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Abstract. It is well known that the ratio of the number of clauses to the number
of variables in a random k-SAT instance is highly correlated with the instance’s
empirical hardness. We consider the problem of identifying such features of ran-
dom SAT instances automatically using machine learning. We describe and ana-
lyze models for three SAT solvers—kcnfs, oksolver and sat z—and for two
different distributions of instances: uniform random 3-SAT with varying ratio of
clauses-to-variables, and uniform random 3-SAT with fixed ratio of clauses-to-
variables. We show that surprisingly accurate models can be built in all cases.
Furthermore, we analyze these models to determine which features are most use-
ful in predicting whether an instance will be hard to solve. Finally we discuss the
use of our models to build SATzi11a, an algorithm portfolio for SAT.?

1 Introduction

SAT is among the most studied problems in computer science, representing a generic
constraint satisfaction problem with binary variables and arbitrary constraints. It is also
the prototypical A'P-hard problem, and its worst-case complexity has received much
attention. Accordingly, it is not surprising that SAT has become a primary platform
for the investigation of average-case and empirical complexity. Particular interest has
been paid to randomly generated SAT instances. In this paper we concentrate on such
instances as they offer both a range of very easy to very hard instances for any given
input size and the opportunity to make connections to a wealth of existing work.

Early work [15, 2] considered the empirical performance of DPLL-type solvers run-
ning on uniform random k-SAT instances, finding a strong correlation between the in-
stance’s hardness and the ratio of the number of clauses to the number of variables in the
instance. Further, it was demonstrated that the hardest region (e.g., for random 3-SAT,
a clauses-to-variables ratio of roughly 4.26) corresponds exactly to a phase transition
in an algorithm-independent property of the instance: the probability that a randomly-
generated formula having a given ratio will be satisfiable. This well-publicized finding
led to increased enthusiasm for the idea of studying algorithm performance experimen-
tally, using the same tools as are used to study natural phenomena. Over the past decade,

3 We’d like to acknowledge very helpful assistance from Nando de Freitas, and our indebtedness
to the authors of the algorithms in the SATzilla portfolio. We also thank the anonymous
reviewers for helpful comments.



this approach has complemented worst-case analysis of algorithms, improving our un-
derstanding of algorithms’ empirical behavior with interesting findings on (e.g.) islands
of tractability [8], search space topologies for stochastic local search algorithms [5, 4],
backbones [13], backdoors [18] and random restarts [3].

Inspired by the success of this work on SAT and related problems, in 2002 we pro-
posed a new methodology for using machine learning to study empirical hardness [11].
We applied this methodology to the combinatorial auction winner determination prob-
lem (WDP), an N'P-hard combinatorial optimization problem equivalent to weighted
set packing. In subsequent papers [10, 9] we extended our methodology, demonstrating
techniques for improving empirical algorithm performance through the construction of
algorithm portfolios and for automatically generating hard benchmark distributions. In
this paper we come full-circle and apply our techniques to uniform random 3-SAT—the
problem that originally inspired their development.

The work which is perhaps the most related to our own is [7, 14]. There classifica-
tion techniques are used to categorize runs of CSP and SAT solvers according to length.
In[11, 9] we discuss the relationship between this work and our approach in more detail.
It is worth pointing out that, different from ours, their work focuses on understanding
the behavior of solvers during the run, as opposed to studying the effect of problem
structure on hardness. In addition, as argued in [11], standard classifications techniques
can be sometimes inappropriate in this context, for example, because of boundary cases.

Our current work has three goals. First, we aim to show that inexpensively-com-
putable features can be used to make accurate predictions about the empirical hardness
of random SAT instances, and to analyze these models in order to identify important
features. We consider three different SAT algorithms and two different instance distri-
butions. The first distribution contains random 3-SAT instances with a varying ratio of
clauses to variables, allowing us to see whether our techniques automatically select the
clauses-to-variables ratio as an important feature, and also what other features are im-
portant in this setting. Our second distribution contains random 3-SAT instances with
the ratio of clauses-to-variables held constant at the phase transition point. This distri-
bution has received much attention in the past; it gives us the opportunity to explain the
orders-of-magnitude runtime variation that persists in this so-called “hard region.”

Second, we show that empirical hardness models have other useful applications for
SAT. Most importantly, we describe a SAT solver, SATz1i11a, which uses hardness
models to choose among existing SAT solvers on a per-instance basis. We explain some
details of its construction and summarize its performance.

Our final goal is to offer a concrete example in support of our abstract claim that
empirical hardness models are a useful tool for gaining understanding of the behavior of
algorithms for solving A'P-hard problems. Thus, while we believe that our SAT results
are interesting in their own right, and while studying random 3-SAT is useful because it
allows connection to existing theoretical work, we want to emphasize that very few of
our techniques are particular to SAT. Indeed, we have achieved equally strong results
applying our methodologies to qualitatively different problems.*

* WDP, for example, is very different from SAT: while feasible solutions can be identified in
constant time, the goal is to find an optimal feasible solution, and there is thus no opportunity to



2 Methodology

Although the work surveyed above has led to great advances in understanding the em-
pirical hardness of SAT problems, most of these approaches scale poorly to more com-
plicated domains. In particular, most of these methods involve exhaustive exploration
of the search and/or distribution parameter spaces, and require considerable human in-
tervention and decision-making. As the space of relevant features grows and instance
distributions become more complex, it is increasingly difficult either to characterize
the problem theoretically or to explore its degrees of freedom exhaustively. Moreover,
most current work focuses on understanding algorithms’ performance profiles, rather
than trying to characterize the hardness of individual problem instances.

2.1 Empirical Hardness Models

In [11] we proposed a novel experimental approach for predicting the runtime of a given
algorithm on individual problem instances:

1. Select a problem instance distribution.
Observe that the choice of distribution is fundamental—different distributions can
induce very different algorithm behavior.

2. Select one or more algorithms.

3. Select a set of inexpensive, distribution-independent features.
It is important to remember that individual features need not be perfectly predictive
of hardness; ultimately, our goal will be to combine features together. Thus, it is
possible to take an inclusive approach, adding all features that seem reasonable and
then removing those that turned out to be unhelpful (see step 5). Furthermore, many
features that proved useful for one constraint satisfaction or optimization problem
can carry over into another.

4. Generate a set of instances and for each one, determine the running time of
the selected algorithms and compute the features.

5. Eliminate redundant or uninformative features.
Much better models tend to be learned when all features are informative. A variety
of statistical techniques are available for eliminating or de-emphasizing the effect
of such features. The simplest approach is to manually examine pairwise correla-
tions, eliminating features that are highly correlated with what remains. Shrinkage
techniques (such as lasso [16] or ridge regression) are another alternative.

6. Use machine learning to select a function of the features that predicts each
algorithm’s running time.
Since running time is a continuous variable, regression is the natural machine-
learning approach to use for building runtime models. For more detail about why
we prefer regression to other approaches such as classification, see [11].

terminate the algorithm the moment a solution is found. We also have promising unpublished
results for TSP and the computation of Nash equilibria.



2.2 Building Models

There are a wide variety of different regression techniques; the most appropriate for
our purposes perform supervised learning.’ Such techniques choose a function from a
given hypothesis space (i.e., a space of candidate mappings from the given features to
the running time) in order to minimize a given error metric (a function that scores the
quality of a given mapping, based on the difference between predicted and actual run-
ning times on training data, and possibly also based on other properties of the mapping).
Our task in applying regression to the construction of hardness models thus reduces to
choosing a hypothesis space that is able to express the relationship between our features
and our response variable (running time), and choosing an error metric that both leads
us to select good mappings from this hypothesis space and can be tractably minimized.

The simplest regression technique is linear regression, which learns functions of the
form Zl w; fi, where f; is the ith feature and the w’s are free variables, and has as its
error metric root mean squared error (RMSE). Linear regression is a computationally
appealing procedure because it reduces to the (roughly) cubic-time problem of matrix
inversion.

Choosing a Hypothesis Space Although linear regression seems quite limited, it can
actually be extended to a wide range of hypothesis spaces. There are two key tricks.
The first is to introduce new features that are functions of the original features. For
example, in order to learn a model which is a quadratic function of the features, the
feature set can be augmented to include all pairwise products of features. A hyperplane
in the resulting much-higher-dimensional space corresponds to a quadratic manifold in
the original feature space. The key problem with this approach is that the set of features
grows quadratically, which may cause the regression problem to become intractable and
can also lead to overfitting. Thus, it can make sense to add only a subset of the pairwise
products of features; e.g., only pairwise products of the k£ most important features in
the linear regression model. Of course, we can use the same idea to reduce many other
nonlinear hypothesis spaces to linear regression: all hypothesis spaces which can be
expressed by >, w;g;(f), where the g;’s are arbitrary functions and f = {f;}.

Sometimes we want to consider hypothesis spaces of the form & (), w;g;(f)). For
example, we may want to fit a sigmoid or an exponential curve. When h is a one-to-one
function, we can transform this problem to a linear regression problem by replacing our
response variable ¥ in our training data by A~ (y), where h~! is the inverse of h, and
then training a model of the form ), w;g; (f). On test data, we must evaluate the model
h (3, wigi(f)). One caveat about this trick is that it distorts the error metric: the error-
minimizing model in the transformed space will not generally be the error-minimizing
model in the true space. In many cases this distortion is acceptable, however, making
this trick a tractable way of performing many different varieties of nonlinear regression.
In this paper we use exponential models (h(y) = 10¥; h~1(y) = log;,(y)) and logistic
models (h(y) = 1/(1+e7¥); A~ (y) = In(y) In(1 — y) with values of y first mapped
onto the interval (0, 1)). Because logistic functions have a finite range, we found them
particularly useful for modeling capped runs.

3 Because of our interests in being able to analyze our models and in keeping model sizes small,
we avoid model-free approaches such as nearest neighbor.



2.3 Evaluating the Importance of Variables in a Hardness Model

Once we are able to construct an accurate empirical hardness model, it is natural to try
to explain why it works. A key question is which features were most important to the
success of the model. It is tempting to interpret a linear regression model by comparing
the coefficients assigned to the different features, on the principle that larger coefficients
indicate greater importance. This can be misleading for two reasons. First, features
may have different ranges, though this problem can be mitigated by normalization.
More fundamentally, when two or more features are highly correlated then models can
include larger-than-necessary coefficients with different signs. A better approach is to
force models to contain fewer variables, on the principle that the best low-dimensional
model will involve only relatively uncorrelated features. Once such a model has been
obtained, we can evaluate the importance of each feature to that model by looking at
each feature’s cost of omission. That is, we can train a model without the given feature
and report the resulting increase in (cross-validated) prediction error. To make them
easier to compare, we scale the cost of omission of the most important feature to 100
and scale the other costs of omission in proportion.

There are many different “subset selection” techniques for finding good, small mod-
els. Ideally, exhaustive enumeration would be used to find the best subset of features of
desired size. Unfortunately, this process requires consideration of a binomial number of
subsets, making it infeasible unless both the desired subset size and the number of base
features are very small. When exhaustive search is impossible, heuristic search can still
find good subsets. We considered four heuristic methods: forward selection, backward
elimination, sequential replacements and LAR. Since none of these four techniques is
guaranteed to find the optimal subset, we combine them together by running all four
and keeping the model with the smallest cross-validated (or validation-set) error.

3 Hardness Models for SAT

3.1 Features

Figure 1 summarizes the 91 features used by our SAT models. Since not every feature is
useful in every distribution, we discard uninformative or highly correlated features after
fixing the distribution. For example, while ratio of clauses-to-variables was important
for SATz1i11a, it is not at all useful for the fixed-ratio dataset. In order to keep values
to sensible ranges, whenever it makes sense we normalize features by either the number
of clauses or the number of variables in the formula.

We divide the features into nine groups. The first group captures problem size, mea-
sured by the number of clauses, variables, and the ratio of the two. Because we expect
this ratio to be an important feature, we gave it additional expressive power by includ-
ing squares and cubes of both the ratio and its reciprocal. Also, because we know that
features are more powerful in simple regression models when they are directly corre-
lated with the response variable, we include a “linearized” version of the ratio which is
defined as the absolute value of the difference between the ratio and the phase transition
point, 4.26. It turns out that for variable-ratio data this group of features alone suffices



Problem Size Features: 50-54. Number of occurrences in a Horn clause for each

1. Number of clauses: denoted ¢ variable : mean, variation coefficient, min, max,
2. Number of variables: denoted v and entropy.
3-5. Ratio: ¢/v, (¢/v)2, (c/v)?
6-8. Ratio reciprocal: (v/c), (v/c)?, (v/c)? LP-Based Features:
9-11. Linearized ratio: [4.26 — c/v|, [4.26 — c¢/v 2, 55. Objective value of linear programming relaxation
|4.26 — c/v|? 56. Fraction of variables set to 0 or 1
57-60. Variable integer slack statistics: mean, variation
Variable-Clause Graph Features: coefficient, min, max.
12-16. Variable nodes degree statistics: mean, variation
coefficient, min, max and entropy. DPLL Search Space:
17-21. Clause nodes degree statistics: mean, variation 61-65. Number of unit propagations: computed at
coefficient, min, max and entropy. depths 1, 4, 16, 64 and 256
66-67. Search space size estimate: mean depth to con-
Variable Graph Features: tradiction, estimate of the log of number of
22-25. Nodes degree statistics: mean, variation coeffi- nodes.
cient, min, and max.
Local Search Probes:
Clause Graph Features: 68-71. Minimum fraction of unsat clauses in a run:
26-32. Nodes degree statistics: mean, variation coeffi- mean and variation coefficient for SAPS and
cient, min, max, and entropy. GSAT (see [17]).
33-35. Weighted clustering coefficient statistics: mean, 72-81. Number of steps to the best local minimum in a
variation coefficient, min, max, and entropy. run: mean, median, variation coefficient, 10"
and 90*" percentiles for SAPS and GSAT.
Balance Features: 82-85. Average improvement to best: For each run, we
36-40. Ratio of positive and negative literals in each calculate the mean improvement per step to
clause: mean, variation coefficient, min, max, best solution. We then compute mean and vari-
and entropy. ation coefficient over all runs for SAPS and
41-45. Ratio of positive and negative occurrences of each GSAT.
variable: mean, variation coefficient, min, max, 86-89. Fraction of improvement due to first local mini-
and entropy. mum: mean and variation coefficient for SAPS
46-48. Fraction of unary, binary, and ternary clauses and GSAT.
90-91. Coefficient of variation of the number of unsatis-
Proximity to Horn Formula fied clauses in each local minimum: mean over all
49. Fraction of Horn clauses runs for SAPS and GSAT.

Fig. 1. SAT instance features used for constructing our predictive models.

to construct reasonably good models. However, including the rest of our features signif-
icantly improves these models. Moreover, in the presence of other features, including
higher-order features 4, 5, 7, 8, 10 and 11 does not improve accuracy much and does
not qualitatively change the results reported below. Due to space constraints, for the rest
of this paper we focus on models that use all of the ratio features.

The next three groups correspond to three different graph representations of a SAT
instance. The variable-clause graph (VCG) is a bipartite graph with a node for each
variable, a node for each clause, and an edge between them whenever a variable occurs
in a clause. The variable graph (VG) has a node for each variable and an edge between
variables that occur together in at least one clause. The clause graph (CG) has nodes
representing clauses and an edge between two clauses whenever they share a negated
literal. Each of these graphs corresponds to a constraint graph for the associated CSP;
thus, each encodes aspects of the problem’s combinatorial structure. For each graph
we compute various node degree statistics. For the CG we also compute statistics of
weighted clustering coefficients, which measure the extent to which each node belongs
to a clique. For each node the weighted clustering coefficient is the number of edges
among its neighbors (including the node itself) divided by k(k + 1)/2, where k is
the number of neighbors. Including the node when counting edges has an effect of
weighting the classical clustering coefficient by the node degree.



The fifth group measures the balance of a formula in several different senses, while
the sixth group measures the proximity of the instance to a Horn formula, motivated by
the fact that such formulas are an important SAT subclass. The seventh group of features
is obtained by solving a linear programming relaxation of an integer program represent-
ing the current SAT instance. Denote the formula C; A --- A C), and let z; denote both
boolean and LP variables. Define v(z;) = z; and v(—z;) = 1 — ;. Then the program
is maximize 71" | 37, v(l) subject to VC; : 37,0 v(l) > 1, Va1 0 <z < 1
The objective function prevents the trivial solution where all variables are set to 0.5.
The eighth group involves running DPLL “probes.” First, we run a DPLL procedure
to an exponentially-increasing sequence of depths, measuring the number of unit prop-
agations done at each depths. We also run depth-first random probes by repeatedly
instantiating random variables and performing unit propagation until a contradiction is
found. The average depth at which a contradiction occurs is an unbiased estimate of the
log size of the search space [12]. Our final group of features probes the search space
with two stochastic local search algorithms, GSAT and SAPS. We run both algorithms
many times, each time continuing the search trajectory until a plateau cannot be escaped
within a given number of steps. We then average statistics collected during each run.

3.2 Experimental Setup

Our first dataset contained 20 000 uniform random 3-SAT instances with 400 variables
each. To determine the number of clauses in each instance, we determined the clauses-
to-variables ratio by drawing a uniform sample from [3.26, 5.26] (i.e., the number of
clauses varied between 1304 and 2 104).° Our second dataset contained 20 000 uniform
random 3-SAT instances with 400 variables and 1 704 clauses each, corresponding to a
fixed clauses-to-variables ratio of 4.26. On each dataset we ran three solvers—kcnfts,
oksolver and sat z—which performed well on random instances in previous years’
SAT competitions. Our experiments were executed on 2.4 GHz Xeon processors, under
Linux 2.4.20. Our fixed-ratio experiments took about four CPU-months to complete.
In contrast, our variable-ratio dataset took only about one CPU-month, since many in-
stances were generated in the easy region away from the phase transition point. Every
solver was allowed to run to completion on every instance.

Each dataset was split into 3 parts—training, test and validation sets—in the ratio
70 : 15 : 15. All parameter tuning was performed with the validation set; the test set was
used only to generate the graphs shown in this paper. We performed machine learning
and statistical analysis with the R and Mat 1ab software packages.

4 Variable-Ratio Random Instances

We had three goals with this distribution. First, we wanted to show that our empirical
hardness model training and analysis techniques would be able to sift through all the
features provided and “discover” that the clauses-to-variables ratio was important to

® This range was chosen symmetrically around the phase transition point, 4.26, to ensure that an
approximately equal number of satisfiable and unsatisfiable instances would be obtained.
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Fig. 2. Runtime of kcnfs on variable-ratio satisfiable (left) and unsatisfiable instances (right)

the empirical hardness of instances from this distribution. Second, having included nine
features derived from this ratio among our 91 features we wanted to find out which
particular function of these features would be most predictive of hardness. Third, we
wanted to find out what other features, if any, were important in this setting.

We begin by examining the clauses-to-variables ratio, ¢/v, in more detail. Figure 2
shows kcnfs runtime (log scale) vs. ¢/v, for satisfiable and unsatisfiable instances.
First observe that, as expected, there is a clear relationship between runtime and c/wv.
At the same time, ¢/v is not a very accurate predictor of hardness by itself: particularly
near the phase transition point, there are several orders of magnitude of runtime variance
across different instances. This is particularly the case for satisfiable instances around
the phase transition; while the variation in runtime between unsatisfiable instances is
consistently much smaller. (It may be noted that overall, our dataset is balanced in that
it consists of 10011 satisfiable and 9 989 unsatisfiable instances.)

To build models, we first considered linear, logistic and exponential models in our
91 features, evaluating the models on our validation set. Of these, linear were the worst,
and logistic and exponential were similar, with logistic being slightly better. Next, we
wanted to consider quadratic models under these same three transformations. However,
a full quadratic model would have involved 4 277 features, and given that our training
data involved 14 000 different problem instances, training the model would have en-
tailed inverting a matrix of nearly sixty million values. In order to concentrate on the
most important quadratic features, we first used our variable importance techniques to
identify the best 30-feature subset of our 91 features. We computed the full quadratic
expansion of these features, then performed forward selection—the only subset selec-
tion technique that worked with such a huge number of features—to keep only the most
useful features. We ended up with 360 features, some of which were members of our
original set of 91 features and the rest of which were products of these original features.
Again, we evaluated linear, logistic and exponential models; all three model types were
better with the expanded features, and again logistic models were best. Although the
actual RMSE values obtained by three different kinds of models were very close to
each other, linear models tended to have much higher prediction bias and many more
outliers, especially among easy instances.

Figure 3 (left) shows the performance of our logistic models in this quadratic case
for kenfs (evaluated for the first time on our test set). Note that this is a very accurate
model: perfect predictions would lie exactly on the line y = x, and the vast majority



Predicted runtime [CPU sec]
RMSE

10 10 10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Actual runtime ICPL] secl

Subset Size

Fig. 3. Actual vs. predicted runtimes for kcnf's on variable-ratio instances (left) and RMSE as a
function of model size (right).

[Variable [Cost of Omission
le/v — 4.26] [9] 100
lc/v — 4.26|% [10] 69
(v/e)?x SAPS_BestCoeffVar_Mean [7 x 90 53
[(¢/v) — 4.26] x SAPS_BestCoeffVar-Mean [9 X 90] 33

Table 1. Variable importance in size 4 model for variable-ratio instances.

of points lie on or very close to this line, with no significant bias in the residuals.” The
plots for satz and oksolver look very similar; the RMSE values for the kcnfs,
satz and oksolver models are 13.16, 24.09, and 81.32 seconds, respectively.

We now turn to the question of which variables were most important to our models.
For the remainder of this paper we focus only on our models for kcnfs; our results
with the other two algorithms are comparable. First, we discuss what it means for our
techniques to identify a variable as “important.” If a set of variables X is identified
as the best subset of a given size, and this subset has a RMSE that is close to the
RMSE of the complete model, this indicates that the variables in X are sufficient to
approximate the performance of the full model—useful information, since it means
that we can explain an algorithm’s empirical hardness in terms of a small number of
features. It must be stressed, however, that this does not amount to an argument that
choosing the subset X is necessary for good performance in a subset of size k. Because
variables are very often correlated, there may be other sets that would achieve similar
performance; furthermore, since our subset selection techniques are heuristic, we are
not even guaranteed that X is the globally best subset of its size. Thus, we can draw
conclusions about the variables that are present in small, well-performing subsets, but
we must be very careful in drawing conclusions about the variables that are absent.

Figure 3 (right) shows the validation set RMSE of our best subset of each size. Note
that our best four-variable model achieves a root-mean-squared error of 19.42 seconds,
while our full 360-feature model had an error of about 14.57 seconds. Table 1 lists the
four variables in this model along with their normalized costs of omission. Note that
the most important feature (by far) is the linearized version of ¢/v, which also occurs
(in different forms) in the other three features of this model. Hence, our techniques

7 The banding on very small runtimes in this and other scatterplots is a discretization effect due
to the low resolution of the operating system’s process timer.
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correctly identified the importance of the clauses-to-variables ratio, which satisfies our
first goal. In terms of the second goal, these results indicate that the simple absolute
distance of the ratio ¢/v from the critical value 4.26 appears to be the most informative
variant of the nine related features we considered.

The third and fourth features in this model satisfy our third goal: we see that ¢/v
variants are not the only useful features in this model. Interestingly, both of these re-
maining variables are based on a local search probing feature, the coefficient of vari-
ation over the number of clauses unsatisfied in local minima found by SAPS, a high-
performance local search algorithm for SAT. It may appear somewhat surprising that
such a local search probing feature can convey meaningful information about the run-
time behavior of a DPLL algorithm. However, notice that deep local minima in the space
searched by a local search algorithm correspond to assignments that leave few clauses
unsatisfied. Intuitively, such assignments can cause substantial difficulties for DPLL
search, where the respective partial assignments may correspond to large subtrees that
do not contain any solutions. However, our current understanding of the impact of the
features captured by local search probes on DPLL solver performance is rather limited,
and further work is needed to fully explain this phenomenon.

While analyzing our variable-ratio models, we discovered that the weighted clause
graph clustering coefficient (33) was one of the most important features. In fact, it was
the most important feature if we excluded higher-order ¢/v and v/ c features from mod-
els. It turns out, that the WCGCC is almost perfectly correlated with v/c, as illustrated
in Figure 6 (left). This is particularly interesting as both the clustering coefficient and
the connectivity of the constraint graph have been shown to be important statistics in a
wide range of combinatorial problems, such as graph coloring and WDP. This correla-
tion provides very nice new structural insight into the clause-to-variables ratio: it shows
explicitly how constraint structure changes as the ratio varies. This discovery demon-
strates how our empirical hardness methodology can help to gain new understanding of
the nature of A'P-Hard problems.

The previously mentioned similar performance of our predictive models for kenfs,
satz and oksolver raises the question of whether the underlying reason simply lies
in a strong correlation between the respective runtimes. Figure 4 shows the correlation
of kenf s runtime vs. sat z runtime on satisfiable and unsatisfiable instances. Note that
there are two qualitatively different patterns in the performance correlation for the two
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Fig.5. Actual vs. predicted runtimes for kcnfs on satisfiable (left) and unsatisfiable (right)
variable-ratio instances.

types of instances: runtimes on UNSAT instances are almost perfectly correlated, while
runtimes on SAT instances are almost entirely uncorrelated. We conjecture that this is
because proving unsatisfiability of an instance essentially requires exploring the entire
search tree, which does not differ substantially between the algorithms, while finding
a satisfiable assignment depends much more on each algorithm’s different heuristics.
We can conclude that the similar model accuracy between the algorithms is due jointly
to the correlation between their runtimes on UNSAT instances and to the ability of our
features to express each algorithm’s runtime profile on both SAT and UNSAT instances.

Motivated by qualitative differences between satisfiable and unsatisfiable instances,
we studied the subsets of all satisfiable and all unsatisfiable instances from our dataset
separately. Analogously to what we did for the full dataset, we trained a separate pre-
dictive model for each of these two subsets. Interestingly, as seen in Figure 5, the pre-
dictions for unsatisfiable instances are much better than those for satisfiable instances
(RMSE 5.3 vs. 13.4). Furthermore, the ‘loss curves’, which indicate the best RMSE
achieved in dependence of model size (cf. Figure 3), are rather different between the
two subsets: For the satisfiable instances, seven features are required to get within 10%
of full model accuracy (in terms of RMSE), compared to only three for the unsatisfi-
able instances. While the seven features in the former model are all local search probe
features (namely, in order of decreasing importance, features 682, 68 x 70, 90, 70, 702,
90 x 71 and 71), the three features in the latter are DPLL probe and constraint graph
features (namely features 662, 66 and 26 x 27).

It must be noted that excluding all local search probe features (68-91 in Figure 1) in
the process of model construction leads to models with only moderately worse perfor-
mance (RMSE 16.6 instead of 13.4 for satisfiable, 5.5 instead of 5.3 for unsatisfiable,
and 17.2 instead of 13.2 for all instances). Interestingly, in such models for satisfiable
instances, features based on LP relaxation (features 55-60 in Figure 1) become quite
important. Even when excluding all probing and LP features (features 55-91), reason-
ably accurate models can still be obtained (RMSE 14.7, 8.4, and 17.1 for satisfiable,
unsatisfiable, and all instances, respectively); this indicates that combinations of the re-
maining purely structural features still provide a sufficient basis for accurate runtime
predictions on the variable-ratio instance distribution.
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Fig. 6. Left: Correlation between CG weighted clustering coefficient and v/c. Right: Distribution
of kcnfs runtimes across fixed-ratio instances.

[Variable [Cost of Omission
SAPS _BestSolution_Mean? [687] 100
SAPS_BestSolution_.Mean X Mean_DPLL_Depth [68 x 66] 74
GSAT _BestSolution_CoeffVar x Mean_DPLL_Depth [71 X 66] 21
VCG_CLAUSE_Mean X GSAT_FirstLMRatio_Mean [17 X 88] 9

Table 2. Variable importance in size 4 model for fixed-ratio instances.

5 Fixed-Ratio Random Instances

According to a widely held (yet somewhat simplistic) belief, uniform random 3-SAT is
easy when far from the phase-transition point, and hard when close to it. In fact, while
the first part of this statement is generally true, the second part is not. Figure 6 (right)
shows cumulative distributions of the kcnfs’s runtime per instance across our second
dataset, comprising 20 000 fixed-ratio uniform random-3-SAT instances with 400 vari-
ables at ¢/v = 4.26, indicating substantial variation in runtime between instances in
the phase transition region. (Similar observations have been made previously for lo-
cal search algorithms [6].) Random-3-SAT at the phase transition point is one of the
most widely used classes of benchmark instances for SAT; in the context of our study
of empirical hardness models this instance distribution is particularly interesting since
the most important features for predicting instance hardness for the variable-ratio dis-
tribution, namely variants of ¢/v, are kept constant in this case. Hence, it presents the
challenge of identifying other features underlying the observed variation in hardness.
We built models in the same way as described in Section 4, except that all variants of
¢/v are constant and were hence omitted. Again, we achieved the best (validation set)
results with logistic models on a (partial) quadratic expansion of the features; Fig. 7
(left) shows the performance of our logistic model for kcnfs on test data (RMSE =
35.23); similar results were obtained for oksolver and satz (RMSE = 220.43 and
60.71, respectively; note that particularly for oksolver , the higher RMSE values
are partly due to overall higher runtimes). The shape of the scatter plots can be visually
misleading: although it appears to be not tight, there are many more points that lie along
the diagonal than outliers (this becomes evident when plotting the data on a heat map).
Figure 7 (right) shows the validation set RMSE of the best model we found at each
subset size. Here, a 4-variable model obtains RMSE 39.02 on the validation set, which
is within 10% on the RMSE of the full model. The variables in the model, along with
their costs of omission, are given in Table 2. Note that this model is dominated by local
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search and DPLL probing features, and the most important feature is the deepest local
minimum reached on a SAPS trajectory (BestSolution), which intuitively captures the
degree to which a given instance has “almost” satisfying assignments.

As for the variable-ratio set, we studied the subsets of all satisfiable and all unsatis-
fiable instances from our fixed-ratio data set separately and trained separate models for
each of these subsets. Analogous to our results for the variable-ratio sets, we found that
our model for the former subset gave significantly better predictions than that for the
latter (RMSE 15.6 vs. 30.2). Surprisingly, in both cases, only a single feature is required
to get within 10% of full model accuracy (in terms of RMSE on the training set): the
product of the two SAPS probing features 69 and 82 in the case of satisfiable instances,
and the square of DPLL probing feature 66 in the case of unsatisfiable instances.

We also constructed models that do not use local search features and/or probing
features and obtained results that are qualitatively the same as those for the variable-
ratio data set. Furthermore, we have observed results on the correlation of runtimes
between solvers that are analogous to those reported in Section 4.

6 SATzilla and Other Applications of Hardness Models

While so far, we have argued that accurate empirical hardness models are useful because
of the insight they give into problem structure, these models also have other applications
[9]. For example, it is very easy to combine accurate hardness models with an existing
instance generator to create a new generator that makes harder instances, through the
use of rejection sampling techniques. Within the next few months, we intend to make
available a new generator of harder random 3-SAT formulas. This generator will work
by generating an instance from the phase transition region and then rejecting it in inverse
proportion to the log time of the minimum of our three algorithms’ predicted runtimes.

A second application of hardness models is the construction of algorithm portfolios.
It is well known that for SAT different algorithms often perform very differently on the
same instances (cf. left side of Figure 4). On distributions for which this sort of uncorre-
lation holds, selecting among algorithms on a per-instance basis offers the potential for
substantial improvements over per-distribution algorithm selection. Empirical hardness
models allow us to choose algorithms based on predicted runtimes. Interestingly, fairly



inaccurate models often suffice to build good portfolios: if algorithms’ performances
are close to each other, picking the wrong one is not very costly, while if algorithms’
behaviors differ significantly, the discrimination task is relatively easy.

We can offer concrete evidence for the utility of the latter application of hardness
models: SATzilla, an algorithm portfolio that we built for the 2003 SAT competi-
tion. This portfolio consisted of 2clseq, egqSatz, HeerHugo, JeruSat, Limmat,
oksolver, Relsat, Sato, Satz-rand and zChaff. The 2004 version dropped
HeerHugo, but added Satzoo, kcnfs, and BerkMin.

To construct SATzilla we gathered from various public websites a library of
about 5000 SAT instances, for which we computed runtimes and the features described
in Section 3.1. We built models using ridge regression. To yield better models, we
dropped from our dataset all instances that were solved by all or none of the algo-
rithms, or as a side-effect of feature computation. Upon execution, SATz1i11la begins
by running a UBCSAT [17] implementation of WalkSAT to filter out easy satisfiable
instances. Next, it runs the Hypre preprocessor [1] to clean up instances, allowing fea-
tures to better reflect the problem’s “combinatorial core.” Third, SATz1i11la computes
its features, terminating if any feature (e.g., probing or LP relaxation) solves the prob-
lem. Some features can take inordinate amounts of time, particularly with very large
inputs. To prevent feature computation from consuming all of our allotted time, certain
features run only until a timeout is reached, at which point SATzilla gives up on
them. Fourth, SATzi11a evaluates a hardness model for each algorithm. If some of
the features have timed out, it uses a different model which does not involve the missing
feature. Finally, SATz111a executes the algorithm with the best predicted runtime.

SATzilla performed very well both in 2003 and 2004. In 2003, it was the only
complete solver that did well both on random and on structured instances. It finished
second and third in different categories, loosing only to new-generation solvers. In
2004, it was leading among complete solvers in the first round, but didn’t advance to
the final round due to complicated new competition rules.

7 Conclusion and Future Work

We have shown that empirical hardness models are a valuable tool for the study of
the empirical behavior of complex algorithms such as SAT solvers. We were able to
build accurate models of runtime on test distributions of fixed- and variable-ratio uni-
form random-3-SAT instances. On the variable-ratio dataset, our techniques were able
to automatically “discover” the importance of the ¢/v ratio. Analysis in this case pro-
vided insight into the structural variations in uniform random 3-SAT formulas at the
phase transition point that correlate with the dramatic variation in empirical hardness.
Finally, we argued that our empirical hardness models offer practical benefit in less
well-controlled domains by presenting SATz111a, our algorithm portfolio for SAT.
The results presented suggest a number of avenues for future research. One issue
that clearly deserves further investigation is the degree to which our methodology can
be used to predict and explain the performance of stochastic local search algorithms
for SAT, which have recently been shown to outperform the best systematic solvers on
various classes of random SAT instances. Another obvious and very relevant direction



is the extension of our work to more structured types of SAT instances. Also, our results
for the satisfiable and unsatisfiable subsets suggest that hierarchical models could give
even better results. Such models may use some features to predict the satisfiability (or
more generally, the type) of a given instance, and a subsidiary model for predicting
the runtime. And finally, we believe that by studying in more detail sow some of the
features identified through the use of predictive statistical models cause instances to be
easy or hard for certain types of algorithms, our understanding of how to solve SAT
most efficiently will be further advanced.
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