
Chapter 18

A Test Suite for Combinatorial

Auctions

Kevin Leyton-Brown and Yoav Shoham

Many researchers have proposed algorithms for determining the winners

of general combinatorial auctions, with encouraging results. (Some of these

algorithms are described in Chapter 14 of this book.) This line of research

has given rise to another problem, however. In order to evaluate—and thus

to improve—such algorithms, it is necessary to use some sort of test data.

Unfortunately, there is little data recording the behavior of real bidders upon

which such test data may be built; furthermore, even as such data becomes

available, algorithmic testing will require benchmarks which permit arbitrary

scaling in the problem size. It is thus necessary to generate generate artificial

data that is representative of the sort of scenarios one is likely to encounter.
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This chapter describes such a test suite.

18.1 Past work on testing CA algorithms

18.1.1 Experiments with human subjects

One approach to experimental work on combinatorial auctions has used

human subjects. These experiments assign valuation functions to subjects,

then have them participate in auctions using various mechanisms (Banks

et al. 1989; Ledyard et al. 1997; DeMartini et al. 1998). Such tests can be

useful for understanding how real people bid under different auction

mechanisms; however, they are less suitable for evaluating the mechanisms’

computational characteristics. In particular, this sort of test is only as good

as the subjects’ valuation functions, which in the above papers were

hand-crafted. As a result, this technique does not easily permit arbitrary

scaling of the problem size, a feature that is important for characterizing an

algorithm’s performance. In addition, this method relies on relatively naive

subjects to behave rationally given their valuation functions, which may be

unreasonable when subjects are faced with complex and unfamiliar

mechanisms.
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18.1.2 Particular problems

A parallel line of research has examined particular problems to which CA’s

seem well suited. For example, researchers have considered auctions for real

estate (Quan 1994), the right to use railroad tracks (Brewer and Plott 1996),

pollution rights (Ledyard and Szakaly 1994), airport time slot allocation

(Rassenti et al. 1982) and distributed scheduling of machine time (Wellman

et al. 1998). Most of these papers do not suggest holding an unrestricted

general CA, presumably because of the computational obstacles. Instead,

they tend to discuss alternative mechanisms that are tailored to the

particular problem. None of them proposes a method of generating test data,

nor does any of them describe how the problem’s difficulty scales with the

number of bids and goods. However, they still remain useful to researchers

interested in general CA’s because they give specific descriptions of problem

domains to which CA’s may be applied.

18.1.3 Artificial distributions

A number of researchers have proposed algorithms for determining the

winners of general CA’s. In the absence of test suites, some have suggested

novel bid generation techniques, parameterized by number of bids and goods

(Sandholm 1999; Fujishima et al. 1999; Boutilier et al. 1999; de Vries and

Vohra 2003). (Other researchers have used one or more of these distributions,
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e.g., (Parkes 1999; Sandholm et al. 2001), while still others have refrained

from testing their algorithms altogether, e.g., (Nisan 2000; Lehmann et al.

1999).) Parameterization represents a step forward, making it possible to

describe performance with respect to the problem size. However, there are

several ways in which each of these bid generation techniques falls short of

realism, concerning the selection of which goods and how many goods to

request in a bundle, what price to offer for the bundle, and which bids to

combine in an XOR’ed set. More fundamentally, however, all of these

approaches suffer from failing to model bidders explicitly, and from

attempting to represent an economic situation with an non-economic model.

Which goods

First, each of the distributions for generating test data discussed above has

the property that all bundles of the same size are equally likely to be

requested. This assumption is clearly violated in almost any real-world

auction: most of the time, certain goods (for which “natural”

complementarities exist) will be more likely to appear together than others.

Number of goods

Likewise, each of the distributions for generating test data determines the

number of goods in a bundle completely independently from determining
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which goods appear in the bundle. While this assumption may appear more

reasonable, there are many domains in which the expected number of items

in a bundle will be related to which goods it contains. To give an example, in

an electronics domain people buying computers might tend to make long

combinatorial bids, requesting monitors, printers, etc., while those buying

refrigerators might tend to make short bids.)

Price

Next, there are problems with the schemes for generating price offers used by

all four techniques. Prices cannot make an easy distribution hard (consider

the tractable cases discussed in Chapter 13); however, if prices are not chosen

carefully then an otherwise hard distribution can become computationally

easy.

In Sandholm (1999) prices are drawn randomly from either [0, 1] or from

[0, g], where g is the number of goods requested. The first method is clearly

unreasonable (and computationally trivial) since price is unrelated to the

number of goods in a bid—note that one bid for a large bundle and another

for a small subset of the same bundle will have the same expected price. The

second method is better, but has the disadvantage that mean and range are

parameterized by the same variable.

In Boutilier et al. (1999) prices of bids are distributed normally with
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mean 16 and standard deviation 3, giving rise to the same problem as the

[0, 1] case above.

In Fujishima et al. (1999) prices are drawn from [g(1− d), g(1 + d)],

d = 0.5. While this scheme avoids the problems described above, prices are

simply additive in g and are unrelated to which goods are requested in a

bundle, both strong and often unrealistic assumptions.

More fundamentally, Anderson et al. (2000) note a critical pricing

problem that arises in several of the schemes discussed above. As the number

of bids to be generated becomes large, a given short bid will be drawn much

more frequently than a given long bid. Since the highest-priced bid for a

bundle dominates all other bids for the same bundle, short bids end up being

much more competitive. Indeed, it is pointed out that for extremely large

numbers of bids a good approximation to the optimal solution is simply to

take the best singleton bid for each good. One solution to this problem is to

guarantee that only the first bid for each bundle will be retained. However,

this solution has the drawback that it is unrealistic: different real bidders are

likely to place bids on some of the same bundles.

The best way of addressing this problem is to make bundle prices

superadditive in the number of goods they request—indeed, the fact that

bidders’ valuations satisfy this property is often a motivation for holding a

combinatorial auction in the first place. This approach is taken by de Vries
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and Vohra (2003), who make the price for a bid a quadratic function of the

prices of bids for subsets. (However, this pricing scheme makes it difficult to

control the amount of the increase in price as a function of bundle length.)

Where appropriate, the distributions presented in this chapter will include a

pricing scheme that may be configured to be superadditive or subadditive in

bundle length, parameterized to control how rapidly the price offered

increases or decreases as a function of bundle length.

XOR bids

Finally, while most of the bid-generation techniques discussed above permit

bidders to submit sets of bids XOR’ed together, they have no way of

generating meaningful sets of such bids. As a consequence the

computational impact of XOR’ed bids has been very difficult to characterize.

18.2 Generating realistic bids

While the lack of standardized, realistic test cases does not make it

impossible to evaluate or compare algorithms, it does make it difficult to

know what magnitude of real-world problems each algorithm is capable of

solving, or what features of real-world problems each algorithm is capable of

exploiting. This second ambiguity is particularly troubling: it is likely that

algorithms would be designed differently if they took the features of more
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realistic1 bidding into account. (As we will see, Chapter 19 discusses one

such algorithm-design approach.)

18.2.1 Prices, price offers and valuations

The term “price” has traditionally been used by researchers constructing

artificial distributions to describe the amount offered for a bundle. However,

this term really refers to the amount a bidder is made to pay for a bundle,

which is of course mechanism-specific and often not the same as the amount

offered. The distributions described in this chapter aim to model bidders’

valuations, which are of course mechanism-independent. For consistency with

past literature we will continue to use the term price offer to refer to the

numeric portion of a bid; this may be understood as referring to bids placed

in the VCG mechanism, in which it is a dominant strategy for bidders to

make price offers equal to their true valuations (see Chapter 1). Researchers

wanting to model bidding behavior in other mechanisms can still use our

distributions by transforming the generated valuation according to bidders’

equilibrium strategies in the given mechanism.

18.2.2 The combinatorial auction test suite

In this chapter we present the Combinatorial Auction Test Suite (CATS), a

set of distributions that attempt to model realistic bidding behavior. This
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suite is grounded in previous research on specific applications of

combinatorial auctions, as described in Section 18.1.1 above. At the same

time, all of our distributions are parameterized by number of goods and bids,

facilitating the study of algorithm performance. This suite represents a move

beyond previous work on modeling bidding in combinatorial auctions because

we provide an economic motivation for both the contents and the valuation

of a bundle, deriving them from basic bidder preferences. In particular, in

each of our distributions:

• Certain goods are more likely to appear together than others.

• The number of goods appearing in the bundle is often related to which

goods appear in the bundle.

• Valuations are related to which goods appear in the bundle. Where

appropriate, valuations can be configured to be subadditive, additive or

superadditive in the number of goods requested.

• Sets of XOR’ed bids are constructed in meaningful ways, on a

per-bidder basis.

The CATS suite also contains a legacy section including all bid

generation techniques described above, so that new algorithms may easily be

compared to previously-published results. More information on the test
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suite, including executable versions of our distributions for Linux and

Windows, may be found on the CATS website (CATS Website 2000).

In Section 18.3, below, we present distributions based on five real-world

situations. For most of our distributions, the mechanism for generating bids

involves first building a graph representing economically-motivated

relationships between goods, and then using the graph to generate sets of

substitutable bids, each of which requests bundles of complementary goods.

Of the five real-world situations we model, the first three concern

complementarity based on adjacency in a graph, while the final two concern

complementarity based on correlation in time. Our first example (Section

18.3.1) models shipping, rail and bandwidth auctions. Goods are represented

as edges in a nearly planar graph, with agents submitting an XOR’ed set of

bids for paths connecting two nodes. Our second example (Section 18.3.2)

models an auction of real estate, or more generally of any goods over which

two-dimensional adjacency is the basis of complementarity. Again the

relationship between goods is represented by a graph, in this case strictly

planar. In Section 18.3.3 we relax the planarity assumption from the

previous example in order to model arbitrary complementarities between

discrete goods such as electronics parts or collectables. Our fourth example

(Section 18.3.4) concerns the matching of time-slots for a fixed number of

different goods; this case applies to airline take-off and landing rights
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auctions. In Section 18.3.5 we discuss the generation of bids for a distributed

job-shop scheduling domain, and also its application to power generation

auctions. Finally, in Section 18.3.7, we provide a legacy suite of bid

generation techniques, including all those discussed in Section 18.1.3 above.

In the descriptions of the distributions that follow, let rand(a, b)

represent a real number drawn uniformly from [a, b]. Let rand int(a, b)

represent a random integer drawn uniformly from the same interval. With

respect to a given graph, let e(x, y) represent the proposition that an edge

exists between nodes x and y. All of the distributions are parameterized by

the number of goods (num goods) and number of bids (num bids).

18.3 CATS in detail

18.3.1 Paths in space

There are many real-world problems that involve bidding on paths in space.

Generally, this class may be characterized as the problem of purchasing a

connection between two points. Examples include truck routes (Sandholm

1993), natural gas pipeline networks (Rassenti et al. 1994), network

bandwidth allocation, and the right to use railway tracks (Brewer and Plott

1996).2 In particular, spatial path problems consist of a set of points and

accessibility relations between them. Although the distribution we propose

may be configured to model bidding in any of the above domains, we will use
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the railway domain as our motivating example since it is both intuitive and

well-understood.

More formally, we will represent this domain by a graph in which each

node represents a location on a plane, and an edge represents a connection

between locations. The goods on auction are therefore the edges of the

graph, and bids request a set of edges that form a path between two nodes.

We assume that no bidder desires more than one path connecting the same

two nodes, although the bidder may value each path differently.

Building the graph

The first step in modeling bidding behavior for this problem is determining

the graph of spatial and connective relationships between cities. One

approach would be to use an actual railroad map, which has the advantage

that the resulting graph would be unarguably realistic. However, it would be

difficult to find a set of real-world maps that could be said to exhibit a

similar sort of connectivity and would encompass substantial variation in the

number of cities. Since scaling the size of input data is of great importance

to the testing of new CA algorithms, we have chosen to generate such graphs

randomly. Figure 18.1 shows a representative example of a graph generated

using our technique.

We begin with num cities nodes randomly placed on a plane. We add
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Figure 18.1: Sample “Railroad” Graph

edges to this graph, G, starting by connecting each node to a fixed number of

its nearest neighbors. Next, we iteratively consider random pairs of nodes

and examine the shortest path connecting them, if any. To compare, we also

compute various alternative paths that would require one or more edges to

be added to the graph, given a penalty proportional to distance for adding

new edges. (We do this by considering a complete graph C, an augmentation

of G with the new edges weighted to reflect the distance penalty.) If the

shortest path involves new edges—despite the penalty—then the new edges

(without penalty) are added to G, and replace the existing edges in C. This

process models our simplifying assumption that there will exist uniform

demand for shipping between any pair of cities, though of course it does not

mimic the way new links would actually be added to a rail network. The
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Let num cities = num goods÷ edge density × 1.05
Randomly place nodes (cities) on a unit box
Connect each node to its initial connections nearest neighbors
While num edges < num cities× edge density

C = G
For every pair of nodes n1, n2 ∈ G where ¬e(n1, n2)

Add an edge to C of length
building penalty · Euclidean distance(n1, n2)

End For
Choose two nodes at random, and find the shortest path
between them in C

If shortest path uses edges that do not exist in G
For every such pair of nodes n1, n2 ∈ G add an edge to G
with length Euclidean distance(n1, n2)

End If
End For

Figure 18.2: Paths in Space: Graph-Building Technique

process continues until slightly more edges have been created than the

number of goods in the auction being modeled. (This is achieved by the

“1.05” in the first line of Figure 18.2.) The reason more edges than are

necessary are created is that some edges will not ultimately appear in bids.

Our technique produces slightly non-planar graphs—graphs on a plane in

which edges occasionally cross. We consider this to be reasonable, as the

same phenomenon may be observed in real-world rail lines, highways,

network wiring, etc. Of course, determining the “reasonableness” of a graph

is a subjective task unless quantitative metrics are used to assess quality.
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Generating bids

Once we have constructed a map of cities and the connectivity between

them, we must next use this map to generate bids. We propose a method

which generates a set of substitutable bids from a hypothetical agent’s point

of view. We start with the value to an agent for shipping from one city to

another and with a shipping cost which we make equal to the Euclidean

distance along the path. We then place XOR bids on all paths for which the

agent has positive utility. The path’s value is random, in (parameterized)

proportion to the Euclidean distance between the chosen cities, and with a

minimum value of this distance. (Bidders with smaller values would never be

able to place bids.)

We aim to generate bids over a desired number of goods; however, in this

distribution the number of goods (edges in the graph) is not a parameter

which can be set directly. Thus we must do some extra work to ensure that

we hit our target.

First, there are some generated edges that we choose to remove. Some

edges are useful only for shipping directly between the two cities they

connect. These edges are somewhat unrealistic; also, because they will only

be selected for singleton bids, they will not increase the size of the search

space. A similar argument can be made about any small disconnected

component of the graph: these goods would be better modeled as a separate
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auction, and contribute very little to the difficulty of the winner

determination problem. At some point in the bid generation

process—usually before we have generated all of the bids—the total number

of goods requested across all bids will meet our target. (Recall that we

started out with more goods than we want to generate.) At this point we

check for edges that are used only in singleton bids or isolated groups of bids,

and delete those bids. Once we reach the target number of goods without

deleting any bids, we delete all goods that are uninvolved in the bids we have

generated so far, and continue with bid generation.

Second, it is possible that we will reach our target number of bids without

making use of the target number of goods. In this case, we must generate a

new graph, increasing the number of cities in order to increase the expected

number of different goods used as a fraction of bids generated.

Note that this distribution, and indeed all others presented in this

chapter, may generate slightly more than num bids bids. This occurs

because we only check to see whether we have generated enough bids after we

have generated an entire XOR set of bids. In our experience CA optimization

algorithms tend not to be highly sensitive to the number of bids, so we

judged it more important to build economically sensible sets of substitutable

bids. If generating a precise number of bids is important, it is a simple

matter to remove an appropriate number of bids after generation is complete.
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finished = true
Do

While num generated bids < num bids
Randomly choose two nodes, n1 and n2

d = rand(1, shipping cost factor)
cost = Euclidean distance(city1, city2)
value = d · Euclidean distance(city1, city2)
Make XOR bids of value− cost on every path from city1 to
city2 having cost < value

If there are more than max bid set size such paths, bid
on the max bid set size paths that maximize value− cost.

If number of goods receiving bids ≥ num goods
remove isolated singleton bids and isolated bid
groups

remove from the city map all edges that do not
participate in any bid

End If
End While
If number of goods receiving bids < num goods

delete all bids
delete graph
num cities = num cities + 1
run graph generation
finished = false

End While
While ¬finished

Figure 18.3: Paths in Space: Bid-Generation Technique
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CATS default parameter values: initial connections = 2,

building penalty = 1.7, shipping cost factor = 1.5, max bid set size = 5.

Multi-unit extensions: bandwidth allocation, commodity flow

This model may also be used to generate realistic data for multi-unit CA

problems such as network bandwidth allocation and general commodity flow.

The graph may be created as above, but with a number of units (capacity)

assigned to each edge. Likewise, the bidding technique remains unchanged

except for the assignment of a number of units to each bid.

18.3.2 Proximity in space

There is a second broad class of real-world problems in which

complementarity arises from adjacency in two-dimensional space. An

intuitive example is the sale of adjacent pieces of real estate (Quan 1994).

Another example is drilling rights, where it is much cheaper for an oil

company to drill in adjacent lots than in lots that are far apart. In this

section, we first propose a graph-generation mechanism that builds a model

of adjacency between goods, and then describe a technique for generating

realistic bids on these goods. Note that in this section nodes of the graph

represent the goods on auction, while edges represent the adjacency

relationship.
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Place nodes at integer vertices (i, j) in a plane, where
1 ≤ i, j ≤ d

√
(num goods)e

For each node n
If n is on the edge of the map

Connect n to as many hv-neighbors as possible
Else

If rand(0, 1) ≤ three prob
Connect n to a random set of three of its four
hv-neighbors

Else
Connect n to all four of its hv-neighbors

While rand(0, 1) ≤ additional neighbor
Connect g to one of its d-neighbors, provided that
the new diagonal edge will not cross another
diagonal edge

End While
End For

Figure 18.4: Proximity in Space: Graph-Building Technique

Building the graph

There are a number of ways we could build an adjacency graph. The

simplest would be to place all the goods (locations, nodes) in a grid, and

connect each to its four neighbors. We propose a slightly more complex

method in order to permit a variable number of neighbors per node

(corresponding, for example, to non-rectangular pieces of real estate). As

above we place all goods on a grid, but with some probability we omit a

connection between goods that would otherwise represent vertical or

horizontal adjacency, and with some probability we introduce a connection

representing diagonal adjacency. (We call horizontally- or vertically-adjacent

nodes hv-neighbors and diagonally-adjacent nodes d-neighbors.)
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Figure 18.5: Sample Real Estate Graph

Figure 18.5 shows a sample real estate graph, generated by the technique

described in Figure 18.4. Nodes of the graph are shown as asterisks, while

edges are represented by solid lines. The dashed lines show a set of property

boundaries that would be represented by this graph. Note that one node falls

inside each piece of property, and that two pieces of property border each

other iff their nodes share an edge.

Generating bids

To model realistic bidding behavior, we generate a set of common values for

each good, and private values for each good for each bidder. The common

value represents the appraised or expected resale value of each individual

good. The private value represents the amount that a given bidder values
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that good, as an offset to the common value (e.g., a private value of 0 for a

good represents agreement with the common value). We use these private

valuations to determine both a value for a given bid and the likelihood that a

bidder will request a bundle including that good. There are two additional

components to each bidder’s preferences: a minimum total common value for

which the bidder is prepared to bid, and a budget. The former reflects the

idea that a bidder may only wish to acquire goods of a certain recognized

value. The latter reflects the fact that a bidder may not be able to afford

every bundle that is of interest to him.

To generate bids, we start with a random good, chosen with probability

weighted by a bidder’s preferences. Next, we determine whether another

good should be added by drawing a value uniformly from [0,1], and adding

another good if this value is smaller than a threshold. This is equivalent to

drawing the number of goods in a bid from a decay distribution.3 We must

now decide which good to add. Ordinarily, we select only goods from the set

of nodes bordering the goods in B. However, we assign a small probability to

“jumping” to a new node of the graph: in this case we add a new good

selected uniformly at random from the set of goods, without the requirement

that it be adjacent to a good in the current bundle B . This permits bundles

requesting unconnected regions of the graph: for example, a hotel company

may only wish to build in a city if it can acquire land for two hotels on
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opposite sides of the city.

In the case where we do not “jump”, the probability that some adjacent

good n1 will be added depends on how many edges n1 shares with the

current bundle, and on the bidder’s relative private valuations for n1 and n2.

For example, if nodes n1 and n2 are each connected to B by one edge and the

private valuation for n1 is twice that for n2, then the probability of adding n1

to B, p(n1), is 2p(n2). Further, if n1 has 3 edges to nodes in B while n2 is

connected to B by only 1 edge, and the goods have equivalent private values,

then p(n1) = 3p(n2).

Once we have determined all the goods in a bundle we set the price

offered for the bundle, which depends on the sum of common and private

valuations for the goods in the bundle, and also includes a function that is

superadditive (depending on our parameter settings) in the number of

goods.4 Finally, we generate additional bids that are substitutable for the

original bid, imposing the constraint that each bid in the set must request at

least one good from the original bid.

CATS default parameter values: three prob = 1.0, additional neighbor =

0.2, max good value = 100, max substitutable bids = 5, additional location

= 0.9, jump prob = 0.05, additivity = 0.2, deviation = 0.5, budget factor =

1.5, resale factor = 0.5, and S(n) = n1+additivity. Note that additivity = 0

gives additive bids, and additivity < 0 gives sub-additive bids.
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For all g, c(g) = rand(1,max good value)
While num generated bids < num bids

For each good, reset p(g) =
rand(−deviation ·max good value, deviation ·max good value)

pn(g) = p(g)+deviation·max good value
2·deviation·max good value

Normalize pn(g) so that
∑

g pn(g) = 1
B = {}
Choose a node g at random, weighted by pn(), and add it to
B

While rand(0, 1) ≤ additional location
Add Good to Bundle(B)

value(B) =
∑

x∈B(c(x) + p(x)) + S(|B|)
If value(B) ≤ 0 on B, restart bundle generation for this
bidder

Bid value(B) on B
budget = budget factor · value(B)
min resale value = resale factor ·∑x∈B c(x)
Construct substitutable bids. For each good gi ∈ B

Initialize a new bundle, Bi = {gi}
While |Bi| < |B|

Add Good to Bundle(Bi)
Compute ci =

∑
x∈Bi

c(x)
End For
Make XOR bids on all Bi where 0 ≤ value(B) ≤ budget and
ci ≥ min resale value.

If there are more than max substitutable bids such bundles,
bid on the max substitutable bids bundles having the largest
value

End While

Figure 18.6: Proximity in Space: Bid-Generation Technique
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Routine Add Good to Bundle(bundle B)
If rand(0, 1) ≤ jump prob

Add a good g /∈ B to B, chosen uniformly at random
Else

Compute s =
∑

x/∈B,y∈B,e(x,y) pn(x)
Choose a random node x /∈ B from the distribution∑

y∈B,e(x,y)
pn(x)

s
Add x to B

End If
End Routine

Figure 18.7: Proximity in Space: Add Good to Bundle

Spectrum auctions

A related problem is the auction of radio spectrum, in which a government

sells the right to use specific segments of spectrum in different geographical

areas (Plott and Cason 1996; Ausubel et al. 1997). It is possible to

approximate bidding behavior in spectrum auctions by making the

assumption that all complementarity arises from spatial proximity. (This

assumption would be violated, for example, if some bidders wanted to secure

the right to broadcast at the same frequency in several adjacent areas.) In

cases where this assumption is acceptable, our spatial proximity model is

nearly sufficient for generating bidding distributions for spectrum auctions,

given two modifications. First, in a spectrum auction each good may have

multiple units (frequency bands) for sale. It is insufficient to model this as a

multi-unit CA problem, however, if bidders have the constraint that they

want the same frequency in each region.5 Instead, the problem can be
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modeled with multiple distinct goods per node in the graph, and bids

constructed so that all nodes added to a bundle belong to the same

‘frequency’. With this method, it is also easy to incorporate other

preferences, such as preferences for different types of goods. For instance, if

two different types of frequency bands are being sold, one 5 megahertz wide

and one 2.5 megahertz wide, an agent only wanting 5 megahertz bands could

make substitutable bids for each such band in the set of regions desired

(generating the bids so that the agent will acquire the same frequency in all

the regions). Second, our current scheme for generating price offers may be

inappropriate for the spectrum auction domain. Research indicates that

while price offers will still tend to be superadditive, this superadditivity may

be quadratic in the population of the region rather than exponential in the

number of regions (Ausubel et al. 1997). A quadratic model may be better;

see section 18.3.6. Finally, we should note some very recent work on

modeling bidder behavior in spectrum auctions, albeit with restrictions to

specific auction mechanisms under consideration by the FCC (Dunford et al.

2004; Porter et al. 2003).

18.3.3 Arbitrary relationships

Sometimes complementarities between goods will not be as universal as

geographical adjacency, but some kind of regularity in the complementarity
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Build a fully-connected graph with one node for each good
Label each edge from n1 to n2 with a weight d(n1, n2) = rand(0, 1)

Figure 18.8: Arbitrary Relationships: Graph-Building Technique

relationships between goods will still exist. Consider an auction of different,

indivisible goods, e.g., for semiconductor parts, collectables, or distinct

multi-unit goods such as the right to emit some quantity of different

pollutants produced by an industrial process. In this section we describe a

general way of modeling such arbitrary relationships.

Building the graph

We express the likelihood that a particular pair of goods will appear together

in a bundle as being proportional to the weight of the appropriate edge of a

fully-connected graph. That is, the weight of an edge between n1 and n2 is

proportional to the probability that, having only n1 in our bundle, we will

add n2. Weights are only proportional to probabilities because we must

normalize them so that the sum of all weights from a given good sum to 1.

Generating bids

Our technique for modeling bidding is a generalization of the technique used

for proximity in space (Section 18.3.2), applied to the complete graph

constructed above. We choose a first good and then proceed to add goods
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Routine Add Good to Bundle(bundle B)
Compute s =

∑
x/∈b,y∈B d(x, y) · pn(x)

Choose a random node x /∈ B from the distribution∑
y∈B d(x, y) · pn(x)

s
Add x to B

End Routine

Figure 18.9: Arbitrary Relationships: Add Good to Bundle

one by one, with the probability of each new good being added depending on

the current bundle. Unlike in the proximity in space distribution the graph is

fully-connected here; thus there is no need for the “jumping” mechanism

described above. The likelihood of adding a new good g to bundle B is

proportional to
∑

y∈B d(x, y) · pi(x). The first term d(x, y) represents the

likelihood (independent of a particular bidder) that goods x and y will

appear in a bundle together; the second, pi(x), represents bidder i’s private

valuation of the good x. We implement this new mechanism by changing the

routine Add Good to Bundle(); otherwise, we use the bid-generation

technique described in Figure 18.6 above.

CATS default parameter values: max good value = 100,

additional good = 0.9, max substitutable bids = 5, additivity = 0.2,

deviation = 0.5, budget factor = 1.5, resale factor = 0.5, and

S(n) = n1+additivity.
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18.3.4 Temporal matching

We now consider real-world domains in which complementarity arises from a

temporal relationship between goods. In this section we discuss matching

problems, in which corresponding time slices must be secured on multiple

resources. The general form of temporal matching includes m sets of

resources, in which each bidder wants 1 time slice from each of j ≤ m sets

subject to certain constraints on how the times may relate to one another

(e.g., the time in set 2 must be at least two units later than the time in set

3). Here we concern ourselves with the problem in which j = 2, and model

the problem of airport take-off and landing rights.

At present, the FAA allocates take-off and landing slots through an

administrative process. However, there has been much discussion of using a

combinatorial auction to perform this allocation, in which certain high-traffic

airports would require airlines to purchase the right to take off or land during

a given time slice. Rassenti et al. (1982) made the first study of auctions in

this domain. The problem has been the topic for much other work, such as

Grether et al. (1989) which includes detailed experiments and an excellent

characterization of bidder behavior. The domain is also discussed in the

foreword to this volume and in Chapter 20.

Single-good auctions are not adequate for this domain because an airline

which buys the right for a plane to take off at one airport must also be
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guaranteed the right for the plane to land at its destination an appropriate

amount of time later. Thus, complementarity exists between certain pairs of

goods, where goods are the right to use the runway at a particular airport at

a particular time. Substitutable bundles are different departure/arrival

packages; therefore bundles will only be substitutable within certain limits.

Building the graph

Departing from our graph-generating approach above, we ground this

example in the map of high-traffic US airports for which take-off and landing

right auctions have been proposed (Grether et al. 1989). These are the four

busiest airports in the United States: La Guardia International, Ronald

Reagan Washington National, John F. Kennedy International, and O’Hare

International. This map is shown in Figure 18.10. We chose not to use a

random graph in this example because the number of bids and goods is

dependent on the number of bidders and time slices at the given airports; it is

not necessary to modify the number of airports in order to vary the problem

size. Thus, num cities = 4 and num times = bnum goods/num citiesc.

Generating bids

Our bidding mechanism presumes that airlines have a certain tolerance for

when a plane can take off and land (early takeoff deviation,
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Figure 18.10: Map of Airport Locations

late takeoff deviation, early land deviation, late land deviation), as

related to their most preferred take-off and landing times (start time,

start time + min flight length). We generate bids for all bundles that fit

these criteria. The value of a bundle is derived from a particular agent’s

utility function. We define a utility umax for an agent, which corresponds to

the utility the agent receives for flying from city1 to city2 if it receives the

ideal takeoff and landing times. This utility depends on a common value for

a time slot at the given airport, and deviates by a random amount. Next we

construct a utility function which reduces umax according to how late the

plane will arrive, and how much the flight time deviates from optimal.

CATS default parameter values: max airport value = 5,

longest flight length = 10, deviation = 0.5, early takeoff deviation = 1,
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Set the average valuation for each city’s airport:
cost(city) = rand(0,max airport value)

Let max l = length of longest distance between any two cities
While num generated bids < num bids

Randomly select city1 and city2 where e(city1, city2)
l = distance(city1, city2)
min flight length = round(longest flight length · 1

max l )
start time = rand int(1, num times−min flight length)
dev = rand(1− deviation, 1 + deviation)
Make substitutable (XOR) bids. For takeoff =
max(1, start time− early takeoff deviation) to
min(num times, start time + late takeoff deviation)

For land = takeoff + min flight length to min(start time +
min flight length + late land deviation, num times)

amount late =
min(land− (start time + min flight length), 0)

delay = land− takeoff −min flight length
Bid dev · (cost(city1) + cost(city2)) · delay coeffdelay ·
amount late coeffamount late for takeoff at time
takeoff at city1 and landing at time land at city2

End For
End For

End While

Figure 18.11: Temporal Matching: Bid-Generation Technique
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late takeoff deviation = 2, early land deviation = 1,

late land deviation = 2, delay coeff = 0.9, and amount late coeff = 0.75.

18.3.5 Temporal scheduling

Wellman et al. (1998) proposed distributed job-shop scheduling with one

resource as a CA problem. We provide a distribution that mirrors this

problem. While there exist many algorithms for solving job-shop scheduling

problems, the distributed formulation of this problem places it in an

economic context. Wellman et al. describe a factory conducting an auction

for time-slices on some resource. Each bidder has a job requiring some

amount of machine time, and a deadline by which the job must be

completed. Some jobs may have additional, later deadlines which are less

desirable to the bidder and so for which the bidder is willing to pay less.

Generating bids

In the CA formulation of this problem, each good represents a specific time

slice. Two bids are substitutable if they constitute different possible

schedules for the same job. We determine the number of deadlines for a

given job according to a decay distribution, and then generate a set of

substitutable bids satisfying the deadline constraints. Specifically, let the set

of deadlines of a particular job be d1 < · · · < dn and the value of a job
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completed by d1 be v1, superadditive in the job length. We define the value

of a job completed by deadline di as vi = v1 · d1

di
, reflecting the intuition that

the decrease in value for a later deadline is proportional to its ‘lateness’. Like

Wellman et al., we assume that all jobs are eligible to be started in the first

time slot. Our formulation of the problem differs in only one respect—we

consider only allocations in which jobs receive continuous blocks of time.

However, this constraint is not restrictive because for any arbitrary

allocation of time slots to jobs there exists a new allocation in which each job

receives a continuous block of time and no job finishes later than in the

original allocation. (This may be achieved by numbering the winning bids in

increasing order of scheduled end time, and then allocating continuous

time-blocks to jobs in this order. Clearly no job will be rescheduled to finish

later than its original scheduled time.) Note also that this problem cannot be

translated to a trivial one-good multi-unit CA problem because jobs have

different deadlines.

CATS default parameter values: deviation = 0.5,

prob additional deadline = 0.9, additivity = 0.2, and max length = 10.

Note that we propose a constant maximum job length, because the length of

time a job requires should not depend on the amount of time the auctioneer

makes available.
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While num generated bids < num bids
l = rand int(1, max length)
d1 = rand int(l, num goods)
dev = rand(1− deviation, 1 + deviation)
cur max deadline = 0
new d = d1

To generate substitutable (XOR) bids. Do
Make bids with price offered = dev · l1+additivity · d1/new d
for all blocks [start, end] where start ≥ 1, end ≤ new d,
end > cur max deadline, end− start = l

cur max deadline = new d
new d = rand int(cur max deadline + 1, num goods)

While rand(0, 1) ≤ prob additional deadline
End While

Figure 18.12: Temporal Scheduling: Bid-Generation Technique

18.3.6 Legacy distributions

To aid researchers designing new CA algorithms by facilitating comparison

with previous work, CATS includes the ability to generate bids according to

all previous published test distributions of which we are aware, subject to the

requirement that the distributions be able to generate arbitrary numbers of

goods and bids. Each of these distributions may be seen as answering to

three questions:

• What number of goods should be requested in a bundle?

• Which goods should be requested?

• What price should be offered for the bundle?
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We begin by describing different techniques for answering each of these

three questions, and then show how they have been combined in previously

published test distributions.

Number of goods

Uniform: Uniformly distributed on [1, num goods]

Normal: Normally distributed with µ = µ goods and σ = σ goods

Constant: Fixed at constant goods

Decay: Starting with 1, repeatedly increment the size of the bundle until

rand(0, 1) exceeds α

Binomial: Request n goods with probability

pn(1− p)num goods−n
(

num goods
n

)

Exponential: Request n goods with probability C exp(−n/q)

Which goods

Random: Draw n goods uniformly at random from the set of all goods,

without replacement6

Price offer

Fixed Random: Uniform on [low fixed, hi fixed]

Linear Random: Uniform on [low linearly · n, hi linearly · n]
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Normal: Draw from a normal distribution with µ = µ price and σ =

σ price

Quadratic7: For each good k and each bidder i set the value vi
k =

rand(0, 1); then i’s price offer for a set of goods S is
∑

k∈S vi
k +

∑
k,q vi

kv
i
q

18.3.7 Previously published distributions

The following is a list of the distributions used in all published tests of which

we are aware. In each case we describe first the method used to choose the

number of goods, followed by the method used to choose the price offer. In

all cases the ‘random’ technique was used to determine which goods should

be requested in a bundle. Each case is labeled with its corresponding CATS

legacy suite number; very similar distributions are given similar numbers and

identical distributions are given the same number.

[L1] Sandholm: Uniform, fixed random with low fixed = 0, hi fixed = 1

[L1a] Anderson et al.: Uniform, fixed random with low fixed = 0,

hi fixed = 1000

[L2] Sandholm: Uniform, linearly random with low linearly = 0,

hi linearly = 1

[L2a] Anderson et al.: Uniform, linearly random with

low linearly = 500, hi linearly = 1500

[L3] Sandholm: Constant with constant goods = 3, fixed random with
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low fixed = 0, hi fixed = 1

[L3] deVries and Vohra: Constant with constant goods = 3, fixed

random with low fixed = 0, hi fixed = 1

[L4] Sandholm: Decay with α = 0.55, linearly random with

low linearly = 0, hi linearly = 1

[L4] deVries and Vohra: Decay with α = 0.55, linearly random with

low linearly = 0, hi linearly = 1

[L4a] Anderson et al.: Decay with α = 0.55, linearly random with

low linearly = 1, hi linearly = 1000

[L5] Boutilier et al.: Normal with µ goods = 4 and σ goods = 1, normal

with µ price = 16 and σ price = 3

[L6] Fujishima et al.: Exponential with q = 5, linearly random with

low linearly = 0.5, hi linearly = 1.5

[L6a] Anderson et al.: Exponential with q = 5, linearly random with

low linearly = 500, hi linearly = 1500

[L7] Fujishima et al.: Binomial with p = 0.2, linearly random with

low linearly = 0.5, hi linearly = 1.5

[L7a] Anderson et al.: Binomial with p = 0.2, linearly random with

low linearly = 500, hi linearly = 1500

[L8] deVries and Vohra: Constant with constant goods = 3, quadratic

Parkes (1999) used many of the test sets described above (particularly
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those described by Sandholm and Boutilier et al.), but tested with fixed

numbers of goods and bids rather than scaling these parameters.

Since the publication of Leyton-Brown et al. (2000), the CATS

distributions have also been widely used, e.g., (Sandholm et al. 2001; Gonen

and Lehmann 2001; Gonen and Lehmann 2000; Holte 2001; Schuurmans

et al. 2001; Kastner et al. 2002; Zurel and Nisan 2000).

18.4 Tuning distributions

Our main goal in this work has been to generate realistic artificial test data,

even if this data turns out not to be as computationally difficult as other,

less realistic benchmarks. After all, combinatorial auction researchers should

care more about optimizing WDP algorithm performance on realistic

problems than on tackling arbitrary set packing problems that cannot easily

be interpreted as combinatorial auctions. This should not make us entirely

unconcerned with the hardness of our distributions, however. In this section

we present evidence about how hard the CATS distributions really are, and

show how to tune them so that the hardest possible instances are generated

from a given distribution.
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18.4.1 Removing dominated bids

For the WDP, it is known that problems become harder as the number of

goods and bids increases.8 For this reason, researchers have traditionally

reported the performance of their WDP algorithms in terms of the number of

bids and goods of the input instances. While it is easy to fix the number of

goods, holding the number of bids constant is not as straightforward as it

might seem. Most special-purpose algorithms make use of a polynomial-time

preprocessing step which removes bids that are strictly dominated by one

other bid. More precisely, bid i is dominated by bid j if the goods requested

by i are a (non-strict) superset of the goods requested by j, and the price

offer of i is smaller than or equal to the price offer of j. (This is similar in

flavor to the use of arc-consistency as a preprocessing step for a CSP or

weighted CSP problem.) It is thus possible for the size of problems given as

input to the WDP algorithm to vary even if all generated instances had the

same number of bids.

It is not obvious whether this domination procedure ought to remove

many bids, or whether the relationship between the average number of

non-dominated bids and total bids ought to vary substantially from one

distribution to another, so we set out to measure this relationship. Figure

18.4.1 shows the number of non-dominated bids as a function of the total

number of bids generated. In these experiments, with each line representing
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Figure 18.13: Non-Dominated Bids vs. Raw Bids

an average over 20 runs, bids were generated for an auction with 64 goods,

and the program stopped after 2000 non-dominated bids had been made. We

observe that some of the legacy distributions are considerably more likely

than others to generate non-dominated bids; we do not show the CATS

distributions in this graph as all five generated virtually no dominated bids.

Of course, many other polynomial-time preprocessing steps are possible,

e.g., a check for bids that are dominated by a pair of other bids. Indeed,

sophisticated solvers such as CPLEX employ many, much more complex

preprocessing steps before initiating branch-and-bound search. Our own

experience with algorithms for the WDP has suggested that other

polynomial-time preprocessing steps offer much poorer performance in terms

of the number of bids discarded in a given amount of time. In any case, the

results above suggest that strict domination checking should not be
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disregarded, since distributions differ substantially in the ratio between the

number of non-dominated bids and the raw number of bids.

For this reason, the CATS software has the ability to generate instances

for all CATS and legacy distributions with a specified number of

non-dominated bids: the software iteratively generates bids and removes

dominated bids until the specified target is reached. Observe that if we want

to be able to generate any given number of non-dominated bids then we will

be unable to use the distributions L1 and L5, because they often fail to

generate a target number of non-dominated bids even after millions of bids

were created. As an aside, this observation helps to explain why L1 and L5

have been found empirically easy by other researchers, and suggest that they

are a poor choice for computational benchmarking.

18.4.2 Sampling parameters

In our original paper on CATS (Leyton-Brown et al. 2000), we suggested

default values for the parameters of each generator. These defaults

represented reasonable, hand-tuned choices for the parameter values.

However, the parameter space is large and the computational characteristics

of the different CATS distributions vary substantially throughout this space.

An alternative ensures that the whole parameter space is explored:

reasonable ranges for each parameter are established, and then each time an
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Figure 18.14: Gross Hardness

instance is generated, these ranges are sampled uniformly at random.

Version 2.0 of the CATS software supports this sort of parameter sampling.

18.4.3 Making CATS harder

There has been discussion in the combinatorial auctions literature about

whether CATS is computationally hard (see, e.g., (Gonen and Lehmann

2000; Sandholm et al. 2001)). We performed tests on both CATS and legacy

distributions with ILOG’s CPLEX 7.1 solver,9 sampling parameters as

described above. Figure 18.14 shows the results of 500 runs for each

distribution on problems with 256 goods and 1000 non-dominated bids,
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indicating the number of instances with the same order-of-magnitude

runtime—i.e., blog10(runtime)c. We ran these experiments on a cluster of

Pentium III Xeon 550 Mhz machines with 4 GB of RAM each, and spent

over a CPU-year gathering the data.

We can see that several of the CATS distributions are quite easy for

CPLEX, and that others vary from easy to hard. It is interesting that most

distributions had instances that varied in hardness by several orders of

magnitude, despite the fact that all instances had the same problem size.

This gives rise to the question of whether we can tune CATS so that in

addition to generating “realistic” instances, it also generates the hardest

possible instances. It turns out that the answer is yes: in Chapter 19 we

show that even the easiest CATS distributions can be made orders of

magnitude harder.

Our interest in generating the hardest possible instances notwithstanding,

we should not be discouraged by the fact that some CATS distributions are

computationally easy. On the contrary, this evidence suggests that realistic

bidding patterns may often lead to much more tractable winner

determination problems than the hardest unrealistic distributions such as

“uniform” (L3). This is good news for those who hope to run practical

combinatorial auctions.
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18.5 Conclusion

In this chapter we introduced CATS, a test suite for combinatorial auction

optimization algorithms. The distributions in CATS represent a step beyond

earlier CA testing techniques because they are economically-motivated and

model real-world problems. We hope that CATS will continue to facilitate

the development and evaluation of new CA optimization algorithms.
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Notes

1There does exist a body of previous work characterizing hard cases for

weighted set packing, which is of course equivalent to the combinatorial auction

problem. Real-world bidding is likely to exhibit various regularities, however,

as discussed throughout this chapter. A data set designed to include the same
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regularities may be more useful for predicting the performance of an algorithm

in a real-world combinatorial auction.

2Electric power distribution is a frequently discussed real world problem

which is superficially similar to the problems discussed here. However, many

of the complementarities in this domain arise from physical laws governing

power flow in a network. Consideration of these laws becomes very complex in

networks of interesting size. Also, because these laws are taken into account

during the construction of power networks, the networks themselves are diffi-

cult to model using randomly generated graphs. For these reasons, we have

not attempted to model this domain.

3We use Sandholm’s (Sandholm 1999) term “decay” here, though the dis-

tribution goes by various names—for a description of the distribution please

see Section 18.3.6. There are two reasons we use a decay distribution here.

First, we expect that more bids will request small bundles than large bundles.

Second, we require a distribution where the expected bundle size is relatively

insensitive to changes in the total number of goods.

4Recall the discussion in Section 18.1.3 motivating the use of superadditive

valuations.

5To see why this cannot be modeled as a multi-unit CA, consider an auction

for three regions with two units each, and three bidders each wanting one unit

of two goods. In the optimal allocation, b1 gets 1 unit of g1 and 1 unit of g2,

b2 gets 1 unit of g2 and 1 unit of g3, and b3 gets 1 unit of g3 and 1 unit of g1.
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In this example there is no way of assigning frequencies to the units so that

each bidder gets the same frequency in both regions.

6Although in principle the problem of which goods to request could be

answered in many ways, all legacy distributions of which we are aware use the

Random technique.

7de Vries and Vohra (2003) briefly describe a more general version of

this price offer scheme, but do not describe how to set all the parameters

(e.g., defining which goods are complementary); hence we do not include it

here. Quadratic price offers may be particularly applicable to spectrum auc-

tions; see Ausubel et al. (1997).

8Recall the exception discussed in Section 18.1.3: when distributions favor

small bundles and lack sufficiently superadditive pricing then the problem

generally becomes easier as the number of bids grows very large.

9CPLEX has become faster with every version released, and so newer ver-

sions of CPLEX will most likely exceed the performance reported here. We

reran a subset of these problems using CPLEX 8.0, but found that the qual-

itative shape of the distribution was unchanged. Due to the investment of

machine time that would have been required to regenerate Figure 18.14 we

elected not to rerun the entire dataset, and report only our CPLEX 7.1 results

here.
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