorithm. First, however,

we will study ways of explaining why an algorithm (such as CPLEX) shows so much

runtime variation on similar problems.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

Bibliography

Achlioptas, D., Gomes, C. P., Kautz, H. A., & Selman, B. (2000). Generating satis-

fiable problem instances. AAAI.

Anderson, A., Tenhunen, M., & Ygge, F. (2000). Integer programming for combina-

torial auction winner determination. ICMAS (pp. 39–46).

Ausubel, L., Cramption, P., McAfee, R., & McMillan, J. (1997). Synergies in wireless

telephony: Evidence from the broadband PCS auctions. Journal of Economics and

Management Strategy, 6(3), 497–527.

Banks, J., Ledyard, J., & Porter, D. (1989). Allocating uncertain and unresponsive

resources: An experimental approach. RAND Journal of Economics, 20, 1–23.

Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T., &

Szafron, D. (2003). Approximating game-theoretic optimal strategies for full-scale

poker. IJCAI.

Blair, D. (1998). Impact of the Internet on core switching network. Proc. of ENPW’98.

Les Arcs, France.

Blum, B., Shelton, C., & Koller, D. (2003). A continuation method for Nash equilibria

in structured games. IJCAI.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision pro-

cesses. Theoretical Aspects of Rationality and Knowledge (pp. 195–201).

Boutilier, C., Goldszmidt, M., & Sabata, B. (1999). Sequential auctions for the

allocation of resources with complementarities. IJCAI.

188

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

BIBLIOGRAPHY 189

Brewer, P., & Plott, C. (1996). A binary conflict ascending price (BICAP) mechanism

for the decentralized allocation of the right to use railroad tracks. International

Journal of Industrial Organization, 14, 857–886.

Bykowsky, M., Cull, R., & Ledyard, J. (1995). Mutually destructive bidding: The

FCC auction design problem (Technical Report Social Science Working Paper 916).

California Institute of Technology, Pasadena.

CATS Website (2000). http://robotics.stanford.edu/CATS.

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the Really Hard

Problems Are. IJCAI-91.

Conitzer, V., & Sandholm, T. (2002). Complexity Results about Nash Equilibria

(Technical Report CM-CS-02-135). CMU.

Cramton, P., & Palfrey, T. (1990). Cartel enforcement with uncertainty about costs.

International Economic Review, 31(1), 17–47.

Crawford, V., & Sobel, J. (1982). Strategic information transmission. Econometrica,

50(6), 1431–1451.

de Vries, S., & Vohra, R. (2003). Combinatorial auctions: A survey. INFORMS

Journal on Computing, 15(3).

DeMartini, C., Kwasnica, A., Ledyard, J., & Porter, D. (1998). A new and improved

design for multi-object iterative auctions (Technical Report Social Science Working

Paper 1054). California Institute of Technology, Pasadena.

Demers, A., Keshav, S., & Shenker, S. (1990). Analysis and simulation of a fair

queuing algorithm. Journal of internetworking research and experience, 3–26.

Doucet, A., de Freitas, N., & (ed.), N. G. (2001). Sequential monte carlo methods in

practice. Springer-Verlag.

Feinstein, J., Block, M., & Nold, F. (1985). Asymmetric behavior and collusive

behavior in auction markets. American Economic Review, 75(3), 441–460.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

190 BIBLIOGRAPHY

Floyd, S. (1994). TCP and explicit congestion notification. ACM Computer Commu-

nication Review, 24(5), 10–23.

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics,

19.

Fudenberg, D., & Tirole, J. (1991). Game theory. MIT Press.

Fujishima, Y., Leyton-Brown, K., & Shoham, Y. (1999). Taming the computational

complexity of combinatorial auctions: Optimal and approximate approaches. IJ-

CAI.

Gibbens, R., & Kelly, F. (1999). Resource pricing and the evolution of congestion

control. Automatica, 35, 1969–1985.

Gibbens, R., & Key, P. (1999). The use of games to assess user strategies for dif-

ferential quality of service in the internet (Technical Report). Microsoft Research,

Cambridge.

Gomes, C., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126(1-

2), 43–62.

Gomes, C. P., & Selman, B. (1997). Problem structure in the presence of perturba-

tions. AAAI/IAAI.

Gonen, R., & Lehmann, D. (2000). Optimal solutions for multi-unit combinatorial

auctions: Branch and bound heuristics. ACM Conference on Electronic Commerce.

Gonen, R., & Lehmann, D. (2001). Linear programming helps solving large multi-unit

combinatorial auctions (Technical Report TR-2001-8). Leibniz Center for Research

in Computer Science.

Graham, D., & Marshall, R. (1987). Collusive bidder behavior at single-object second-

price and English auctions. Journal of Political Economy, 95, 579–599.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

BIBLIOGRAPHY 191

Graham, D., Marshall, R., & Richard, J.-F. (1990). Differential payments within a

bidder coalition and the Shapley value. American Economic Review, 80(3), 493–510.

Grether, D., Isaac, R. M., & Plott, C. (1989). The allocation of scarce resources:

Experimental economics and the problem of allocating airport slots. Boulder, CO:

Westview Press.

Guestrin, C. E., Koller, D., & Parr, R. (2001). Multiagent planning with factored

MDPs. 14th Neural Information Processing Systems (NIPS-14) (pp. 1523–1530).

Vancouver, Canada.

Harstad, R., Kagel, J., & Levin, D. (1990). Equilibrium bid functions for auctions

with an uncertain number of bidders. Economic Letters, 33(1), 35–40.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). Elements of statistical learning.

Springer.

Hendricks, K., & Porter, R. (1989). Collusion in auctions. Annales d’Économie et de

Statistique, 15/16, 216–229.

Holte, R. C. (2001). Combinatorial auctions, knapsack problems, and hill-climbing

search. Canadian Conference on AI.

Hoos, H., & Boutilier, C. (2000). Solving combinatorial auctions using stochastic

local search. The 17th national conference on artificial intelligence (pp. 22–29).

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., & Chickering, M. (2001).

A Bayesian approach to tackling hard computational problems. UAI.

Hotelling, H. (1929). Stability in competition. Economic Journal, 39, 41–57.

Kastner, R., Hsieh, C., Potkonjak, M., & Sarrafzadeh, M. (2002). On the sensitivity of

incremental algorithms for combinatorial auctions. UCLA CS Tech. Report 020000.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory.

UAI.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

192 BIBLIOGRAPHY

Kearns, M., & Mansour, Y. (2002). Efficient nash computation in large population

games with bounded influence. UAI.

Key, P., & McAuley, D. (1999). Differential QoS and pricing in networks: Where flow

control meets game theory. IEE Proc Software 146..

Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial

Intelligence Journal, special issue on relevance, 97(1–2), 273–324.

Koller, D., & Milch, B. (2001). Multi-agent influence diagrams for representing and

solving games. IJCAI.

Korf, R., & Reid, M. (1998). Complexity analysis of admissible heuristic search.

AAAI-98.

Lagoudakis, M., & Littman, M. (2000). Algorithm selection using reinforcement

learning. ICML.

Lagoudakis, M., & Littman, M. (2001). Learning to select branching rules in the

DPLL procedure for satisfiability. LICS/SAT.

Ledyard, J., & Szakaly, K. (1994). Designing organizations for trading pollution

rights. Journal of Economic Behavior and Organization, 25, 167–196.

Ledyard, J. O., Porter, D., & Rangel, A. (1997). Experiments testing multiobject

allocation mechanisms. Journal of Economics & Management Strategy, 6(3), 639–

675.

Lehmann, D., O’Callaghan, L., & Shoham, Y. (1999). Truth revalation in rapid, ap-

proximately efficient combinatorial auctions. ACM Conference on Electronic Com-

merce.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003a).

Boosting as a metaphor for algorithm design. Constraint Programming.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003b).

A portfolio approach to algorithm selection. IJCAI.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

BIBLIOGRAPHY 193

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002a). Learning the empirical

hardness of optimization problems: The case of combinatorial auctions. CP.

Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000a). Towards a universal test

suite for combinatorial auction algorithms. ACM EC.

Leyton-Brown, K., Porter, R., Venkataraman, S., & Prabhakar, B. (2001). Smoothing

out focused demand for network resources (short paper). ACM Conference on

Electronic Commerce.

Leyton-Brown, K., Porter, R., Venkataraman, S., Prabhakar, B., & Shoham, Y.

(2003c). Incentive mechanisms for smoothing out a focused demand for network

resources. Computer Communications, 26, 237–250.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000b). An algorithm for multi-

unit combinatorial auctions. Proceedings of AAAI-00.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000c). Bidding clubs: institu-

tionalized collusion in auctions. ACM Conference on Electronic Commerce.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2002b). Bidding clubs in first-

price auctions. The 19th National Conference on Artificial Intelligence.

Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effect games. IJCAI.

Lobjois, L., & Lemâıtre, M. (1998). Branch and bound algorithm selection by per-

formance prediction. AAAI.

MacKie-Mason, J., & Varian, H. (1994). Pricing the internet. In B. Kahin and

J. Keller (Eds.), Public access to the internet. Prentice-Hall.

Mailath, G., & Zemsky, P. (1991). Collusion in second-price auctions with heteroge-

neous bidders. Games and Economic Behavior, 3, 467–486.

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New

York: Oxford University Press.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

194 BIBLIOGRAPHY

McAfee, R., & McMillan, J. (1987). Auctions with a stochastic number of bidders.

Journal of Economic Theory, 43, 1–19.

McAfee, R., & McMillan, J. (1992). Bidding rings. American Economic Review, 82,

579–599.

Milgrom, P. (1998). Putting auction theory to work: The simultaneous ascending

auction. Technical Report 98-0002, Department of Economics, Stanford University.

Mitchell, B. (1978). Pricing policies in selected European telephone systems. Pro-

ceedings of 6th Conference on Telecommunications Policy Research (pp. 437–475).

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., & Troyansky, L. (1998). De-

termining computational complexity for characteristic ’phase transitions’. Nature,

400.

Monderer, D., & Shapley, L. (1996). Potential games. Games and Economic Behavior,

14, 124–143.

Monderer, D., & Tennenholtz, M. (2000). Optimal Auctions Revisited. Artificial

Intelligence, 120(1), 29–42.

Mura, P. L. (2000). Game networks. UAI.

Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences of the United States of America, 36, 48–49.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization.

New York, NY: Wiley.

Nisan, N. (2000). Bidding and allocation in combinatorial auctions. ACM Conference

on Electronic Commerce.

Nisan, N., & Ronen, A. (2000). Computationally feasible VCG mechanisms. ACM

Conference on Electronic Commerce.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

BIBLIOGRAPHY 195

Odlyzko, A. (1997). A modest proposal for preventing internet congestion (Technical

Report TR 97.35.1). AT&T Research.

Osborne, M., & Pitchik, C. (1987). Equilibrium in Hotelling’s model of competition.

Econometrica, 55, 911–922.

Osborne, M., & Rubinstein, A. (1994). A course in game theory. MIT Press.

Pan, R., Breslau, L., Prabhakar, B., & Shenker, S. (2001). Approximate fairness

through differential dropping. Submitted.

Pan, R., Prabhakar, B., & Psounis, K. (2000). CHOKe: A stateless active queue

management scheme for approximating fair bandwidth allocation. Proceedings of

IEEE INFOCOM 2000 (pp. 942–951).

Parkes, D. C. (1999). iBundle: An efficient ascending price bundle auction. ACM

Conference on Electronic Commerce.

Plott, C., & Cason, T. (1996). EPA’s new emissions trading mechanism: A laboratory

evaluation. Journal of Environmental Economics and Management, 30, 133–160.

Quan, D. (1994). Real estate auctions: A survey of theory and practice. Journal of

Real Estate Finance and Economics, 9, 23–49.

Rassenti, S., Reynolds, S., & Smith, V. (1994). Cotenancy and competition in an

experimental auction market for natural gas pipeline networks. Economic Theory,

4, 41–65.

Rassenti, S., Smith, V., & Bulfin, R. (1982). A combinatorial auction mechanism for

airport time slot allocation. Bell Journal of Economics, 13, 402–417.

Reeves, D., & Wellman, M. (2003). Computing equilibrium strategies in infinite

games of incomplete information. Fifth Workshop on Game Theoretic and Decision

Theoretic Agents at the 2nd Conference on Autonomous Agents and Multi-Agent

Systems.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

196 BIBLIOGRAPHY

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15,

65–118.

Riley, J., & Samuelson, W. (1981). Optimal auctions. American Economic Review,

71, 381–392.

Robinson, M. (1985). Collusion and the choice of auction. Rand Journal of Economics,

16(1), 141–145.

Rosenthal, R. (1973). A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory, 2, 65–67.

Rothkopf, M., Pekeč, A., & Harstad, R. (1998). Computationally manageable com-

binatorial auctions. Management Science, 44(8), 1131–1147.

Roughgarden, T., & Tardos, E. (2001). Bounding the inefficiency of equilibria in

nonatomic congestion games (Technical Report TR2002-1866). Cornell, Ithaca.

Ruan, Y., Horvitz, E., & Kautz, H. (2002). Restart policies with dependence among

runs: A dynamic programming approach. CP.

S. H. Clearwater, e. (1996). Market-based control: A paradigm for distributed resource

allocation. World Scientific.

Sandholm, T. (1999). An algorithm for optimal winner determination in combinatorial

auctions. IJCAI-99.

Sandholm, T., & Suri, S. (2000). Improved algorithms for optimal winner determi-

nation in combinatorial auctions and generalizations. AAAI-00.

Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2001). CABOB: A fast optimal

algorithm for combinatorial auctions. IJCAI.

Sanholm, T. (1993). An implementation of the contract net protocol based on

marginal cost calculations. Proceedings of AAAI-93 (pp. 256–262).

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

BIBLIOGRAPHY 197

Schuurmans, D., Southey, F., & Holte, R. C. (2001). The exponentiated subgradient

algorithm for heuristic boolean programming. IJCAI-01.

Selman, B., Mitchell, D. G., & Levesque, H. J. (1996). Generating hard satisfiability

problems. Artificial Intelligence, 81(1-2), 17–29.

Shenker, S. (1995). Making greed work in networks: A game-theoretic analysis of

switch service disciplines. IEEE/ACM Transactions on Networking, 3, 819–831.

Slaney, J., & Walsh, T. (2001). Backbones in optimization and approximation. IJCAI-

01.

Songhurst, D., Stamoulis, G., & Stoer, M. (1999). Usage-based charging using ef-

fective bandwidths: studies and reality. Proceedings of the International Teletraffic

Congress, ITC-16.

Tennenholtz, M. (2000). Some tractable combinatorial auctions. Proceedings of

AAAI-2000.

Varian, H. R. (1995). Economic mechanism design for computerized agents. Proceed-

ings of the First Usenix Conference on Electronic Commerce.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms for solving graphical games.

AAAI.

von Ungern-Sternberg, T. (1988). Cartel stability in sealed bid second price auctions.

The Journal of Industrial Economics, 18(3), 351–358.

Wellman, M. (1993). A market-oriented programming environment and its application

to distributed multicommodity flow problems. Journal of Artificial Intelligence

Research, 1, 1–23.

Wellman, M., Greenwald, A., Stone, P., & Wurman, P. (2003). The 2001 trading

agent competition. Electronic Markets, 13(1).

Wellman, M., Wurman, P., Walsh, W., & MacKie-Mason, J. (1998). Auction protocols

for distributed scheduling. Games and Economic Behavior.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

198 BIBLIOGRAPHY

Zhang, W. (1999). State-space search: Algorithms, complexity, extensions, and appli-

cations. Springer.

Zurel, E., & Nisan, N. (2000). An efficient approximate allocation algorithm for

combinatorial auctions. ACM Conference on Electronic Commerce.

This is an unpublished excerpt from Kevin Leyton-Brown's Ph.D. thesis.

The full thesis is available online at http://www.cs.ubc.ca/~kevinlb

