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ABSTRACT
General combinatorial auctions—auctions in which bidders
place unrestricted bids for bundles of goods—are the sub-
ject of increasing study. Much of this work has focused on
algorithms for finding an optimal or approximately optimal
set of winning bids. Comparatively little attention has been
paid to methodical evaluation and comparison of these al-
gorithms. In particular, there has not been a systematic
discussion of appropriate data sets that can serve as uni-
versally accepted and well motivated benchmarks. In this
paper we present a suite of distribution families for generat-
ing realistic, economically motivated combinatorial bids in
five broad real-world domains. We hope that this work will
yield many comments, criticisms and extensions, bringing
the community closer to a universal combinatorial auction
test suite.

1. INTRODUCTION

1.1 Combinatorial Auctions
Auctions are a popular way to allocate goods when the

amount that bidders are willing to pay is either unknown or
unpredictably changeable over time. The rise of electronic
commerce has facilitated the use of increasingly complex
auction mechanisms, making it possible for auctions to be
applied to domains for which the more familiar mechanisms
are inadequate. One such example is provided by combina-
torial auctions (CA’s), multi-object auctions in which bids
name bundles of goods. These auctions are attractive be-
cause they allow bidders to express complementarity and
substitutability relationships in their valuations for sets of
goods. Because CA’s allow bids for arbitrary bundles of
goods, an agent may offer a different price for some bundle
of goods than he offers for the sum of his bids for its disjoint
subsets; in the extreme case he may bid for a bundle with
the guarantee that he will not receive any of its subsets. An
example of complementarity is an auction of used electronic
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equipment, in which a bidder values a particular TV at x
and a particular VCR at y but values the pair at z > x+ y.
An agent with substitutable valuations for two copies of the
same book might value either single copy at x, but value
the bundle at z < 2x. In the special case where z = x (the
agent values a second book at 0, having already bought a
first) the agent may submit the set of bids {bid1 XOR bid2}.
By default, we assume that any satisfiable sets of bids that
are not explicitly XOR’ed is a candidate for allocation. We
call an auction in which all goods are distinguishable from
each other a single-unit CA. In contrast, in a multi-unit CA
some of the goods are indistinguishable (e.g., many iden-
tical TVs and VCRs) and bidders request some number of
goods from each indistinguishable set. This paper is primar-
ily concerned with single-unit CA’s, since most research to
date has been focused on this problem. However, when ap-
propriate we will discuss ways that our distributions could
be generalized to apply to multi-unit CA’s.

1.2 The Computational Combinatorial Auc-
tion Problem

In a combinatorial auction, a seller is faced with a set
of price offers for various bundles of goods, and his aim is
to allocate the goods in a way that maximizes his revenue.
(For an overview of this problem, see [8].) This optimization
problem is intractable in the general case, even when each
good has only a single unit. Because of the intractability of
general CA’s, much research has focused on subcases of the
CA problem that are tractable; see [22] and more recently
[25]. However, these subcases are very restrictive and there-
fore are not applicable to many CA domains. Other research
attempts to define mechanisms within which general CA’s
will be tractable (achieved by various trade-offs including
bid withdrawal penalties, activity rules and possible ineffi-
ciency). Milgrom [15] defines the Simultaneous Ascending
Auction mechanism which has been very influential, partic-
ularly in the recent FCC spectrum auctions. However, this
approach has drawbacks, discussed for example in [6]. In
the general case there is no substitute for a completely un-
restricted CA. Consequently, many researchers have recently
begun to propose algorithms for determining the winners of
a general CA, with encouraging results. This wave of re-
search has given rise to a new problem, however. In order
to test (and thus to improve) such algorithms, it has been
necessary to use some sort of test suite. Since general CA’s
have never been widely held, there is no data recording the
bidding behavior of real bidders upon which such a test suite



may be built. In the absence of such natural data, we are
left only with the option of generating artificial data that
is representative of the sort of scenarios one is likely to en-
counter. The goal of this paper is to facilitate the creation
of such a test suite.

2. PAST WORK ON TESTING CA
ALGORITHMS

2.1 Experiments with Human Subjects
One approach to experimental work on combinatorial auc-

tions uses human subjects. These experiments assign valu-
ation functions to subjects, then have them participate in
auctions using various mechanisms [3, 12, 7]. Such tests can
be useful for understanding how real people bid under differ-
ent auction mechanisms; however, they are less suitable for
evaluating the mechanisms’ computational characteristics.
In particular, this sort of test is only as good as the sub-
jects’ valuation functions, which in the above papers were
hand-crafted. As a result, this technique does not easily
permit arbitrary scaling of the problem size, a feature that
is important for characterizing an algorithm’s performance.
In addition, this method relies on relatively naive subjects
to behave rationally given their valuation functions, which
may be unreasonable when subjects are faced with complex
and unfamiliar mechanisms.

2.2 Particular Problems
A parallel line of research has examined particular prob-

lems to which CA’s seem well suited. For example, re-
searchers have considered auctions for the right to use rail-
road tracks [5], real estate [19], pollution rights [13], airport
time slot allocation [21] and distributed scheduling of ma-
chine time [26]. Most of these papers do not suggest holding
an unrestricted general CA, presumably because of the com-
putational obstacles. Instead, they tend to discuss alterna-
tive mechanisms that are tailored to the particular problem.
None of them proposes a method of generating test data,
nor does any of them describe how the problem’s difficulty
scales with the number of bids and goods. However, they
still remain useful to researchers interested in general CA’s
because they give specific descriptions of problem domains
to which CA’s may be applied.

2.3 Artificial Distributions
Recently, a number of researchers have proposed algo-

rithms for determining the winners of general CA’s. In
the absence of test suites, some suggested novel bid gen-
eration techniques, parameterized by number of bids and
goods [24, 10, 4, 8]. (Other researchers have used one or
more of these distributions, e.g., [17], while still others have
refrained from testing their algorithms altogether, e.g., [16,
14].) Parameterization represents a step forward, making it
possible to describe performance with respect to the prob-
lem size. However, there are several ways in which each of
these bid generation techniques falls short of realism, con-
cerning the selection of which goods and how many goods to
request in a bundle, what price to offer for the bundle, and
which bids to combine in an XOR’ed set. More fundamen-
tally, however, all of these approaches suffer from failing to
model bidders explicitly, and from attempting to represent
an economic situation with an non-economic model.

2.3.1 Which goods
First, each of the distributions for generating test data

discussed above has the property that all bundles of the
same size are equally likely to be requested. This assumption
is clearly violated in almost any real-world auction: most of
the time, certain goods will be more likely to appear together
than others. (Continuing our electronics example, TVs and
VCRs will be requested together more often than TVs and
printers.)

2.3.2 Number of goods
Likewise, each of the distributions for generating test data

determines the number of goods in a bundle completely in-
dependently from determining which goods appear in the
bundle. While this assumption appears more reasonable it
will still be violated in many domains, where the expected
length of a bundle will be related to which goods it contains.
(For example, people buying computers will tend to make
long combinatorial bids, requesting monitors, printers, etc.,
while people buying refrigerators will tend to make short
bids.)

2.3.3 Price
Next, there are problems with the pricing1 schemes used

by all four techniques. Pricing is especially crucial: if prices
are not chosen carefully then an otherwise hard distribution
can become computationally easy.

In Sandholm [24] prices are drawn randomly from either
[0, 1] or from [0, g], where g is the number of goods requested.
The first method is clearly unreasonable (and computation-
ally trivial) since price is unrelated to the number of goods
in a bid—note that a bid for many goods and for a small
subset of the same bid will have exactly the same price on
expectation. The second is better, but has the disadvan-
tage that average and range are parameterized by the same
variable.

In Boutilier et al.[4] prices of bids are distributed normally
with mean 16 and standard deviation 3, giving rise to the
same problem as the [0, 1] case above.

In Fujishima et al.[10] prices are drawn from [g(1−d), g(1+
d)], d = 0.5. While this scheme avoids the problems de-
scribed above, prices are simply additive in g and are unre-
lated to which goods are requested in a bundle, both unre-
alistic assumptions in some domains.

More fundamentally, Andersson et al.[1] note a critical
pricing problem that arises in several of the schemes dis-
cussed above. As the number of bids to be generated be-
comes large, a given short bid will be drawn much more
frequently than a given long bid. Since the highest-priced
bid for a bundle dominates all other bids for the same bun-
dle, short bids end up being much more competitive. In-
deed, it is pointed out that for extremely large numbers
of bids a good approximation to the optimal solution is
simply to take the best singleton bid for each good. One
solution to this problem is to guarantee that a bid will
be placed for each bundle at most once (for example, this
approach is taken by Sandholm[24]). However, this solu-
tion has the drawback that it is unrealistic: different real

1Most of the existing literature on artificial distributions
in combinatorial auctions refers to the monetary amount
associated with a bundle as a “price”. In Section 3 we will
advocate the use of different terminology, but in this section
we use the existing term for clarity.



bidders are likely to place bids on some of the same bun-
dles.

Another solution to this problem is to make bundle prices
superadditive in the number of goods they request—an as-
sumption that may also be reasonable in many CA domains.
A similar approach is taken by deVries and Vohra [8], who
make the price for a bid a quadratic function of the prices
of bids for subsets. For some domains this pricing scheme
may result in too large an increase in price as a function
of bundle length. The distributions presented in this pa-
per will include a pricing scheme that may be configured
to be superadditive or subadditive in bundle length, where
appropriate, parameterized to control how rapidly the price
offered increases or decreases as a function of bundle length.

2.3.4 XOR bids
Finally, while most of the bid-generation techniques dis-

cussed above permit bidders to submit sets of bids XOR’ed
together, they have no way of generating meaningful sets of
such bids. As a consequence the computational impact of
XOR’ed bids has been very difficult to characterize.

3. GENERATING REALISTIC BIDS
While the lack of standardized, realistic test cases does

not make it impossible to evaluate or compare algorithms,
it does make it difficult to know what magnitude of real-
world problems each algorithm is capable of solving, or what
features of real-world problems each algorithm is capable of
exploiting. This second ambiguity is particularly troubling:
it is likely that algorithms would be designed differently if
they took the features of more realistic2 bidding into ac-
count.

3.1 Prices, price offers and valuations
The term “price” has traditionally been used by researchers

constructing artificial distributions to describe the amount
offered for a bundle. However, this term really refers to the
amount a bidder is made to pay for a bundle, which is of
course mechanism-specific and is often not the same as the
amount offered. Indeed, it is impossible to model bidders’
price offers at all without committing to a particular auction
mechanism. In the distributions described in this paper, we
will assume a sealed-bid incentive-compatible mechanism,
where the price offered for a bundle is equal to the bid-
der’s valuation. Hence, in the rest of this paper, we will use
the terms price offer and valuation interchangeably. Re-
searchers wanting to model bidding behavior in other mech-
anisms could transform the valuation generated by our dis-
tributions according to bidders’ equilibrium strategies in the
new mechanism.

3.2 The CATS suite
In this paper we present CATS (Combinatorial Auction

Test Suite), a suite of distributions for modeling realistic
bidding behavior. This suite is grounded in previous re-
search on specific applications of combinatorial auctions, as

2Previous work characterizes hard cases for weighted set
packing—equivalent to the combinatorial auction problem.
Real-world bidding is likely to exhibit various regularities,
however, as discussed throughout this paper. A data set de-
signed to include the same regularities may be more useful
for predicting the performance of an algorithm in a real-
world auction.

described in section 2.1 above. At the same time, all of
our distributions are parameterized by number of goods and
bids, facilitating the study of algorithm performance. This
suite represents a move beyond current work on modeling
bidding in combinatorial auctions because we provide an
economic motivation for both the contents and the valuation
of a bundle, deriving them from basic bidder preferences. In
particular, in each of our distributions:

• Certain goods are more likely to appear together than
others.

• The number of goods appearing in the bundle is often
related to which goods appear in the bundle.

• Valuations are related to which goods appear in the
bundle. Where appropriate, valuations can be config-
ured to be subadditive, additive or superadditive in
the number of goods requested.

• Sets of XOR’ed bids are constructed in meaningful
ways, on a per-bidder basis.

We do not intend for this paper to stand as an isolated
statement on bidding in combinatorial auctions, but rather
as the beginning of a dialogue. We hope to receive many
suggestions and criticisms from members of the CA com-
munity, enabling us both to update the distributions pro-
posed here and to include distributions modeling new do-
mains. In particular, our distributions include many param-
eters, for which we suggest default values. Although these
values have evolved somewhat during our development of
the test suite, it has not yet been possible to understand
the role each parameter plays in the difficulty or realism
of the resulting distribution, and our choice may be seen
as highly subjective. We hope and expect to receive criti-
cisms about these parameter values; for this reason we in-
clude a CATS version number with the defaults to differ-
entiate them from future defaults. The suite also contains
a legacy section including all bid generation techniques de-
scribed above, so that new algorithms may easily be com-
pared to previously-published results. More information on
our test suite, including executable versions of our distri-
butions for Solaris, Linux and Windows may be found at
http://robotics.stanford.edu/CATS .

In section 4, below, we present distributions based on five
real-world situations. For most of our distributions, the
mechanism for generating bids requires first building a graph
representing adjacency relationships between goods. Later,
the mechanism uses the graph, generated in an economically-
motivated way, to derive complementarity properties be-
tween goods and substitutability properties for bids. Of the
five real-world situations we model, the first three concern
complementarity based on adjacency in (physical or con-
ceptual) space, while the final two concern complementarity
based on correlation in time. Our first example (4.1) mod-
els shipping, rail and bandwidth auctions. Goods are repre-
sented as edges in a nearly planar graph, with agents submit-
ting an XOR’ed set of bids for paths connecting two nodes.
Our second example (4.2) models an auction of real estate,
or more generally of any goods over which two-dimensional
adjacency is the basis of complementarity. Again the rela-
tionship between goods is represented by a graph, in this
case strictly planar. In (4.3) we relax the planarity assump-
tion from the previous example in order to model arbitrary



complementarities between discrete goods such as electron-
ics parts or collectables. Our fourth example (4.4) concerns
the matching of time-slots for a fixed number of different
goods; this case applies to airline take-off and landing rights
auctions. In (4.5) we discuss the generation of bids for a
distributed job-shop scheduling domain, and also its appli-
cation to power generation auctions. Finally, in (4.6), we
provide a legacy suite of bid generation techniques, includ-
ing all those discussed in (2.3) above.

In the description of the distributions that follow, let
rand(a, b) represent a real number drawn uniformly from
[a, b]. Let rand int(a, b) represent a random integer drawn
uniformly from the same interval. With respect to a given
graph, let e(x, y) represent the proposition that an edge ex-
ists between nodes x and y. Denote the number of goods in
a bundle B as |B|. The statement a good g is in a bundle
B means that g ∈ B. All of the distributions presented here
are parameterized by the number of goods (num goods) and
number of bids (num bids).

4. CATS IN DETAIL

4.1 Paths in Space
There are many real-world problems involving bidding on

paths in space. Generally, this class may be characterized as
the problem of purchasing a connection between two points.
Examples include truck routes [23], natural gas pipeline net-
works [20], network bandwidth allocation, and the right to
use railway tracks [5].3 In particular, spatial path problems
consist of a set of points and accessibility relations between
them. Although the distribution we propose may be config-
ured to model bidding in any of the above domains, we will
use the railway domain as our motivating example since it
is both intuitive and well-understood.

More formally, we will represent this railroad auction by
a graph in which each node represents a location on a plane,
and an edge represents a connection between locations. The
goods at auction are therefore the edges of the graph, and
bids request a set of edges that form a path between two
nodes. We assume that no bidder will desire more than one
path connecting the same two nodes, although the bidder
may value each path differently.

4.1.1 Building the Graph
The first step in modeling bidding behavior for this prob-

lem is determining the graph of spatial and connective re-
lationships between cities. One approach would be to use
an actual railroad map, which has the advantage that the
resulting graph would be unarguably realistic. However,
it would be difficult to find a set of real-world maps that
could be said to exhibit a similar sort of connectivity and
would encompass substantial variation in the number of
cities. Since scalability of input data is of great importance

3Electric power distribution is a frequently discussed real
world problem which seems superficially similar to the prob-
lems discussed here. However, many of the complementari-
ties in this domain arise from physical laws governing power
flow in a network. Consideration of these laws becomes very
complex in networks of interesting size. Also, because these
laws are taken into account during the construction of power
networks, the networks themselves are difficult to model us-
ing randomly generated graphs. For these reasons, we do
not attempt to model this domain.
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Figure 1: Sample Railroad Graph

to the testing of new CA algorithms, we have chosen to
propose generating such graphs randomly. Our technique
for generating graphs has various parameters that may be
adjusted as necessary; in our opinion it produces realistic
graphs with the recommended settings. Figure 1 shows a
representative example of a graph generated using our tech-
nique.

We begin with num cities nodes randomly placed on a
plane. We add edges to this graph, G, starting by connecting
each node to a fixed number of its nearest neighbors. Next,
we iteratively consider random pairs of nodes and examine
the shortest path connecting them, if any. To compare, we
also compute various alternative paths that would require
one or more edges to be added to the graph, given a penalty
proportional to distance for adding new edges. (We do this
by considering a complete graph C, an augmentation of G
with new edges weighted to reflect the distance penalty.) If
the shortest path involves new edges—despite the penalty—
then the new edges (without penalty) are added to G, and
replace the existing edges in C. This process models our sim-
plifying assumption that there will exist uniform demand for
shipping between any pair of cities, though of course it does
not mimic the way new links would actually be added to
a rail network. Our technique produces slightly non-planar
graphs—graphs on a plane in which edges occasionally cross
at points other than nodes. We consider this to be reason-
able, as the same phenomenon may be observed in real-world
rail lines, highways, network wiring, etc. Determining the
“reasonableness” of a graph is of course a subjective task
unless more quantitative metrics are used to assess quality;
we see the identification and application of such metrics (for
this and other distributions) as an important topic for future
work.

4.1.2 Generating Bids
Given a map of cities and the connectivity between them,

there is the orthogonal problem of modeling bidding itself.
We propose a method which generates a set of substitutable
bids from a hypothetical agent’s point of view. We start
with the value to an agent for shipping from one city to
another and with a shipping cost which we make equal to the
Euclidean distance between the cities. We then place XOR
bids on all paths on which the agent would make a profit
(i.e., those paths where utility−cost > 0). The path’s value
is random, in (parameterized) proportion to the Euclidean
distance between the chosen cities. Since the shipping cost
is the Euclidean distance between two cities, we use this as



Let num cities = f(num goods)
Randomly place nodes (cities) on a unit box
Connect each node to its initial connections
nearest neighbors
For i = 1 to num building paths:

C = G
For every pair of nodes n1, n2 ∈ G where
¬e(n1, n2):
Add an edge to C of length
building penalty ·
Euclidean distance(n1, n2)

Choose two nodes at random, and find the
shortest path between them in C
If shortest path uses edges that do not
exist in G:
For every such pair of nodes
n1, n2 ∈ G add an edge to G with
length Euclidean distance(n1, n2)

End If
End For
If total number of edges in G �= num goods,
restart

Figure 2: Graph-Building Technique

While num generated bids < num bids:

Randomly choose two nodes, n1 and n2
d = rand(1, shipping cost factor)
cost = Euclidean distance(city1, city2)
value = d ·Euclidean distance(city1, city2)
Make XOR bids of value − cost on every path
from city1 to city2 with cost < value
If there are more than max bid set size such
paths, bid on the max bid set size paths
that maximize value − cost.

End While

Figure 3: Bid-Generation Technique

the lower bound for value as well, since only bidders with
such valuations would actually place bids.

Note that this distribution, and indeed all others pre-
sented in this paper, may generate slightly more than num bids
bids. In our experience CA optimization algorithms tend not
to be highly sensitive in the number of bids, so we judged it
more important to build economically sensible sets of sub-
stitutable bids. When generating a precise number of bids is
important, an appropriate number of bids may be removed
after all bids have been generated so that the total will be
met exactly.

Note that 1 is used as a lower bound for d because any bid-
der with d < 1 would find no profitable paths and therefore
would not bid.

This is CATS 1.0 problem 1. CATS default param-
eters: initial connections = 2, building penalty =
1.7, num building paths = num cities2/4,
shipping cost factor = 1.5, max bid set size = 5,
and f(num goods) = 0.529689 ∗NUMGOODS + 3.4329.

4.1.3 Multi-Unit Extensions: Bandwidth Allocation,
Commodity Flow

This model may also be used to generate realistic data
for multi-unit CA problems such as network bandwidth al-
location and general commodity flow. The graph may be
created as above, but with a number of units (capacity)
assigned to each edge. Likewise, the bidding technique re-

Place nodes at integer vertices (i, j) in a

plane, where 1 ≤ i, j ≤ �√(num goods)�
For each node n:

If n is on the edge of the map
Connect n to as many hv-neighbors as
possible

Else
If rand(0, 1) ≤ three prob

Connect n to a random set of
three of its four hv-neighbors

Else
Connect n to all four of its
hv-neighbors

While rand(0, 1) ≤ additional neighbor:

Connect g to one of its
d-neighbors, provided that the
new diagonal edge will not
cross another diagonal edge

End While
End For

Figure 4: Graph-Building Technique

mains unchanged except for the assignment of a number of
units to each bid.

4.2 Proximity in Space
There is a second broad class of real-world problems in

which complementarity arises from adjacency in two-dimen-
sional space. An intuitive example is the sale of adjacent
pieces of real estate [19]. Another example is drilling rights,
where it is much cheaper for an (e.g.) oil company to drill
in adjacent lots than in lots that are far from each other. In
this section, we first propose a graph-generation mechanism
that builds a model of adjacency between goods, and then
describe a technique for generating realistic bids on these
goods. Note that in this section nodes of the graph represent
the goods at auction, while edges represent the adjacency
relationship.

4.2.1 Building the Graph
There are a number of ways we could build an adjacency

graph. The simplest would be to place all the goods (loca-
tions, nodes) in a grid, and connect each to its four neigh-
bors. We propose a slightly more complex method in order
to permit a variable number of neighbors per node (equiva-
lent to non-rectangular pieces of real estate). As above we
place all goods on a grid, but with some probability we omit
a connection between goods that would otherwise represent
vertical or horizontal adjacency, and with some probabil-
ity we introduce a connection representing diagonal adja-
cency. (We call horizontally- or vertically-adjacent nodes
hv-neighbors and diagonally-adjacent nodes d-neighbors.)

Figure 5 shows a sample real estate graph, generated by
the technique described in Figure 4. Nodes of the graph are
shown with asterisks, while edges are represented by solid
lines. The dashed lines show one set of property boundaries
that would be represented by this graph. Note that one
node falls inside each piece of property, and that two pieces
of property border each other iff their nodes share an edge.

4.2.2 Generating Bids
To model realistic bidding behavior, we generate a set of

common values for each good, and private values for each
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Figure 5: Sample Real Estate Graph

good for each bidder. The common value represents the
appraised or expected resale value of each individual good.
The private value represents how much one particular bidder
values that good, as an offset to the common value (e.g., a
private value of 0 for a good represents agreement with the
common value). These private valuations describe a bidder’s
preferences, and so they are used to determine both a value
for a given bid and the likelihood that a bidder will request
a bundle that includes that good. There are two additional
components to each bidder’s preferences: a minimum total
common value, and a budget. The former reflects the idea
that a bidder may only wish to acquire goods of a certain
recognized value. The latter reflects the fact that a bidder
may not be able to afford every bundle that is of interest to
him.

To generate bids, we first add a random good, weighted
by a bidder’s preferences, to the bidder’s bid. Next, we
determine whether another good should be added by draw-
ing a value uniformly from [0,1], and adding another good
if this value is smaller than a threshold. This is equiva-
lent to drawing the number of goods in a bid from a de-
cay distribution.45 We must now decide which good to
add. First we allow a small chance that a new good will
be added uniformly at random from the set of goods, with-
out the requirement that it be adjacent to a good in the
current bundle B . (This permits bundles requesting un-
connected regions of the graph: for example, a hotel com-
pany may only wish to build in a city if it can acquire
land for two hotels on opposite sides of the city.) Oth-
erwise, we select a good from the set of nodes bordering
the goods in B. The probability that some adjacent good
n1 will be added depends on how many edges n1 shares
with the current bundle, and on the bidder’s relative pri-
vate valuations for n1 and n2. For example, if nodes n1 and

4We use Sandholm’s [24] term “decay” here, though the
distribution goes by various names—for a description of the
distribution please see Section 4.6.1.
5There are two reasons we use a decay distribution here.
First, we expect that most bids will request small bundles;
a uniform distribution, on the other hand, would be ex-
pected to have the same number of bids for bundles of each
cardinality. Also, bids for large bundles will often be com-
putationally easier for CA algorithms than bids for small
bundles, because choosing the former more highly restricts
the future search. Second, we require a distribution where
the expected bundle size is unaffected by changes in the total
number of goods. Some other distributions, such as uniform
and binomial, do not have this property.

Routine Add Good to Bundle(bundle B)
If rand(0, 1) ≤ jump prob:

Add a good g /∈ b to B, chosen
uniformly at random

Else:
Compute s =

∑
x/∈B,y∈B,e(x,y) pn(x) [pn()

is defined below]
Choose a random node x /∈ B from the
distribution

∑
y∈B,e(x,y)

pn(x)
s

Add x to B
End If

End Routine

Figure 6: Add Good to Bundle for Spatial Proxim-
ity

n2 are each connected to B by one edge, and the private
valuation for n1 is twice that for n2 then the probability
of adding n1 to B, p(n1), is 2p(n2). Further, if n1 has 3
edges to nodes in B while n2 is connected to B by only
1 edge, and the goods have equivalent private values, then
p(n1) = 3p(n2). Once we have determined all the goods
in a bundle we set the price offered for the bundle, which
depends on the sum of common and private valuations for
the goods in the bundle, and also includes a function that is
superadditive (with our parameter settings) in the number
of goods.6 Finally, we generate additional bids that are sub-
stitutable for the original bid, with the constraint that each
bid in the set requests at least one good from the original
bid.

This is CATS 1.0 problem 2. CATS default param-
eters: three prob = 1.0, additional neighbor = 0.2,
max good value = 100, max substitutable bids = 5,
additional location = 0.9, jump prob = 0.05, additivity =
0.2, deviation = 0.5, budget factor = 1.5, resale factor =
0.5, and S(n) = n1+additivity. Note that additivity = 0 gives
additive bids, and additivity < 0 gives sub-additive bids.

4.2.3 Spectrum Auctions
A related problem is the auction of radio spectrum, in

which a government sells the right to use specific segments
of spectrum in different geographical areas[18, 2].7 It is pos-
sible to approximate bidding behavior in spectrum auctions
by making the assumption that all complementarity arises
from spatial proximity.8 In this case, our spatial proximity
model can also be used to generate realistic bidding distri-
butions for spectrum auctions. The main difference between
this problem and the real estate problem is that in a spec-
trum auction each good may have multiple units (frequency
bands) for sale. It is insufficient to model this as a multi-
unit CA problem, however, if bidders have the constraint
that they want the same frequency in each region.9 Instead,

6Recall the discussion in Section 2.3.3 motivating the use
of superadditive valuations.
7Spectrum auctions have not historically been formulated
as general CA’s, but the possibility of doing so is now being
explored.
8This assumption would be violated, for example, if some
bidders wanted to secure some spectrum in all metropolitan
areas. Clearly the problem of realistic test data for spectrum
auctions remains an area for future work.
9To see why this cannot be modeled as a multi-unit CA,
consider an auction for three regions with two units each,
and three bidders each wanting one unit of two goods. In



For all g, c(g) = rand(1, max good value)
While num generated bids < num bids:

For each good, reset
p(g) = rand(−deviation ·
max good value, deviation +max good value)

pn(g) =
p(g)+deviation·max good value
2·deviation·max good value

Normalize pn(g) so that
∑
g pn(g) = 1

B = {}
Choose a node g at random, weighted by
pn(), and add it to B
While rand(0, 1) ≤ additional location

Add Good to Bundle(B)
value(B) =

∑
x∈B(c(x) + p(x)) + S(|B|)

If value(B) ≤ 0 on B, restart bundle
generation for this bidder
Bid value(B) on B
budget = budget factor · value(B)
min resale value = resale factor ·∑x∈B c(x)
Construct substitutable bids. For each
good gi ∈ B:
Initialize a new bundle, Bi = {gi}
While |Bi| < |B|:

Add Good to Bundle(Bi)
Compute ci =

∑
x∈Bi c(x)

End For
Make XOR bids on all Bi where
0 ≤ value(B) ≤ budget and
ci ≥ min resale value.
If there are more than
max substitutable bids such bundles, bid
on the max substitutable bids bundles
having the largest value

End While

Figure 7: Bid-Generation Technique

the problem can be modeled with multiple distinct goods per
node in the graph, and bids constructed so that all nodes
added to a bundle belong to the same ‘frequency’. With this
method, it is also easy to incorporate other preferences, such
as preferences for different types of goods. For instance, if
two different types of frequency bands are being sold, one 5
megahertz wide and one 2.5 megahertz wide, an agent only
wanting 5 megahertz bands could make substitutable bids
for each such band in the set of regions desired (generating
the bids so that the agent will acquire the same frequency
in all the regions).

The scheme for generating price offers used in our real
estate example may be inappropriate for the spectrum auc-
tion domain. Research indicates that while price offers will
still tend to be superadditive, this superadditivity may be
quadratic in the population of the region rather than ex-
ponential in the number of regions [2]. CATS includes a
quadratic pricing option that may be used with this prob-
lem, in which the common value term above is used as a
measure of population. Please see the CATS documenta-
tion for more details.

4.3 Arbitrary Relationships
Sometimes complementarities between goods will not be

as universal as geographical adjacency, but some kind of reg-

the optimal allocation, b1 gets 1 unit of g1 and 1 unit of g2,
b2 gets 1 unit of g2 and 1 unit of g3, and b3 gets 1 unit of g3
and 1 unit of g1. In this example there is no way of assigning
frequencies to the units so that each bidder gets the same
frequency in both regions.

Build a fully-connected graph with one node for
each good
Label each edge from n1 to n2 with a weight
d(n1, n2) = rand(0, 1)

Figure 8: Graph-Building Technique

Routine Add Good to Bundle(bundle B)
Compute s =

∑
x/∈b,y∈B d(x, y) · pn(x)

Choose a random node x /∈ B from the
distribution

∑
y∈B d(x, y) · pn(x)s

Add x to B
End Routine

Figure 9: Routine Add Good to Bundle for Arbi-
trary Relationships

ularity in the complementarity relationships between goods
will still exist. Consider an auction of different, indivisi-
ble goods, e.g. for semiconductor parts or collectables, or
for distinct multi-unit goods such as the right to emit some
quantity of two different pollutants produced by the same
industrial process. In this section we discuss a general way
of modeling such arbitrary relationships.

4.3.1 Building the Graph
We express the likelihood that a particular pair of goods

will appear together in a bundle as being proportional to the
weight of the appropriate edge of a fully-connected graph.
That is, the weight of an edge between n1 and n2 is propor-
tional to the probability that, having only n1 in our bundle,
we will add n2. Weights are only proportional to probabili-
ties because we must normalize the sum of all weights from
a given good to 1 in order to calculate a probability.

4.3.2 Generating Bids
Our technique for modeling bidding is a generalization of

the technique presented in the previous section. We choose
a first good and then proceed to add goods one by one, with
the probability of each new good being added depending
on the current bundle. Note that, since in this section the
graph is fully-connected, there is no need for the ‘jumping’
mechanism described above. The likelihood of adding a new
good g to bundle B is proportional to

∑
y∈B d(x, y) · pi(x).

The first term d(x, y) represents the likelihood (independent
of a particular bidder) that goods x and y will appear in
a bundle together; the second, pi(x), represents bidder i’s
private valuation of the good x. We implement this new
mechanism by changing the routine Add Good to Bundle().
We are thus able to use the same techniques for assigning a
value to a bundle, as well as for determining other bundles
with which it is substitutable.

This is CATS 1.0 problem 3. CATS default param-
eters: max good value = 100, additional good = 0.9,
max substitutable bids = 5, additivity = 0.2, deviation =
0.5, budget factor = 1.5, resale factor = 0.5, and S(n) =
n1+additivity.

4.3.3 Multi-Unit Pollution Rights Auctions: Future
Work

Bidding in pollution-rights auctions[18, 13] may be mod-
eled through a multi-unit generalization of the technique
presented in this section. In such auctions, the government
sells companies the right to generate specific amounts of



some pollutant. In the United States, though these auc-
tions are widely used, sulfur-dioxide is the only chemical
for which they are the primary method of control. Cur-
rent US pollution-rights auctions may therefore be modeled
as single good multi-unit auctions. If the government were
to conduct pollution rights auctions for multiple pollutants
in the future, however, bidding would be best-represented
as a multi-unit ‘Arbitrary Complementarity’ problem. The
problem belongs to this class because some sets of pollutants
are more likely to be produced than others, yet the relation-
ship between pollutants can not be modeled through any
notion of adjacency. Should such auctions become viable in
the future, we hope that a pollution-rights distribution will
be added to CATS .

4.4 Temporal Matching
We now consider real-world domains in which complemen-

tarity arises from a temporal relationship between goods. In
this section we discuss matching problems, in which corre-
sponding time slices must be secured on multiple resources.
The general form of temporal matching includes m sets of
resources, in which each bidder wants 1 time slice from
each of j ≤ m sets subject to certain constraints on how
the times may relate to one another (e.g., the time in set
2 must be at least two units later than the time in set
3). Here we concern ourselves with the problem in which
j = 2, and model the problem of airport take-off and land-
ing rights. Rassenti et al. [21] made the first study of auc-
tions in this domain. The problem has been the topic for
much other work; in particular [11] includes detailed exper-
iments and an excellent characterization of bidder behav-
ior.

The airport take-off and landing problem arises because
certain high-traffic airports require airlines to purchase the
right to take off or land during a given time slice. However,
if an airline buys the right for a plane to take off at one
airport then it must also purchase the right for the plane
to land at its destination an appropriate amount of time
later. Thus, complementarity exists between certain pairs
of goods, where goods are the right to use the runway at a
particular airport at a particular time. Substitutable bids
are different departure/arrival packages; therefore bids will
only be substitutable within certain limits.

4.4.1 Building the Graph
Departing from our graph-based approach above, we ground

this example in the real map of high-traffic US airports for
which the Federal Aviation Administration auctions take-off
and landing rights, described in [11]. These are the four bus-
iest airports in the United States: La Guardia International,
Ronald Reagan Washington National, John F. Kennedy In-
ternational, and O’Hare International. This map is shown
below.

We chose not to use a random graph in this example be-
cause the number of bids and goods is dependent on the
number of bidders and time slices at the given airports; it
is not necessary to modify the number of airports in or-
der to vary the problem size. Thus, num cities = 4 and
num times = 
num goods/num cities�.

4.4.2 Generating Bids
Our bidding mechanism presumes that airlines have a

certain tolerance for when a plane can take off and land
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Figure 10: Map of Airport Locations

(early takeoff deviation, late takeoff deviation,
early land deviation, late land deviation), as related to
their most preferred take-off and landing times (start time,
start time + min flight length). We generate bids for all
bundles that fit these criteria. The value of a bundle is de-
rived from a particular agent’s utility function. We define a
utility umax for an agent, which corresponds to the utility
the agent receives for flying from city1 to city2 if it receives
the ideal takeoff and landing times. This utility depends on
a common value for a time slot at the given airport, and
deviates by a random amount. Next we construct a util-
ity function which reduces umax according to how late the
plane will arrive, and how much the flight time deviates from
optimal.

Set the average valuation for each city’s
airport: cost(city) = rand(0, max airport value)
Let max l = length of longest distance between
any two cities
While num generated bids < num bids:

Randomly select city1 and city2 where
e(city1, city2)
l = distance(city1, city2)
min flight length =
round(longest flight length · 1

max l
)

start time =
rand int(1, num times−min flight length)
dev = rand(1 − deviation, 1 + deviation)
Make substitutable (XOR) bids. For
takeoff =
max(1, start time− early takeoff deviation)
to min(num times, start time+
late takeoff deviation):
For land = takeoff +min flight length
to
min(start time+min flight length+
late land deviation, num times):

amount late =
min(land − (start time +
min flight length), 0)
delay =
land−takeoff−min flight length
Bid dev · (cost(city1) + cost(city2)) ·
delay coeffdelay ·
amount late coeffamount late for
takeoff at time takeoff at
city1 and landing at time land
at city2

End For
End For

End While

Figure 11: Bid-Generation Technique



This is CATS 1.0 problem 4. CATS default parameters:
max airport value = 5, longest flight length = 10,
deviation = 0.5, early takeoff deviation = 1,
late takeoff deviation = 2, early land deviation =
1, late land deviation = 2, delay coeff = 0.9, and
amount late coeff = 0.75.

4.5 Temporal Scheduling
Wellman et al. [26] proposed distributed job-shop schedul-

ing with one resource as a CA problem. We provide a dis-
tribution that mirrors this problem. While there exist many
algorithms for solving job-shop scheduling problems, the dis-
tributed formulation of this problem places it in an economic
context. In the problem formulation from Wellman et al., a
factory conducts an auction for time-slices on some resource.
Each bidder has a job requiring some amount of machine
time, and a deadline by which the job must be completed.
Some jobs may have additional, later deadlines which are
less desirable to the bidder and so for which the bidder is
willing to pay less.

4.5.1 Generating Bids
In the CA formulation of this problem, each good repre-

sents a specific time-slice. Two bids are substitutable if they
constitute different possible schedules for the same job. We
determine the number of deadlines for a given job according
to a decay distribution, and then generate a set of substi-
tutable bids satisfying the deadline constraints. Specifically,
let the set of deadlines of a particular job be d1 < · · · < dn
and the value of a job completed by d1 be v1, superadditive
in the job length. We define the value of a job completed by
deadline di as vi = v1 · d1di , reflecting the intuition that the

decrease in value for a later deadline is proportional to its
‘lateness’.

Note that, like Wellman et al., we assume that all jobs
are eligible to be started in the first time-slot. Our for-
mulation of the problem differs in only one respect—we
consider only allocations in which jobs receive continuous
blocks of time. However, this constraint is not restrictive
because for any arbitrary allocation of time slots to jobs
there exists a new allocation in which each job receives a
continuous block of time and no job finishes later than in
the original allocation. (This may be achieved by num-
bering the winning bids in increasing order of scheduled
end time, and then allocating continuous time-blocks to
jobs in this order. Clearly no job will be rescheduled to
finish later than its original scheduled time.) Note also
that this problem cannot be translated to a trivial one-good
multi-unit CA problem because jobs have different dead-
lines.

This is CATS 1.0 problem 5. CATS default parame-
ters: deviation = 0.5, prob additional deadline = 0.9,
additivity = 0.2, and max length = 10. Note that we pro-
pose a constant maximum job length, because the length
of time a job requires should not depend on the amount of
time the auctioneer makes available.

4.5.2 Multi-Unit Power Generation Auctions: Future
Work

The problem of scheduling power generation is superfi-
cially similar to the job-shop scheduling problem described
above. In these auctions, electrical power generation com-
panies bid to produce a certain quantity of power for each

While num generated bids < num bids:

l = rand int(1, max length)
d1 = rand int(l, num goods)
dev = rand(1 − deviation, 1 + deviation)
cur max deadline = 0
new d = d1
To generate substitutable (XOR) bids. Do:

Make bids with price offered
= dev · l1+additivity · d1/new d for all
blocks [start, end] where start ≥ 1,
end ≤ new d, end > cur max deadline,
end− start = l
cur max deadline = new d
new d = rand int(cur max deadline+
1, num goods)

While rand(0, 1) ≤ prob additional deadline
End While

Figure 12: Bid-Generation Technique

hour of the day. This new problem differs from job-shop
scheduling primarily because different kinds of power plants
will exhibit very different utility functions, considering dif-
ferent sorts of goods to be complementary. For example,
some plants will want to produce for long blocks of time
(because they have startup and shutdown costs), others will
prefer certain times of day due to labor costs, and still oth-
ers will have neither restriction [9]. Due to the domain-
specific complexity of bidder utilities, the construction of
a distribution for this problem remains an area for future
work.

4.6 Legacy Distributions
To aid researchers designing new CA algorithms by facil-

itating comparison with previous work, CATS includes the
ability to generate bids according to all previous published
test distributions of which we are aware, that are able to
scale with the number of goods and bids. Each of these
distributions may be seen as an answer to three questions:
what number of goods to request in a bundle, which goods
to request, and the price offered for a bundle. We begin by
describing different techniques for answering each of these
three questions, and then show how they have been com-
bined in previously published work.

4.6.1 Number of Goods
Uniform: Uniformly distributed on [1, num goods]
Normal: Normally distributed with µ = µ goods and σ =
σ goods
Constant: Fixed at constant goods
Decay: Starting with 1, repeatedly increment the size of
the bundle until rand(0, 1) exceeds α
Binomial: Request n goods with probability
pn(1− p)num goods−n(num goods

n

)

Exponential: Request n goods with probability C exp−n/q

4.6.2 Which Goods
Random: Draw n random goods from the set of all goods,
without replacement10

10Although in principle the problem of which goods to re-
quest could be answered in many ways, all legacy distribu-
tions of which we are aware use this technique.



4.6.3 Price Offer
Fixed Random: Uniform on [low fixed, hi fixed].
Linear Random: Uniform on [low linearly·n, hi linearly·
n]
Normal: Draw from a normal distribution with µ = µ price
and σ = σ price
Quadratic11: For each good k and each bidder i set the
value vik = rand(0, 1). Then i’s price offer for a set of goods
S is

∑
k∈S v

i
k +
∑
k,q v

i
kv
i
q .

4.7 Previously Published Distributions
The following is a list of the distributions used in all pub-

lished tests of which we are aware. In each case we describe
first the method used to choose the number of goods, fol-
lowed by the method used to choose the price offer. In all
cases the ‘random’ technique was used to determine which
goods should be requested in a bundle. Each case is labeled
with its corresponding CATS legacy suite number; very sim-
ilar distributions are given similar numbers and identical
distributions are given the same number.
[L1] Sandholm: Uniform, fixed random with low fixed = 0,
hi fixed = 1
[L1a] Andersson et al.: Uniform, fixed random with
low fixed = 0, hi fixed = 1000
[L2] Sandholm: Uniform, linearly random with
low linearly = 0, hi linearly = 1
[L2a] Andersson et al.: Uniform, linearly random with
low linearly = 500, hi linearly = 1500
[L3] Sandholm: Constant with constant goods = 3, fixed
random with low fixed = 0, hi fixed = 1
[L3] deVries and Vohra: Constant with constant goods = 3,
fixed random with low fixed = 0, hi fixed = 1
[L4] Sandholm: Decay with α = 0.55, linearly random with
low linearly = 0, hi linearly = 1
[L4] deVries and Vohra: Decay with α = 0.55, linearly
random with low linearly = 0, hi linearly = 1
[L4a] Andersson et al.: Decay with α = 0.55, linearly
random with low linearly = 1, hi linearly = 1000
[L5] Boutilier et al.: Normal with µ goods = 4 and
σ goods = 1, normal with µ price = 16 and σ price = 3
[L6] Fujishima et al.: Exponential with q = 5, linearly
random with low linearly = 0.5, hi linearly = 1.5
[L6a] Andersson et al.: Exponential with q = 5, linearly
random with low linearly = 500, hi linearly = 1500
[L7] Fujishima et al.: Binomial with p = 0.2, linearly
random with low linearly = 0.5, hi linearly = 1.5
[L7a] Andersson et al.: Binomial with p = 0.2, linearly
random with low linearly = 500, hi linearly = 1500
[L8] deVries and Vohra: Constant with constant goods = 3,
quadratic

Parkes [17] used many of the test sets described above
(particularly those described by Sandholm and Boutilier et
al.), but tested with fixed numbers of goods and bids rather
than scaling these parameters.

5. CONCLUSION

11DeVries and Vohra [8] briefly describe a more general ver-
sion of this price offer scheme, but do not describe how to set
all the parameters (e.g., defining which goods are comple-
mentary); hence we do not include it here. Quadratic price
offers may be particularly applicable to spectrum auctions;
see [2].

In this paper we introduced CATS , a test suite for combi-
natorial auction optimization algorithms. The distributions
in CATS represent a step beyond current CA testing tech-
niques because they are economically motivated and model
real-world problems. It is our hope that, with the help of
others in the CA community, CATS will evolve into a univer-
sal test suite that will facilitate the development and evalu-
ation of new CA optimization algorithms.
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