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Abstract

There is much active research into the design of automated bidding
agents, particularly for environments that involve multiple decoupled auc-
tions. These settings are complex partly because an agent’s strategy de-
pends on information about other bidders’ interests. When bidders’ val-
uation distributions are not known ex ante, machine learning techniques
can be used to approximate them from historical data. It is a character-
istic feature of auctions, however, that information about some bidders’
valuations is systematically concealed. This occurs in the sense that some
bidders may fail to bid at all because the asking price exceeds their valu-
ations, and also in the sense that a high bidder may not be compelled to
reveal his valuation. Ignoring these “hidden bids” can introduce bias into
the estimation of valuation distributions. To overcome this problem, we
propose an EM-based algorithm. We validate the algorithm experimen-
tally using both synthetic and real-world (eBay) datasets, and show that
our approach estimates bidders’ valuation distributions and the distribu-
tion over the true number of bidders significantly more accurately than
more straightforward density estimation techniques.

1 Introduction

There has been much research on the study of automated bidding agents for auc-
tions and other market-based environments. The Trading Agent Competitions
(TAC) and the TAC Supply Chain Management competitions (TAC-SCM) have
attracted much interest [14]. There have also been research efforts on bidding
agents and bidding strategies in other auction environments [5, 4, 7, 3, 6, 2].
Although this body of work considers many different auction environments, bid-
ding agents always face a similar task: given a valuation function, the bidding
agent needs to compute an optimal bidding strategy that maximizes expected
surplus. (Some environments such as TAC-SCM also require agents to solve
additional, e.g., scheduling tasks.)

The “Wilson Doctrine” in mechanism design argues that mechanisms should
be constructed so that they are “detail-free”—that is, so that agents can behave
rationally in these mechanisms even without information about the distribution
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of other agents’ valuations. For example, under the VCG mechanism it is a
weakly dominant strategy to bid exactly one’s valuation, regardless of other
agents’ beliefs, valuations or actions. Under common assumptions (in partic-
ular, independent private values) single-item English auctions are similar: an
agent should remain in the auction until the bidding reaches the amount of his
valuation.

While detail-free mechanisms are desirable, however, they are not ubiquitous.
Very often, agents are faced with the problem of deciding how to behave in
games that do not have dominant strategies and where other agents’ payoffs are
strategically relevant. For example, we may want to participate in a series of
auctions run by different sellers at different times.

1.1 Game-Theoretic and Decision-Theoretic Approaches

Depending on the assumptions we choose to make about other bidders, two ap-
proaches to computing bidding strategies suggest themselves: a game theoretic
approach and a decision theoretic approach. The game theoretic approach as-
sumes that all agents are perfectly rational and that this rationality is common
knowledge; the auction is modeled as a Bayesian game (see, e.g., the survey in
[8]). Under this approach, a bidding agent would compute a Bayes-Nash equi-
librium of the auction game, and play the equilibrium bidding strategy. For
example, for environments with multiple, sequential auctions for identical items
and in which each bidder wants only a single item, Milgrom and Weber [9, 13]
identified Bayes-Nash equilibria. Such equilibria very often depend on the dis-
tribution of agents’ valuation functions and the number of bidders. Although
this information is rarely available in practice, it is usually possible to estimate
these distributions from the bidding history of previous auctions of similar items.
Note that this involves making the assumption that past and future bidders will
share the same valuation distribution.

The game-theoretic approach has received a great deal of study, an is perhaps
the dominant paradigm in microeconomics. In particular, there are very good
reasons for seeking strategy profiles that are resistant to unilateral deviation.
However, this approach is not always useful to agents needing to decide what
to do in a particular setting, especially when the rationality of other bidders is
in doubt, when the computation of equilibria is intractable, or when the game
has multiple equilibria. In such settings, it may be more appropriate to rely on
decision theory. A decision theoretic approach treats other bidders as part of the
environment, and ignores the possibility that they may change their behavior
in response to the agent’s actions. As above, we again make the assumption
that the other bidders come from a population that exhibit stationary bidding
behavior; however, this time we model agents’ bid amounts directly, rather
than modeling their valuations and then applying an equilibrium strategy. We
then solve the resulting single-agent decision problem to find a bidding strategy
that maximizes expected payoff. We could also use a reinforcement-learning
approach, where we continue to learn the bidding behavior of other bidders
while participating in the auctions.

This paper does not attempt to choose between these two approaches; it is
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our opinion that each has domains for which it is the most appropriate. The
important point is that regardless of which approach we elect to take, we are
faced with the subproblem of estimating two distributions from the bidding
history of past auctions: the distribution on the number of bidders, and the
distribution of bid amounts (for decision theoretic approaches) or of valuations
(for game theoretic approaches).

1.2 Hidden Bids

It might seem that there is very little left to say on this topic: we learn the dis-
tributions of interest from historical data and then compute a bidding strategy
based on that information for the current auction. However, bidding histories
often systematically omit relevant information. For example, in sealed bid auc-
tions, the auctioneer may choose not to reveal the bid amounts except the price
the winner pays. An English auction is stopped when there is only one active
bidder left (i.e., when the second-highest bidder drops out), meaning that the
valuation of the highest bidder is not revealed. How can we learn valuation
distributions when the data available to us is biased in this way?

For concreteness, in this paper we focus on a single domain; however, our
techniques are broadly applicable. Here we consider sequential English auctions
in which a full bidding history is revealed, such as the online auctions run by
eBay. We are thus concerned with two kinds of missing information. First, some
bidders may come to the auction when it is already in progress, find that the
current price already exceeds their valuation, and leave without placing a bid.
Second, the amount the winner was willing to pay is never revealed.

Ignoring these sources of bias would lead to poor estimates of the underlying
valuation distribution. We propose a novel learning approach based on the Ex-
pectation Maximization (EM) algorithm, which iteratively generates hidden bids
consistent with the observed bids, and then computes maximum-likelihood esti-
mations of the valuation distribution based on the completed set of bids. Con-
sidering both synthetic data (in which true valuation distributions are known)
and real-world data from eBay, we show that our approach outperforms more
straightforward distribution estimation techniques which do not attempt to ac-
count for this missing data.

The rest of the paper is organized as follows. Section 2 introduces our auction
setting and describes our generative probabilistic model for the bidding process.
Section 3 focuses on the estimation problem, and describes our EM learning
approach. Section 4 discusses the computation of the optimal strategy under
the decision theoretic approach. In Section 5 we present experimental results on
synthetic data sets as well as on data collected from eBay, which show that our
EM learning approach makes better estimates of the distributions, and gets more
payoff under the decision theoretic model, as compared to the straightforward
approach which ignores hidden bids.

2 A Model of the Bidding Process of Online Auctions

Online auctions present unique challenges to agents trying to estimate the un-
derlying valuation distributions, because we do not get to observe the true
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number of potential bidders, instead we only see the bidders that has decided
to make a bid; whereas in an auction house environment, we could estimate the
number of potential bidders by the number of people present at the auction.
Most online auctions nowadays are English auctions, which are ascending-price
auctions during which bidders raise the current price level until only one bidder
is willing to pay the current price for the item.

In this paper we analyze online English auctions as implemented by eBay.
Other auction sites’ rules are similar to eBay’s. One common feature of online
auction sites including eBay is the proxy bidding system, which allows bidders
to enter their maximum willingness to pay as proxy bids. The proxy bidding
system will then make the bids automatically for the bidder, up to the specified
amount of the proxy bid1. Each eBay auction has a fixed closing time; when
the auction closes, the highest bidder is declared the winner of the auction.

We now present a generative model for the bidding process of an eBay auc-
tion, which describes how the potential bids are generated, which of them be-
come visible and which of them are hidden. There are m potential bidders
interested in a certain eBay auction of a single item. We assume that bid-
ders have independent private values(IPV). We assume that m is drawn from
a discrete distribution g(m) with support [2,∞). Bidders’ potential bids are
independently drawn from a continuous distribution f(x).

A decision theoretic agent’s task is to estimate f(x) and g(m) and use the
estimated distributions to compute an optimal bidding strategy. If we instead
are using the game theoretic approach, we are interested in the bidders’ val-
uations. In that case we would use a slightly different model, where bidders’
valuations are independently drawn from a distribution f(v), and each bidder
bids according to a known Bayes-Nash equilibrium. Our game theoretic agent’s
task is then to estimate f(v) and g(m).

The m potential bidders submit their potential bids in a sequential order.
When a proxy bid is submitted, eBay compares it to the current price level,
which is the second-highest proxy bid so far plus a small bid increment. For
simplicity, in this paper we ignore this small increment and assume that the
current price level is the second-highest proxy bid so far. If the submitted bid
is no greater than the current price level, the bid is dropped and nothing is
observed. If the submitted bid is higher than the current price level but lower
than the highest proxy bid so far, then the price level is increased to equal the
submitted bid. If the submitted bid is higher than the previous highest bid,
then the price level is increased to equal the previous highest bid. At the end
of the auction, the item is awarded to the bidder who placed the highest bid,
and the final price level will be equal to the second highest bid.

Our model of the bidding process is quite general. Notice that when a bidder
observes that the price level is higher than her potential bid, she may decide
not to bid in this auction. This is equivalent to our model in which she always
submits the bid, because dropped bids do not appear in the bidding history.
Also our model covers the case of last-minute bidding, which happens quite

1http://pages.ebay.com/help/buy/proxy-bidding.html
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often in eBay auctions [10]: even though last-minute bids may be submitted
almost simultaneously, eBay processes the bids in sequence.

With the proxy bidding system, and when agents have IPV, there is no
strong motivation to bid more than once in an auction. However, in practice
eBay bidders quite often make multiple bids in one auction. One possible mo-
tivation of these bids is to reveal more information about the proxy bid of the
current high bidder [11]. However, only the last bid of the bidder represents
her willingness to pay. Given a bidder’s last bid, her earlier bids carry no extra
information. Therefore, we will be interested in only the last bid from each
bidder2. We can preprocess the bidding histories by removing all bids except
the last bids from each bidder, without losing much information.

3 Estimating the Distributions

Given the model of the bidding process, the first task of our bidding agent is to
estimate the distributions f(x) and g(m) from the bidding history. Suppose we
have access to the bidding history of K auctions of the same item.

3.1 The Simple Approach

One simple approach is to ignore the missing bids, and try to directly estimate
f(x) and g(m) from observed data. The observed number of bidders, n, is used
to estimate g(m). To estimate f(x) we use the observed bids xv, which consists
of (n−1) bids for each auction, since the bids of the highest bidders are missing.
This approach and its variations have been used in e.g. [3, 5, 7].

3.2 EM Learning Approach

We would like to have an estimation strategy that accounts for the missing data
and any bias introduced by its absence. Let us denote the hidden bids by xh.
According to our model, there are two types of missing bids:

1. The highest bid of each auction xhi.

2. The dropped bids xd that are not observed due to being lower than the
current price. Since there are m potential bidders in total, (n − 1) bids
are visible, and one bid is the highest bid xhi, there are (m− n) dropped
bids in xd.

Suppose f(x) belongs to a class of distributions parameterized by θ: f(x|θ),
and g(m) belongs to a class of distributions parameterized by λ: g(m|λ). We
want to find the maximum likelihood estimates of θ and λ, given the observed
data xv.

Suppose that we could actually observe the hidden bids xh as well as xv.
Then estimating θ and λ from the completed data set (xv, xh) would be a much
easier task. Unfortunately we do not have xh. Given xv, and with the knowledge
of the bidding process, we can generate xh if we know θ and λ. Unfortunately
we do not know θ and λ.

2In a common value model, the earlier bids does carry some information, and we would
not be able to simply ignore those bids.
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A popular strategy for learning this kind of model with missing data is the
Expectation Maximization (EM) algorithm. EM is an iterative procedure that
alternates between E steps which generate the missing data given current esti-
mates for the parameters and M steps which compute the maximum likelihood
(or maximum a posteriori) estimates for the parameters based on the completed
data, which consists of the observed data and current estimates for the missing
data.

Formally, the E step computes

Q(θ) =
∫

log(p(xh, xv|θ))p(xh|xv, θ(old), λ(old))dxh (1)

The M step does the following optimization:

θ(new) = arg max
θ

(Q(θ)) (2)

Similar computations are done to estimate λ, the parameter for g(m|λ). The
integral in Equation (1) is generally intractable for this complex bidding process.
Instead, we can compute a Monte Carlo approximation of the integral: we draw
N samples from the distribution p(xh|xv, θ(old), λ(old)), and approximate the
integral by a small sum over the samples (see e.g. [1]).

Applied to our model, in each E step our task is to generate samples from
the distribution p(xh|xv, θ(old), λ(old)). Recall that xh consists of the highest bid
xhi and the dropped bids xd.

Given θ(old) and the second highest bid (which is observed), the highest bid
xhi can easily be sampled from the distribution f(x|θ(old)) truncated at the
second highest bid. Sampling the dropped bids xd is a more difficult task. We
use the following procedure, which is based on simulating the bidding process:

1. Sample m from g(m|λ(old)).

2. If m < n, reject the sample and go back to step 1.

3. Simulate the bidding process using xv and m− n dropped bids:

(a) Repeatedly draw a sample bid from f(x|θ(old)), and compare it to
the current price level. If it is lower than the price level, add the bid
to the set of dropped bids xd. Otherwise, the current price level is
increased to the next visible bid from xv.

(b) If the number of bids in xd exceeds m − n, or if we used up all the
bids in xv before we have m − n dropped bids in xd, we reject this
sample and go back to step 1. Only when we used up all bids in xv

and we have m− n bids in xd, do we accept the sample of xd.

4. Repeat until we have generated N samples of xd.

Our task at each M step is to compute the maximum likelihood (ML) esti-
mates of λ and θ from xv and the generated samples of xh. For many standard
parametric family of distributions, There are analytical solutions for the ML
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estimates. If analytical solutions does not exist we can use numerical optimiza-
tion methods such as simulated annealing. The EM algorithm terminates when
λ and θ converges.

4 Computing an Optimal Bidding Strategy

In Section 2 and 3 we presented a model of the bidding process for a single auc-
tion, and proposed methods to estimate the distributions of bids and number
of bidders in an auction. But our work is not done yet: how do we make use of
the estimated distributions to compute a bidding strategy? If we only partici-
pate in one English auction, under the IPV model it is a dominant strategy to
bid up to our valuation of the item, and we do not even need to estimate the
distributions. However if we are interested in buying from multiple auctions,
good estimates of the distributions f(x) and g(m) is essential in computing a
good bidding strategy.

In this section we develop a decision theoretic bidding agent for finitely
repeated auctions. We choose this setting because it is a fairly accurate model
of the decision theoretic problem we would face when we want to buy one item
from an online auction site. Our estimation algorithm can easily be applied to
more complex decision theoretic models such as infinite horizon models with
discount factors, and combinatorial valuation models, as well as game-theoretic
bidding models.

4.1 Repeated Auctions

Suppose we only want to buy one item, say a Playstation from eBay, where
multiple auctions of similar Playstation systems are held regularly. If we suc-
cessfully win one item, our utility will be equal to our valuation for the item
minus the price we pay. So our bidding agent’s task is to compute a bidding
strategy that will maximize this utility. We are only interested in the next k
auctions after we arrived at the auction site. One motivation for such a restric-
tion is that usually we prefer to have the item soon, i.e. we do not want the
bidding agent to spend too much time in order to get the best deal. If we fail
to win an item from the k auctions, we lose interest of the item and leave the
auction site, and our utility is 0. An alternative model would be that we could
go and buy an item from a store after we leave the auction site, in which case
we would get some other constant utility. Some of the k auctions may overlap
in time, but since eBay auctions have strict closing times, this can be modeled
as a sequential decision problem, where our agent makes bidding decisions right
before each auction closes.

Number the auctions 1 . . . k according to their closing times. Let vj denote
our valuation for the item from auction j. Note that this allows the items in
the auctions to be non-identical. Let bj denote our agent’s bid for auction j.
Let Uj denote our agent’s expected payoff from participating in auctions j . . . k,
assuming we did not win before auction j. Let Uk+1 be our payoff if we fail
to win any of the auctions. For simplicity, in this paper we define Uk+1 = 0.
Suppose for each auction j, the number of other bidders is drawn from gj(m)
and each bidder’s bid is drawn from fj(x). Since each auction j is an English
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auction, only the highest bid from other bidders affects our payoff. Let f1
j (x)

and F 1
j (x) respectively denote the probability density function and cumulative

density function (CDF) of the highest bid from other bidders in the j-th auction.
Then F 1

j (x) =
∑∞

m=2 gj(m)(Fj(x))m, where Fj(x) is the CDF of fj(x). Now Uj

can be expressed as the following function of the future bids bj:k = (bj , . . . , bk)
and valuations vj:k = (vj , . . . , vk):

Uj(bj:k, vj:k) =
∫ bj

−∞
(vj − x)f1

j (x)dx + (1− F 1
j (bj))Uj+1(bj+1:k, vj+1:k) (3)

The first term is the expected payoff from the j-th auction; the second term is
the expected payoff from the later auctions. Let U∗

j (vj:k) denote the expected
payoff under optimal strategy b∗j:k. We can optimize Uj from the k-th auction
to the first one, in a manner similar to backward induction. By solving the
first-order conditions of Uj , we obtain the optimal bidding strategy:

b∗j = vj − U∗
j+1(vj+1:k) (4)

In other words, our agent should shade her bids by the “option value”, i.e. the
expected payoff of participating in future auctions, except for the k-th auction.
In the latter case there are no future auctions and the optimal bid is b∗k = vk.

The computation of the optimal bidding strategies requires the computation
of the expected payoffs U∗

j , which involves an integral over the distribution
f1

j (x). In general this cannot be done analytically, but we can compute its
Monte Carlo approximation if we can sample from f1

j (x). If we can sample
from fj(x) and gj(m), we can use the following straightforward procedure to
generate a sample from f1

j (x): first draw m from gj(m), then draw m samples
from fj(x) and take the maximum.

The bidding strategy b∗1:k computed using Equations 4 and 3 is optimal,
provided that the distributions fj(x) and gj(m) are the correct distributions
of bids and number of bidders for all j ∈ 1 . . . k. Of course in general we do
not know the true fj(x) and gj(m) and the focus of this paper is to estimate
the distributions from the bidding history and use the estimated distributions
to compute the bidding strategy. As a result, the computed bidding strategy
should be expected to achieve less than the optimal expected payoff. However, it
is reasonable to think that better estimates of f(x) and g(m) should give bidding
strategies with higher expected payoffs. This is confirmed in our experiments
across a wide range of data sets, which we discuss in Section 5.

4.2 Auctions with Partial Bidding Activity

So far we have been estimating the distribution of the highest bid f1(x) using
f(x) and g(m). In practice, we often observe some early bidding activity by
other bidders in auctions j + 1, . . . , k before we have to make a bid on auction
j. This allows us to make even more informed estimates on f1(x), based on
f(x), g(m) and the observed bids. Suppose we have observed n− 1 early bids,
denoted by xv; the current highest bid xhi is not revealed (but can be sampled
from f(x) truncated at the current price). Since the auction is not over, there
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could be some set of future bids xfuture . When the auction closes, the highest
bid from the other bidders will be max{xhi, xfuture}. We can generate xfuture

if we know the number of future bids. We know the total number of bids m is
drawn from g(m), and the number of bids made so far is n + |xd|, where xd are
the dropped bids so far, so the number of future bids is m− n− |xd|. Now we
have a procedure that samples from f1(x):

1. Simulate the auction using our model in Section 2 to generate xd, the
dropped bids so far.

2. Sample the total number of bids m from g(m).

3. Compute the number of future bids, m − n − |xd|. If this quantity is
negative, reject the sample. Otherwise generate xfuture .

4. Generate xhi and take the maximum of xfuture and xhi.

5 Experiments

We evaluated both our EM learning approach and the simple approach on sev-
eral synthetic data sets and on real world data collected from eBay. For each
data set, both approaches were used to estimate the distributions of number
of bidders and bid amounts, and these estimates were then used to compute
bidding strategies and expected payoffs under the decision theoretic model of
Section 4. We compared the approaches in two ways:

1. Which approach gives better estimates of the distributions f(x), g(m) and
f1(x)? This is important because better estimation of these distributions
should give better results, regardless of whether agents take a decision
theoretic approach or a game theoretic approach to bidding. We measure
the closeness of an estimated distribution to the true distribution using
the Kullback-Leibler (KL) Divergence from the true distribution to the
estimated distribution. The smaller the KL Divergence, the closer the
estimated distribution to the true one.

2. Which approach gives better expected payoff under the decision theoretic
bidding model3 as described in Section 4?

Our experiments show that the EM learning approach outperforms the sim-
ple approach on both aspects, across a wide range of data sets. In this section
we present results on four representative data sets:

• Data Set 1 has auctions of identical items, and we know the family of
distributions that f(x) and g(m) belong to.

• Data Set 2 has auctions of non-identical items, but we know the bid dis-
tribution f(x) is influenced linearly by an attribute a.

3We recognize that game theoretic models are also important, and game theoretic bidding
agents would benefit from better estimation of the valuation distributions. However in a game
theoretic model we cannot simply use expected payoff as a measure of performance, since our
payoff depends very much on the other agents’ strategies.
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• Data Set 3 has auctions of identical items, but we do not know what kind
of distributions f(x) and g(m) are. We use nonparametric estimation
techniques to estimate the distributions.

• Data Set 4 is real-world auction data on identical items, collected from
eBay.

5.1 Synthetic Data Set 1: Identical Items

In this data set, the items on sale in all auctions are identical, so the number
of bidders and bid amounts come from stationary distributions g(m) and f(x).
f(x) is a Normal distribution N(4, 3.5). g(m) is a Poisson distribution shifted
to the right: g(m − 2) = P (40), i.e. the number of bidders is always at least
2. The bidding history is generated using our model of the bidding process as
described in Section 2. Each instance of the data set consists of bidding history
from 40 auctions. We generated 15 instances of the data set.

Both estimation approaches are informed of the parametric families from
which f(x) and g(m) are drawn; their task is to estimate the parameters of
the distributions, (µ, σ) for f(x) and λ for g(m). At the M step of the EM
algorithm, standard ML estimates for µ, σ, and λ are computed, i.e. sample
mean of the bid amounts for µ, standard deviation of the bid amounts for σ,
and the mean of the number of bidders minus 2 (due to the shifting) for the
Poisson parameter λ.

Our results show that the EM approach outperforms the simple approach in
the quality of its estimates for the distributions f(x), g(m) and f1(x). Figure 1
shows typical estimated distributions4 and the true distributions. We observe
that the plot of the estimated f(x) by the simple approach is significantly shifted
to the right of the true distribution, i.e. the simple approach overestimated
f(x). We have also calculated KL Divergences from the true distributions to
the estimated distributions, and the EM estimations have consistently lower
KL Divergences. This difference was verified to be significant, using the non-
parametric Wilcoxon sign-rank test.

Then, estimates from both approaches are used to compute bidding strate-
gies for an auction environment with 8 sequentially held auctions of the same
kind of items, using the decision theoretic model. The agent’s “actual” ex-
pected payoffs U1(b, v) under these bidding strategies are then computed, using
the true distributions. The optimal bidding strategy and its expected payoff are
also computed.

Our results show that the EM approach gives bidding strategies closer to the
optimal strategy, and achieves higher expected payoffs, compared to the simple
approach. Figure 1 has a plot of the bidding strategies in the first auction, and a
box plot of the regrets, which is the differences between optimal expected payoffs
and actual expected payoffs. From the box plot we observe that the mean regret
of the EM approach is much smaller than that of the simple approach.

4The distributions shown are randomly chosen from the 15 instances of the data set. We
have verified that the plots of the other distributions are qualitatively similar.
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Figure 1: Results for Data Set 1: Distribution of bids f(x) (top-left). Distri-
bution of highest bids f1(x) (top-right). Bidding strategies in the first auction
(bottom-left). Box plot of payoff regrets of the two approaches (bottom-right).

We also used the estimated distributions on the decision-theoretic model
with partial bidding activity, as described in Section 4.2. Again our results
show that the EM approach achieves higher expected payoffs compared to the
simple approach.

5.2 Synthetic Data Set 2: Non-identical Items

In our second data set, the items on sale are not identical; instead the distribu-
tion of valuations are influenced by an observable attribute a. In this data set
the dependence is linear: f(x|a) = N(1.1a + 1.0, 3.5). g(m) is a Poisson distri-
bution as before: g(m − 2) = P (35). For each auction, a is sampled uniformly
from the interval [3, 9]. In other words, this data set is similar to data set 1, ex-
cept that the bid distribution f(x) is drawn from a different parametric family.
Both approaches now use linear regression to estimate the linear coefficients.

Again, our results show that the EM approach outperforms the simple ap-
proach for this data set, in terms of its estimates for f(x) and g(m). Figure 2
shows the estimated linear relation between the mean of f(x|a) and a. From
the figure we can see that the EM approach gives a much better estimate to the
linear function. The simple approach again significantly overestimates the bid
amounts. In fact the simple approach has consistently overestimated f(x) for
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Figure 2: Results for Data Set 2: Linear relationship between the mean of f(x|a)
and a (left). Box plot of payoff regrets (right).

all the synthetic data sets we tested. This shows that given our model of the
bidding process, the estimated f(x) of the simple approach is biased.

We then used the estimated distributions to compute a decision-theoretic
agent’s bidding strategies and expected payoffs of an auction environment with
8 sequential auctions, where the attribute a of each item is observed. The EM
approach also gives better expected payoff, the statistical significance of which
is confirmed by Wilcoxon’s sign-rank test. Figure 2 has a box plot of regrets
from different instances of data sets, which shows that the EM approach is
consistently getting higher payoffs.

5.3 Synthetic Data Set 3: Unknown Distributions

We go back to the identical items model with stationary distributions f(x) and
g(m). For this data set, f(x) is a Gamma distribution with shape parameter
2 and scale parameter 3. g(m) is a mixture of two Poisson distributions: P (4)
with probability 0.6 and P (60) with probability 0.4. But now the estimation
approaches does not know the types of the true distributions. Rather than
guessing the types of distributions, we use kernel density estimation (kernel
smoothing), a nonparametric estimation strategy. Essentially, given N samples
from a distribution p(x), we estimate p(x) by a mixture of N kernel functions
centered at the N samples.

A Gaussian kernel is used for estimating f(x) and a uniform kernel is used
for estimating g(m). At each M step of the EM algorithm, the bandwidth
parameters of the two kernel estimations need to be selected. We use the simple
“rule of thumb” strategy [12] for bandwidth selection. The same type of kernel
estimation and bandwidth selection technique is implemented for the simple
approach.

Our results show that the EM approach gives better estimation than the
simple approach does. Figure 3 shows typical estimated distributions and true
distributions. From the figure we can observe that the EM estimates of f(x),
g(m) and f1(x) are much closer to the true distributions that the simple esti-
mates. The EM estimates have significantly smaller KL Divergences compared
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Figure 3: Results for Data Set 3: Distribution f(x) (top-left). Distribution
g(m) (top-right). Distribution f1(x) (bottom-left). Box plot of payoff regrets
(bottom-right).

to the simple estimates, verified by Wilcoxon’s sign-rank test.
We then computed the expected payoffs under the decision theoretic model

with 8 sequential auctions. The expected payoffs of the EM approach were not
significantly better than that of the simple approach, as shown by the box plot
in Figure 3. One possible explanation is that although the simple estimates
were further from the correct distributions than the EM estimates, under this
particular decision-theoretic model the bidding strategy computed using the
simple estimates happened to achieve high payoffs. In other words, it is not
because the EM approach did badly, rather it is because the simple approach
happened to get high payoffs in this setting.

5.4 eBay Data on Sony Playstation-2 Systems

Our experiments on synthetic data sets showed that our EM approach gave
good estimates of the true distributions in several different settings. However,
the synthetic data sets are generated using our model for the bidding process.
Thus, the above experiments do not tell us whether our model for the bidding
process is an accurate description of what happens in real world online auctions.
To answer this question, we need to test our approach on real world bid data.
On eBay, the bidding histories of completed auctions are available for the most
recent 30 days. Unfortunately, information on the hidden bids, especially the
proxy bids of the winners of the auctions, is not publicly available. So unlike in
the synthetic data experiments, we cannot compare our estimated distributions
with the “true” distributions.

To get around this problem, we used the following approach: first we collect
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bidding histories from a set of eBay auctions. Now we pretend that those
highest bids were not placed, and the previously second highest bids are the
highest bids. We can now “hide” these new highest bids of each auction, and
use our estimation approaches to try to predict the distribution of the highest
bid, f1(x). We can now compare our estimated distributions to the bids we
have hidden, and also compute expected payoffs under the decision theoretic
model. While it is true that this approach of hiding bids will introduce bias into
our estimations, we are not trying to learn the true distribution of bids of those
eBay auctions. Instead we are trying to learn the distribution of this “shifted”
data set, which is nonetheless collected from the real world and thus should have
similar characteristics to the actual bidding history data. If our model of the
bidding process is correct, then our EM approach should be able to correctly
account for the hidden bids in this data set and produce good estimates to
f1(x).

We have collected bidding history of eBay auctions on brand new Sony
Playstation 2 (Slim Model) consoles, over a period of a month in March 2005.
Shah et al. [11] analyzed eBay auction data on an earlier version of Sony
Playstation, where they argued that bidders’ valuations on Playstations tend to
be close to the private value model. We considered only auctions that lasted one
day, and had at least 3 bidders. We observed 60 auctions that satisfied these
requirements. The data was then randomly divided into a training set and a
testing set. We tested four learning approaches: the EM and simple approaches
that estimates a Normal distribution for f(x) and a Poisson distribution for
g(m), and the EM and simple approaches that use kernel density estimation
to estimate f(x) and g(m). Each approach tried to estimate f1(x) from the
training set, and the estimates were compared against the highest bids from the
test set. We did 8 runs of this experiment with different random partitions of
training set and testing set, and aggregated the results. The KL Divergences of
f1(x) of the approaches are similar, and no one approach is significantly better
than the others.

We then computed the expected payoffs under the decision theoretic model.
The EM approaches achieved significantly higher payoffs than the simple ap-
proaches, as shown in Figure 4. The approaches using parametric models
achieved similar payoffs to the corresponding approaches with kernels. The
good performance of the parametric estimation EM approach for the eBay data
set indicates that the Normal and Poisson models for f(x) and g(m) may be
adequate models for modeling bidding on eBay.

6 Conclusion and Future Work

In this paper we have focused on an important problem faced by bidding agents,
that of estimating the distributions of the number of bidders and bid amounts
from incomplete auction data. We proposed a learning approach based on the
EM algorithm that takes into account the missing bids by iteratively generating
missing bids and doing maximum likelihood estimates on the completed set of
bids. We conducted experiments on both synthetic data as well as on eBay data,
and compared our approach against the straightforward approach of ignoring
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Figure 4: Box plot of payoff regrets on the eBay Data Set

the missing data. Our results show that our approach never did worse and often
did much better than the simple approach, both in terms of the quality of the
estimates and in terms of expected payoffs under a decision theoretic bidding
model. Our EM learning approach is not limited to decision theoretic auction
models; it can also be used by game-theoretic bidding agents. We are currently
investigating such applications of our EM learning approach in a game-theoretic
setting.
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