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Abstract

We introduce a class of mechanisms, calledbidding clubs,
that allow agents to coordinate their bidding in auctions. Bid-
ding clubs invite a set of agents to join, and each invited agent
freely chooses whether to accept the invitation or whether
to participate independently in the auction. Clubs first con-
duct a “pre-auction”; depending on the outcome of the pre-
auction some subset of the members of the club bid in the
primary auction in a prescribed way. We model this setting as
a Bayesian game, including agents’ choices of whether or not
to accept a bidding club’s invitation. We examine the specific
case of bidding clubs for first-price auctions, showing the ex-
istence of a Bayes-Nash equilibrium where agents choose to
participate in bidding clubs when invited and truthfully de-
clare their valuations to the coordinator. Furthermore, we
show that the existence of bidding clubs benefits all agents,
including those who do not belong to a bidding club.

Introduction
Economic and game-theoretic models have had significant
impact on recent work in AI. Of particular interest has been
work on economic mechanism design dealing with proto-
cols for non-cooperative environments, which has not only
applied the existing theory to computational settings, but has
also extended it in various ways (Boutilier, Shoham, & Well-
man 1997; Tennenholtz 1999). Work in AI has revisited
the assumptions underlying optimal mechanism design (e.g.
(Monderer & Tennenholtz 2000)), and considered computa-
tional issues in the design of such mechanisms (e.g. (Sand-
holm et al. 2001)). Much of the game-theoretic multiagent
work in AI differs from related work in economics by ap-
proaching problems from agents’ perspectives rather than
from the perspective of the seller or mechanism designer.
There is a body of work in AI that concerns agent behavior in
various economic settings where the choice of mechanism is
out of the agents’ control, but where the mechanism is suffi-
ciently elaborate to permit some form of strategic manipula-
tion. Greenwald introduced the use of shopbots (Greenwald
1999) as a (relatively non-strategic) way for buyers to profit
from competition between sellers on the internet; Parkes and
Ungar studied proxy bidding (Parkes & Ungar 2000). In
the recent Trading Agent Competition (see, e.g., (Stone &
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Greenwald 2000)) many AI researchers constructed compet-
itive agents to operate in a rich economic setting; although
strategic considerations were essential in this competition,
the complexity of the setting defied theoretical analysis and
forced agent behavior to rely on heuristics.

In this work we continue in the AI tradition of taking
an agent’s perspective, but tackle a fundamental economic
mechanism which is simple enough to permit a theoretical
approach. Auctions are the most well-studied and basic eco-
nomic mechanisms, and have received a great deal of atten-
tion as a general approach for resource allocation in non-
cooperative environments. We present a class of systems
to assist sets of bidders,bidding clubs. The idea is simi-
lar to the idea behind “buyer clubs” on the internet (e.g.,
www.mobshop.com): to aggregate the market power of in-
dividual bidders. Buyer clubs work when buyers’ interests
are perfectly aligned; the more buyers join in a purchase the
lower the price for everyone. In auctions held on the internet
it is relatively easy for multiple agents to cooperate, hiding
behind a single auction participant. Intuitively, these bid-
ders should be able to gain by causing others to lower their
bids in the case of a first-price auction or by possibly remov-
ing the second-highest bidder in the case of a second-price
auction. However, the situation in auctions is not as simple
as in buyer clubs, because while bidders can gain by shar-
ing information, the competitive nature of auctions means
that bidders’ interests are not aligned. Thus there is a com-
plex strategic relationship among bidders in a bidding club,
and bidding club rules must be designed accordingly. This
work comes under the umbrella ofcollusion in auctions, a
negative term reflecting a seller-oriented perspective. We
adopt a more neutral stance towards such bidder activities
and thus use the termbidding clubsrather than the terms
bidding ringsandcartelsthat have been used in the past. Of
course, the technical development is not impacted by such
subtle differences in moral attitude.

There are four classical auction types: first-price, second-
price, Dutch and English. Since first-price and Dutch are
strategically equivalent, the latter may be omitted for our
purposes without loss of generality. Agents cooperation in
second-price auctions (and in English auctions, which are
equivalent under standard economic assumptions) is well
studied, most notably in (Graham & Marshall 1987). Co-
operation among agents in the framework of first-price auc-



tions has received much less attention. This is possibly
explained by the fact that since second-price auctions give
rise to dominant strategies, it is possible to study collusion
in many settings related to these auctions without perform-
ing strategic equilibrium analysis. The key exception to the
scarcity of formal work on first-price auctions is a very influ-
ential paper by McAfee and McMillan (McAfee & McMil-
lan 1992). Several sections of their paper are directly ap-
plicable to our work, including the discussion of enforce-
ment and the argument for independent private values as a
model of agents’ valuations as well as parts of their model.
However, the setting introduced in their work assumes that a
fixed number of agents participate in the auction and that all
agents are part of a single cartel that coordinates its behavior
in the auction. The authors show optimal collusion proto-
cols for “weak” cartels (in which transfers between agents
are not permitted: all bidders bid the reserve price, using
the auctioneer’s random tie-breaking rule to select a winner)
and for “strong” cartels (the cartel holds a pre-auction, the
winner of which bids the reserve price in the main auction
while all other bidders sit out; the winner distributes some of
his gains to other cartel members through side payments). A
small part of the paper deals with the case where in addition
to the single cartel there are also additional agents. However,
results are shown only for two cases: (1) when non-cartel
members bid without taking the existence of a cartel into ac-
count and (2) when each agenti has valuationvi ∈ {0, 1}.

An earlier paper (Leyton-Brown, Shoham, & Tennenholtz
2000) anticipated some of our results, considering bidding
clubs for five different economic mechanisms. This ear-
lier paper considered bidding clubs for first-price auctions,
second-price auctions, parallel second-price auctions with
substitutable goods, second-price auctions with complemen-
tary goods, and general mechanisms where agents’ valua-
tions are drawn from a finite set. However, this earlier paper
was not developed in the context of a general game-theoretic
model. For example, it relied upon the assumption that only
a single bidding club exists and that bidders who were not
invited to join the club behave as though they are not aware
of the possibility that a bidding club might exist. This makes
the analysis carried out in that earlier work restrictive and
limited from a game-theoretic perspective. Our current pa-
per is a substantial extension and generalization of that ear-
lier work, concentrating on the case of first-price auctions.

Distinguishing Features of our Model
Our goal in this work is to study cooperation between self-
interested bidders in a rich model that captures many of the
characteristics of auctions on the internet. This leads to
many differences between our model and models proposed
in (McAfee & McMillan 1992) and (Graham & Marshall
1987). We argue that a model of internet auctions with bid-
ding clubs should include the following features:

1. The number of bidders is stochastic.
2. A bidding club may contain any subset of the bidders in

the auction (e.g., it is not restricted to contain all bidders)
3. No limit to the number of bidding clubs in any auction.
4. All agents behave strategically, taking into account the

possibility that other agents may collude.

The first feature above is crucial. In many real-world in-
ternet auctions, bidders are not aware of the number of other
agents in the economic environment. A bidding club that
drops one or more bidders is thus undetectable to other bid-
ders in such an auction. An economic environment with a
fixed number of bidders would not model this uncertainty, as
the number of involved bidders would be common knowl-
edge among all bidders regardless of the number of bids
received in the auction. For this reason, we consider eco-
nomic environments where the number of bidders is chosen
at random, drawing on a model of auctions with stochas-
tic numbers of participants from a second paper by McAfee
and McMillan which is unrelated to collusion (McAfee &
McMillan 1987); we also refer to equilibrium analysis of
this model from (Harstad, Kagel, & Levin 1990).

To make bidding clubs a reasonable model of collusion in
internet auctions, we restrict our protocols as follows:

1. Bidders must be free to decline an invitation to join a bid-
ding club without (direct) penalty. In this way we include
the choice to collude as one of agents’ strategic decisions,
rather than assuming that agents will collude.

2. Bidding club coordinators must make money on expecta-
tion, and must never lose money. This ensures that third-
parties have incentive to run bidding club coordinators.

3. The bidding club protocol must give rise to an equilibrium
where all invited agents choose to participate, even when
the bidding club operates in a single auction as opposed
to a sequence of auctions. Thus agents can not be induced
to collude in a given auction by the threat of being denied
future opportunities to collude. This restriction is neces-
sary for modelling internet auction settings in which the
pool of participants varies substantially from one auction
to the next, and where many bidders are interested in par-
ticipating only in single auctions.

Overview
The first part of our paper does not directly concern bidding
clubs. First, we consider different variations on the first-
price auction mechanism. We begin with classical first-price
auctions, in which the number of bidders is common knowl-
edge, and then consider first-price auctions where the num-
ber of bidders is drawn from a known distribution. Combin-
ing results from both auction types, we present first-price
auctions with participation revelation: auctions in which
the number of bidders is stochastic, but the auctioneer an-
nounces the number of participants before taking bids. This
is the auction mechanism upon which we will base our bid-
ding club protocol for first-price auctions.

The second part of our paper is concerned explicitly with
bidding clubs, using material from the first part to present a
general model of bidding clubs and then a bidding club pro-
tocol for first-price auctions. First, we describe an economic
environment with the following novel features:

• A finite set of bidding clubs is selected from an infinite
set of potential bidding clubs.

• A finite set of agents is selected to participate in the auc-
tion, from an infinite set of potential agents. Some agents



are associated with bidding clubs, and the whole proce-
dure is carried out in such a way that no agent can gain
information about the total number of agents in the eco-
nomic environment from the fact of his own selection.

• The space of agent types is expanded to include both an
agent’s valuation, and the number of agents present in that
agent’s bidding club (equal to one if the agent does not
belong to a bidding club).

We introduce notation to describe each agent’s beliefs
about the number of agents in the economic environment,
conditioned on that agent’s private information. Next, we
examine bidding club protocols for first-price auctions. We
begin with two assumptions about the distribution of agent
valuations: the first related to continuity of the distribution,
and the second to monotonicity of equilibrium bids. We then
give a bidding club protocol for first-price auctions with par-
ticipation revelation, and present our main technical results:

• It is an equilibrium for agents to accept invitations to join
bidding clubs when invited and disclose their true valua-
tions to their coordinator, and for singleton agents to bid
as they would in an auction with a stochastic number of
participants in an economic environment without bidding
clubs, in which the distribution over the number of partic-
ipants is the same as in the bidding clubs setting.

• In equilibrium each agent is better off as a result of his
own club (that is, his expected payoff is higher than would
have been the case if his club never existed, but other
clubs—if any—still did exist).

• In equilibrium each club increases all non-members’ ex-
pected payoffs, as compared to equilibrium in the case
where all club members participated in the auction as sin-
gleton bidders, but all other clubs—if any—still existed.

• In equilibrium each agent’s expected payoff is identical
to the case in which no clubs exist. If clubs are will-
ing to make money (or break even) only on expectation,
they could distribute some of theirex anteexpected profits
among the club members, ensuring that all bidders gain.

First-Price Auctions

Let T be the set of possible agent types. The typeτi ∈ T of
agenti is the tuple(vi, si) ∈ V × S. vi denotes an agent’s
valuation: his maximal willingness to pay for the good of-
fered by the center. We assume thatvi represents a purely
private valuation for the good, and thatvi is selected inde-
pendently from the othervj ’s of other agents from a known
distribution,F , having density functionf . By si we denote
agenti’s signal: his private information about the number of
agents in the auction. In this section we will consider the
simple case whereS = {∅}: it is common knowledge that
all agents receive the null signal, and hence gain no addi-
tional information about the number of agents. Recall that
the economic environment itself is always common knowl-
edge, and so agents always have some information about the
number of agents even when they receive the null signal.

Classical first-price auctions
In a classical first-price auction, the economic environment
consists ofn agents. Each participant submits a bid in a
sealed envelope; the agent with the highest bid wins the good
and pays the amount of his bid, and all other participants
pay nothing. In the case of a tie, the winner of the auction
is selected uniformly at random from the bidders who tied
for the highest bid. The equilibrium analysis of first-price
auctions is quite standard:

Proposition 1 If valuations are selected independently and
uniformly from[0, 1] then it is a symmetric equilibrium for
each agenti to follow the strategyb(vi) = n−1

n vi.

Using classical equilibrium analysis it is possible to show
how classical first-price auctions can be generalized to an
arbitrary continuous distributionF .

Proposition 2 If valuations are selected from a contin-
uous distributionF then it is a symmetric equilibrium
for each agenti to follow the strategyb(vi) = vi −
F (vi)−(n−1)

∫ vi

0
F (u)n−1du.

In both cases, observe that althoughn is a free variable,
n is not a parameter of the strategy; the same is true of
the distributionF . Agents deduce this information from
their full knowledge of the economic environment. It is use-
ful, however, to have notation specifying the amount of the
equilibrium bid as a function of bothv and n. We write
be(vi, n) = vi − F (vi)−(n−1)

∫ vi

0
F (u)n−1du.

First-price auctions with a stochastic number of
bidders
It is also possible to model an economic environment in
which the number of agents is not a constant, but is instead
chosen stochastically from a known probability distribution
P ; by pj we denote the probability that there are exactlyj
agents. An equilibrium for this setting was demonstrated in
(Harstad, Kagel, & Levin 1990):

Proposition 3 If valuations are selected from a continuous
distribution F and the number of bidders is selected from
the distributionP then it is a symmetric equilibrium for each
agenti to follow the strategyb(vi) =

∑∞
j=2 pjb

e(vi, j).

Observe thatbe(vi, j) is the amount of the equilibrium
bid for a bidder with valuationvi in a setting withj bid-
ders as described above.P is deduced from the economic
environment. We overload our previous notation for the
equilibrium bid, this time as a function of the agent’s val-
uation and the probability distributionP . Thus we write
be(vi, P ) =

∑∞
j=2 pjb

e(vi, j).

First-price auctions with participation revelation
In an economic environment with a stochastic number of
bidders, the auctioneer may choose to reveal the number of
participants to all bidders, for example by introducing a two-
phase mechanism with revelation of the number of partici-
pants between the stages. Specifically, we define a first-price
auction with participation revelation as follows:

1. Agents indicate their intention to bid in the auction.



2. The auctioneer announcesn, the number of agents who
registered in the first phase.

3. Agents submit bids to the auctioneer. The auctioneer only
accepts bids from agents who registered in the first phase.

4. The agent who submitted the highest bid is awarded the
good for the amount of his bid; all other agents pay 0.

Unsurprisingly, it is an equilibrium for bidders to bid as
in a classical first-price auction:

Proposition 4 There exists an equilibrium of the first-price
auction with participation revelation where every agenti in-
dicates the intention to participate and bidsbe(vi, n).

In our discussion of bidding clubs we will be concerned
with first-price auctions with information revelation, but we
will show an equilibrium in which the number of agents reg-
istering in the first phase is smaller than the total number
of agents participating in the auction, because some bidders
with low valuations drop out as part of a collusive agree-
ment. The auctioneer’s declaration acts as a signal about the
total number of bidders, but individual agents will still be
uncertain about the total number of opponents they face.

Auction Model for Bidding Clubs

We now give a formal description of the economic environ-
ment in which bidding clubs operate, define the bidding club
mechanism for bidding club members, and define symmet-
ric Bayes-Nash equilibria. Because our aim is not to model
a situation where agents’decisionto collude is exogenous—
as this would gloss over the question of whether the collu-
sion is stable—we include the collusive protocol as part of
the model and show that it is individually rationalex post
(i.e., after agents have observed their valuations) for agents
to choose to collude. However, we do consider exogenous
the selection of the sets of agents who areinvited to collude.

The Economic Environment

We construct an economic environmentE consisting of a
set of agents who have non-negative valuations for a good at
auction, the distinguished agent0 and a set of bidding club
coordinators who may invite agents to participate in a bid-
ding club. Intuitively, the number of agents in each bidding
club is independent of the number of agents in every other
bidding club, because we construct an environment where an
agent’s belief update after observing the number of agents in
his bidding club does not result in any change in the distri-
bution over the number ofotheragents in the auction.

Coordinators Coordinators are not free to choose their
own strategies; rather, they act as part of the mechanism for
a subset of the agents in the economic environment. We de-
note the probability that an auction will involvenc potential
coordinators asγC(nc). γC may be any distribution satisfy-
ing γC(0) = γC(1) = 0: at least two potential coordinators
will be associated with each auction. We assume that the
name of each potential coordinator is selected from the uni-
form distribution on[0, 1].

Agents The probability thatn agents will be associated
with a potential coordinator is denotedγA(n). γA may be
any distribution satisfyingγA(0) = 0 andγA(1) < 1. If
only one (actual) agent is associated with a potential coor-
dinator, the potential coordinator will not be actualized and
hence the agent will not belong to a bidding club. In this
way we model agents who participate directly in the auc-
tion without being associated with a coordinator. If more
than one agent is associated with a potential coordinator, the
coordinatoris actualized and all the agents receive an invita-
tion to participate in the bidding club. As before, we assume
that the name of each agent associated with a potential co-
ordinator is selected from the uniform distribution on[0, 1].
The key consequence of our technical construction of coor-
dinator and agent names is that an agent’s knowledge of the
coordinator with whom he is associated does not give him
additional information about what other agents have been
selected. Any other technique for providing this property
may also be used; e.g., other constructions draw coordinator
and agent names from finite sets.

Signals Each agent receives a signal informing him of the
number of agents in his bidding club; we denote this signal
si. Of course, if this number is1 then there is no coordinator
for the agent to deal with, and he will simply participate in
the main auction. Note also that agents are neither aware
of the number of potential coordinators for their auction nor
the number of actualized potential coordinators, though they
are aware of both distributions.

Beliefs Each agent has beliefs about the number of agents
in the economic environment. Not all agents have the same
beliefs—agents who have been signaled that they belong to
a bidding club will expect a larger number of agents than
singleton agents. We denote bypn,k

m the (true) probability
that there will be a total ofm agents in the auction, given that
n potential coordinators were selected and that there arek
agents associated with one of the potential coordinators; we
denote the whole distributionPn,k. Because the numbers of
agents in each bidding club are independent, every agent in
the whole auction has the same beliefs about the number of
other agents in the economic environment discounting those
agents in his own bidding club. Hence agenti’s beliefs are
described by the distributionPn,si .

The Auction Mechanism

Bidding clubs, in combination with a main auction (along
the lines of (Monderer & Tennenholtz 2000)), induce this
auction mechanism for their members:

1. A set of bidders is invited to join the bidding club.
2. Each agenti sends a messageµi to the bidding club co-

ordinator. This may be the null message, which indicates
that the agent will not participate in the coordination and
will instead participate freely in the main auction. Oth-
erwise, agenti agrees to be bound by the bidding club
rules, andµi is agenti’s declared valuation for the good.
Of course,i can lie about his valuation.

3. Based on commonly-known rules, and on the information
all the members supply, the coordinator selects a subset



of the agents to bid in the main auction. The coordinator
may bid on behalf of these agents (e.g., using their ID’s
on the auction web site) or it may instruct agents on how
to bid. In either case we assume that the coordinator can
force agents to bid as desired, for example by imposing a
charge on agents who do not behave as directed.

4. If a bidder represented by the coordinator wins the main
auction, he is made to pay the amount required by the
auction mechanism to the auctioneer, and may be required
to make an additional payment to the coordinator.

Any number of coordinators may participate in an auc-
tion. However, we assume that all coordinators follow the
same protocol, which is common knowledge. Singleton bid-
ders submit messages directly to the auctioneer in the main
auction, pay the amount of their message if they win.

The Bayesian Game
Given our economic environment and auction mechanism, a
well-defined Bayesian game will be specified by every tu-
ple of primary auction type, bidding club rules and distri-
butions over agent types, numbers of agents and numbers
of bidding clubs. A strategybi : T → M for agenti is
a mapping from his typeτi to a messageµi. This may be
the null message, which indicates non-participation in the
auction.Σ denotes the set of possible strategies, i.e., the set
of functions from types to messages inM. Each agent’s
type is that agent’s private information, but the whole set-
ting is common knowledge. For notational simplicity we
only define symmetric equilibria, where all agents bid the
same function of their type, as this is sufficient for our pur-
poses in this paper. ByLi(τi, bi, b

j−1) we denote agenti’s
ex postexpected utility given that his type isτi, he follows
the strategybi, all other agents use the strategyb, and there
are a total ofj agents. LetA be the set of participants in
the auction, where|A| = n. The strategy profilebn ∈ Σn

is a symmetric Bayes-Nash equilibrium if and only if∀i ∈
A, ∀τi ∈ T , b ∈ argmaxbi∈Σ

∑∞
j=2 pτi

j Li(τi, bi, b
j−1).

Bidding Clubs for First-Price Auctions
Assumptions
Our results hold for a broad class of distributions of
agent valuations—all those for which the following two
assumptions are true. First, we assume thatF is con-
tinuous and atomless. Before giving our second assump-
tion, we definePx≥i =

∑∞
x=i px, and define the rela-

tion “<”, corresponding to a notion of stochastic domi-
nance: P < P ′ iff ∃l(∀i < l, Px≥i = P ′x≥i and∀i ≥
l, Px≥i < P ′x≥i). Our second assumption is that(P <

P ′) implies that∀v, be(v, P ) < be(v, P ′). Intuitively, we
assume that every agent’s symmetric equilibrium bid in a
setting with a stochastic number of participants drawn from
P ′ is strictly greater than that agent’s symmetric equilib-
rium bid in a setting with a stochastic number of participants
drawn fromP , wheneverP ′ stochastically dominatesP .

First-Price Auction Bidding Club Protocol
What follows is the first-price auction bidding club protocol
for a coordinator who has invitedk agents:

1. Each agenti sends a messageµi to the coordinator.
2. If at least one agent declines participation then the coor-

dinator registers in the main auction for every agent who
accepted the invitation to the bidding club. For each bid-
deri, the coordinator submits a bid ofbe(µi, P

n,k), where
n is the number of bidders announced by the auctioneer.

3. If all agents accepted the invitation, the coordinator drops
all bidders except the bidder with the highest reported val-
uation, who we will denote as bidderh. Forh the coordi-
nator will place a bid ofbe(µh, Pn,1) in the main auction.

4. If bidder h wins in the main auction, he is made
to pay be(µh, Pn,1) to the center andbe(µh, Pn,k) −
be(µh, Pn,1) to the coordinator.

Theorem 1 It is an equilibrium for all bidding club mem-
bers to choose to participate and to truthfully declare their
valuations to their respective bidding club coordinators, and
for all non-bidding club members to participate in the main
auction with a bid ofbe(v, Pn,1).

Remark.Despite the fact that this is the central theorem of
this paper, it is difficult to summarize here as it makes use
of two general lemmas and consists of a lengthy case anal-
ysis. In particular, in one of these lemmas we identify a
particular class of auction mechanisms that are asymmetric
in the sense that every agent is subject to the same allocation
rule but to a potentially different payment rule, and further-
more that agents may receive different signals. We show
that truthful bidding is an equilibrium for this class of mech-
anisms. Under the equilibrium demonstrated in the theorem
the coordinator makes money on expectation and never loses
money. The equilibrium also gives rise to an economically
efficient allocation: i.e., the good is allocated to the agent
with the globally highest valuation.

Do bidding clubs cause agents to gain?
We can show that bidders are better off being invited to a
bidding club than being sent to the auction as singleton bid-
ders. Intuitively, an agent gains by not having to consider
the possibility that other bidders who would otherwise have
belonged to his club might themselves be bidding clubs.

Theorem 2 An agenti has higher expected utility in a bid-
ding club of sizek bidding as described in theorem 1 than
he does if the bidding club does not exist andk additional
agents (includingi) participate directly in the main auction
as singleton bidders, again bidding as in theorem 1.

We can also show that singleton bidders and members of
other bidding clubs benefit from the existence of each bid-
ding club in the same sense. Intuitively, other bidders gain
from not having to consider the possibility that additional
bidders might represent bidding clubs. Paradoxically, other
bidders’ gain from the existence of a given bidding club is
greater than the gain of that club’s members.

Corollary 1 In the equilibrium described in theorem 1, sin-
gleton bidders and members of other bidding clubs have
higher expected utility when other agents participate in a
given bidding club of sizek ≥ 2, as compared to a case
wherek additional agents participate directly in the main
auction as singleton bidders.



Finally, we can show that agents are indifferent between
participating in the equilibrium from theorem 1 in a bid-
ding club of sizek (thus, where the number of agents is dis-
tributed according toPn,k) and participating in an economic
environment with a stochastic number of bidders distributed
according toPn,k, but with no coordinators.

Theorem 3 For all τi ∈ T , for all k ≥ 1, for all n ≥ 2,
agenti obtains the same expected utility by:

1. participating in a bidding club of sizek in the bidding
club economic environment and following the equilibrium
from theorem 1;

2. participating in a first-price auction with participation
revelation in an economic environment with a stochastic
number of bidders distributed according toPn,k where all
bidders receive the null signal and no coordinators exist.

This theorem shows that an agent would be as happy in a
world without bidding clubs as he is in our economic envi-
ronment. The difference between the two worlds is that in
the latter bidding club coordinators make a positive profit on
expectation, and indeed never lose money. That is, in the
bidding club economic environment some expected profit
is shifted from the auctioneer to the bidding club coordi-
nator(s) without affecting the bidders’ expected utility. We
observe that it would be easy for coordinators to redistribute
some of these gains to bidders along the lines of the second-
price auction protocol proposed by (Graham & Marshall
1987): coordinators make a payment to every bidder who
accepts the invitation to join, where the amount of this pay-
ment is less than or equal to theex anteexpected difference
that the bidder makes to the coordinator’s profit. With this
modification coordinators would be budget balanced only on
expectation (violating our earlier requirement that coordina-
torsneverlose money), but agents would strictly prefer the
bidding club economic environment to the economic envi-
ronment in which coordinators do not exist.

Disrupting Bidding Clubs
There are two things an auctioneer can do to disrupt bid-
ding clubs in a first-price auction. First, she can permit
“false-name bidding” (see, e.g., (Yokoo, Sakurai, & Matsub-
ara 2000)). Our auction model has assumed that each agent
may place only a single bid in the auction, and that the cen-
ter has a way of uniquely identifying agents. (For example,
the auctioneer might make it impossible for bidders to place
bids claiming to originate from different agents by keying
user accounts to credit card billing addresses in combination
with a reputation ranking.) Second, she can refrain from
publicly disclosing the winner of the auction. If the auction-
eer does either of these things, a given bidderi has incentive
to deviate from the equilibrium in theorem 1 by accepting
the invitation to join the bidding club but placing a very low
bid with the coordinator and at the same time directly sub-
mitting a competitive bid in the main auction. Agenti will
gain when all other agents bid truthfully because the bidding
club will drop all but one of its members (lowering the num-
ber of participants announced by the auctioneer) and will
also require its high bidder to bid less than he would if he
were not bound to the coordination protocol. If false-name

bidding is impossible and the winner of the auction is pub-
licly disclosed then the bidding club coordinator can detect
an agent who has deviated in this way and impose a punitive
fine, making the deviation unprofitable.

Conclusion
We have presented a formal model of bidding clubs which
departs in many ways from models traditionally used in
the study of collusion; most importantly, all agents be-
have strategically based on correct information about the
economic environment, including the possibility that other
agents will collude. Other features of our setting include
a stochastic number of agents and a stochastic number of
bidding clubs in each auction. Agents’ strategy space is ex-
panded so that the decision of whether or not to join a bid-
ding club is part of an agent’s choice of strategy. Bidding
clubs never lose money, and gain on expectation. We have
showed a bidding club protocol for first-price auctions that
leads to a (globally) efficient allocation in equilibrium, and
which does not make use of side-payments; we also showed
that this protocol can benefit agents in three different senses.
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