Action-Graph Games

Albert Xin Jiang Kevin Leyton-Brown Navin A.R. Bhat

Abstract

Representing and reasoning with games becomes difficut thiey involve large numbers of actions
and players, because the space requirement for utilitytiftmescan grow unmanageably. Action-Graph
Games (AGGs) are a fully-expressive game representatatncém compactly express utility functions
with structure such as context-specific independence,yanioy and additivity. We show that AGGs can
be used to compactly represent all games that are compantrepeesented as graphical games, symmet-
ric games, anonymous games, congestion games, and pak/getnes, as well as games that require
exponential space under all of these existing representatiWe give a polynomial-time algorithm for
computing a player’s expected utility under an arbitrarxedistrategy profile, and show how to use this
algorithm to achieve exponential speedups of existing atstifor computing sample Nash equilibria.
We present results of experiments showing that using AG&dsléo a dramatic increase in the size of
games accessible to computational analysis.

Keywords: game representations, graphical models, large games,utatiomal techniques, Nash
equilibria.

JEL classification codes:C63—Computational Techniques, C72—Noncooperative Games

1 Introduction

Simultaneous-action games have received consideralblg sthich is reasonable as these games
are in a sense the most fundamentilost of the game theory literature presumes that simultasieo
action games will be represented in normal form. This is [@ofatic because in many domains
of interest the number of players and/or the number of astjwar player is large. In the nor-
mal form representation, the game’s payoff function isesdioas a matrix with one entry for
each player’s payoff under each combination of all playactions. As a result, the size of the
representation grows exponentially with the number of @iay

Fortunately, most large games of practical interest haghlfistructured payoff functions,
and thus it is possible to represent them compactly. Intlitj this helps to explain why people
are able to reason about these games in the first place: westend the payoffs in terms of
simple relationships rather than in terms of enormous Ipdkbles. One thread of recent work
in the literature has explored game representations tkatlae to succinctly describe games of
interest. In some sense, nearly every game form besidesthehform itself can be seen as such
a compact representation. For example, the extensive filmmsagames with temporal structure
to be encoded in exponentially less space than the normal for what follows, however, we

*Department of Computer Science, University of British Gohia.j i ang@s. ubc. ca

TDepartment of Computer Science, University of British Gohia. kevi nl b@s. ubc. ca

fDepartment of Physics, University of Toronto (Current ffibn: BMO Capital Markets).
nbhat @hysi cs. utoronto. ca

IWe gratefully acknowledge Moshe Tennenholtz for his cdvarghip of a paper on Local Effect Games [Leyton-
Brown & Tennenholtz, 2003], an action-centric graphicaldeldor games that inspired our work on AGGs.

2More complex games such as those involving time or uncéytaibout payoffs can always be mapped to perfect-
information, simultaneous-action games by creating aomébr everypolicy in the original game. This expansion is of
primarily theoretical interest, however, as it tends toseaan explosion in the size of the game.

concentrate on game representations that are compact eveimfultaneous-move games of
perfect information.

Perhaps the most influential class of compact game repedeTd is that which exploits
strict independencies between players’ utility functioffis class includes graphical games
[Kearnset al,, 2001; Kearns, 2007], multi-agent influence diagrams [&ofl Milch, 2003], and
game nets [LaMura, 2000]; we focus on the first of these. @emsa graph in which nodes
correspond to agents and an edge from one node to anothese@ps the proposition that the
first agent is able to affect the second agent’s payoff. Ifewede in the graph has a small in-
degree—thatis, if each agent’s payoff depends only on ttierecof a small number of others—
then the graphical game representation is compact, by whéimean that it is exponentially
smaller than its induced normal form. Of course, there ayerammber of ways of representing
games compactly. For example, games of interest could lignassshort ID numbers. What
makes graphical games important is the fact that compu@touestions about these games can
be answered by algorithms whose running time depends onizth@fthe representation rather
than the size of the induced normal form. (Note that this prigjpdoes not hold for the naive
ID number scheme.) To state one fundamental property [Dalskaet al., 2006a], it is possible
to compute an agent’s expected utility under an arbitramechistrategy profile in time polyno-
mial in the size of the graphical game representation. Thipgrty implies that a variety of
algorithms for computing game-theoretic quantities ofigst, such as sample Nash [Govindan
& Wilson, 2003; van der Laast al, 1987] and correlated equilibrium, can be made exponen-
tially faster for graphical games without introducing amange in the algorithms’ behavior or
output [Blumet al,, 2006; Papadimitriou & Roughgarden, 2008]. Furthermoraplical games
are also computationally well-behaved in other ways; efitialgorithms exist for computing
other quantities of interest for certain subclasses ofetigegnes such as sample Nash equilibria
[Elkind et al,, 2006] or Nash equilibria subject to a fairness criteriofkitd et al,, 2007] on
path graphs, pure Nash equilibrium on bounded-treewidiplyg [Daskalakis & Papadimitriou,
2006; Gottlobet al,, 2005],e-Nash equilibrium [Kearnst al,, 2001; Vickrey & Koller, 2002],
and evolutionary stable strategies [Kearns & Suri, 2006].

A drawback of the graphical games representation is thatytleelps when there exist agents
who neveraffect some other agents’ utilities. Unfortunately, mamayngs of interest lack any
structure of this kind. For example, nontrivial symmetrantes are cliques when represented
as graphical games. Another useful form of structure noegaly captured by graphical games
is dubbedanonymity it holds when each agent'’s utility depends only on the nunalb@gents
who took each action, rather than on these agents’ idesttitiRecently, researchers such as
Papadimitriou and Roughgarden [2008], Kalai [2005], Dé#skia and Papadimitriou [2007],
Brandtet al. [2010] and Ryaret al. [2010] have explored the representational, computational
and strategic benefits that can be derived from symmetry aoyanity assumptions.

A weaker form of utility independence can usefully be congivith symmetry and anonymity.
Specifically, utility functions exhibitontext-specifimdependencies when the question of whether
two agents are able to affect each other’s utilities dependlse actions both agents choose. Con-
gestion games [Rosenthal, 1973] are a prominent game ezyiati®n that can express context-
specific payoff independencies, anonymiyd symmetry. This representation has many ad-
vantages. First and most importantly, many realistic axtBons—even involving very large
numbers of players and actions—have compact represemgacongestion games (see, e.g.,
[Roughgarden & Tardos, 2002]). Second, congestion gamesattiactive theoretical properties.

3Note that our definition of anonymity presumes that it malessss to speak about two different agents having at
least some of the same action choices. There are variousofraghieving this formally; for now, one can simply assume
that anonymous games are also symmetric.

Most notably, they always have pure-strategy equilibral endeed always admit an exact po-
tential function [Monderer & Shapley, 1996]. As a consequesimple best-response dynamics
are guaranteed to converge to a pure-strategy equilibfumally, congestion games have attrac-
tive computational properties. For example, correlatadligium can be efficiently computed
for congestion games [Papadimitriou, 2005; Papadimit&oRoughgarden, 2008], and pure-
strategy Nash equilibrium can be efficiently computed fatnieted subclasses of congestion
games (see, e.g., [leorgal., 2005]).

Unfortunately, congestion games too have a catch. Unlileplgcal games, congestion
games are not a universal game representation: not evanahéorm game can be encoded as a
congestion game. Indeed, this problem should be obviousthe fact that congestion games al-
ways have pure-strategy equilibria. Congestion gamesnethat agents’ utility functions must
be expressible assumof arbitrary functions of the numbers of agents who chosh eéa set of
resources, where each action is interpreted as the cho@®eadr more resources. This linearity
assumption is restrictive. Thus, while congestion gamestitoite a useful model for reasoning
about certain game-theoretic domains, they cannot setbhedimsis for a set of general tools for
representing and reasoning about games.

Action-graph games (AGGSs) are a general game represantatid can be understood as
offering the advantages of—and, indeed, unifying—botlpgieal games and congestion games.
Like graphical games, AGGs can represent any game, and fami@ame-theoretic computa-
tions can be performed efficiently when the AGG represesmias compact. Hence, AGGs offer
a general representational framework for game-theoretigputation. Like congestion games,
AGGs compactly represent context-specific independemogyanity, and additivity, though un-
like congestion games they do not require any of these. IFinfaGGs can also compactly
represent many games that are not compact as either grbghineas or as congestion games.

We begin this paper in Section 2 by defining action-graph gamneluding the basic repre-
sentation and extensions with function nodes and additilieyifunctions, and characterizing
their representation sizes. In Section 3 we provide seveoaé examples of structured games
which can be compactly represented as AGGs. Then we turn fepnesentational to compu-
tational issues. In Section 4 we present a dynamic progragualgorithm for computing an
agent’s expected utility under an arbitrary mixed-stratepfile, prove its complexity, and ex-
plore several elaborations. In Section 5 we show that (asdlary of the polynomial complexity
of our expected utility algorithm) the problem of finding @Nash equilibrium of an AGG is in
PPAD: a positive result, as AGGs can be exponentially sm#iken normal-form games. We
also show how to use our dynamic programming algorithm tedpg existing methods for
computing sample-Nash and-correlated equilibria. Finally, in Section 6 we presem tesults
of extensive experiments with some of these algorithms,afestnating that AGGs can feasibly
be used to reason about interesting games that were indsled¢ssany previous techniques. The
largest game that we tackled in our experiments had 20 agewtd 3 actions per agent; we
found its Nash equilibrium in 14.3 minutes. A normal form mregentation of this game would
have involved.4 x 10'3* numbers, requiring an outragedus x 10'26 gigabytes even to store.

Finally, let us describe the relationship between this papé past work, mostly our own,
on AGGs. Leyton-Brown and Tennenholtz [2003] introducezhleeffect games, which can be
understood as symmetric AGGs in which utility functions aequired to satisfy a particular
linearity property. Bhat and Leyton-Brown [2004] introagatthe basic AGG representation and
some of the computational ideas for reasoning with them.dymamic programming algorithm
was first proposed in Jiang and Leyton-Brown [2006], as wasdha of function nodes. The
current paper substantially elaborates upon and extemdefitesentations and methods from
these two papers. Other new material includes the additivetsre model and the encoding of

congestion games, several of the examples, our compughtisethods fork-symmetric games
and for additive structure, and our speedup of the simpkciadivision algorithm. Furthermore,
all experiments in this paper (Section 6) are new. Going bdybe work described here, in Jiang
and Leyton-Brown [2007] we gave a message-passing algofith computing pure-strategy
equilibria of symmetric AGGs, in Thompsaat al. [2007] we explored the use of AGGs to
model network congestion problems that cannot be captwedrzgestion games, in Thompson
and Leyton-Brown [2009] we used AGGs to compute the NasHibgaiof perfect-information
advertising auction problems, and in Jiaetgal. [2009] and Jiang and Leyton-Brown [2010]
we extend our AGG framework to represent dynamic games agddtan games, respectively.
Daskalakiset al. [2009] (a separate group of researchers) recently corezidee computation of
e-Nash equilibrium of AGGs, providing a fully polynomial terapproximation scheme (FPTAS)
for one family of AGGs and proving computational hardnessiits for other families.

2 Action Graph Games

This section has three parts, each of which defines a diffé&k&G variant. In Section 2.1
we define the basic AGG representation (which we dub Af}@Gharacterize its representation
size, and show how it can be used to represent normal-foraphgral, and symmetric games.
In Section 2.2 we introduce the idea foinction nodesshow how AGGs with function nodes
(AGG-FNs) can capture additional structure in several gdargames, and show how to rep-
resent anonymous games as AGG-FNs. In Section 2.3 we iteoGG-FNs with additive
structure (AGG-FNA), which compactly represent addititreicture in the utility functions of
AGGs, and show how congestion games can be succinctly wageAGG-FNAs.

2.1 Basic Action Graph Games

We begin with an intuitive description of basic action-gragames. Consider a directed graph
with nodes4 and edge&’, and a set of agenf§ = {1,...,n}. Identical tokens are given to each
agenti € N. To play the game, each agergimultaneously places her token on a nede A;,
whereA; C A. Each node in the graph thus corresponds to an action chwtéstavailable to
one or more of the agents; this is where action-graph gantebgjename. Each agent’s utility
is calculated according to an arbitrary function of the nslde chose and theumbersof tokens
placed on the nodes that neighbor that chosen node in thé.gvee will argue below that any
simultaneous-move game can be represented in this wayhahddtion-graph games are often
much more compact than games represented in other ways.

We now turn to a formal definition of basic action-graph gantet N = {1,...,n} be the
set of agents. Central to our model is tetion graph

Definition 2.1 (Action graph) Anaction graptG = (A, E) is a directed graph where:

e Aisthe set of nodes. We call each nede A anaction and.A theset of distinct actions
For each agent € N, let A; be the set of actions available tpwith A = UieN A; 4 We
denote byi; € A; one of agent’s actions. Araction profile(or pure strategy profiles a
tuplea = (a1, . ..,a,). Denote byA the set of action profiles. Theti =[], A; where
1 is the Cartesian product.

4Different agents’ action setd;, A; may (partially or completely) overlap. The implicationstbfs will become
clear once we define the utility functions.

e [is a set of directed edges, where self edges are allowed. Y& $aa neighborof « if
there is an edge from’ to ¢, i.e., (o',) € E. Let theneighborhoof o, denoted/(«),
be the set of neighbors af i.e.,v(a) = {o/ € A|(¢/,a) € E}.

Given an action graph and a set of agents, we can further deioefiguration which is a
feasible arrangement of agents across nodes in an actiph.gra

Definition 2.2 (Configuration) Given an action grapli.A, E') and a set of action profiled, a
configuratiorc is a tuple of|.4| non-negative integer&:(a)).c 4, Wherec(a) is interpreted as
the number of agents who chose actiorE A, and where there exists sorme= A that would
give rise toc. Denote the set of all configurations 5 LetC : A — C be the function that
maps from an action profile to the corresponding configuratian Formally, ifc = C(a) then
cla)={i € N:a;, =a}forall a € A

We can also restrict a configuration to a given node’s neigindomd.

Definition 2.3 (Configuration over a neighborhood) Given a configuratior € C' and a node
a € A, let theconfiguration over the neighborhoofla, denoted:(*), be the restriction of: to
v(a), i.e.,c® = (c(a/))aev(a)- Similarly, letC®) denote the set of configurations ove)

in which at least one player plays® LetC(®) : A — C(® be the function which maps from an
action profile to the corresponding configuration owgry).

Now we can state the formal definition of basic action-gragimes as follows.

Definition 2.4 (Basic action-graph game)A basic action-graph game (AG@-is a tuple(N,
A, G, u) where

e N is the set of agents;
o A =TJ,cn Aiis the set of action profiles;
e G = (A, E)is anaction graph, wherel = | J, v 4; is the set of distinct actions;

e u is a tuple (u®)qca, Where eachu® : C(® — R is theutility function for action c.
Semanticallyy(c(®)) is the utility of an agent who chose when the configuration over
v(a)is e,

For notational convenience, we defing, ¢()) = u(c(®)) andu;(a) = u(a;, C(*)(a)).
We also defined_; =[], A; as the set of action profiles of agents other thand denote an
elementofd_; bya_;.

2.1.1 Example: Ice Cream Vendors

The following example helps to illustrate the elements & AGG+) representation, and also
exhibits context-specificity and anonymity in utility fumans. This example would not be com-
pact under the existing game representations discussée imtroduction. It was inspired by

Hotelling [1929], and elaborates an example used in Le{@mwn and Tennenholtz [2003].

S1f action « is in multiple players’ action sets (say playérg), and these action sets do not completely overlap, then it
is possible that the set of configurations given thalayeda: (denotedC (5:9)) is different from the set of configurations
given thatj playeda. C(®) is the union of these sets of configurations.

Figure 1: AGG# representation of the Ice Cream Vendor game.

Example 2.5 (Ice Cream Vendor game)Consider a setting in which vendors sell ice cream
or strawberries, and must choose one of four locations alibgach. There are three kinds of
vendors:n; ice cream vendors;s strawberry vendors, andy, vendors who can sell both ice
cream and strawberry, but only on the west side. Ice crearavierry) vendors are negatively
affected by the presence of other ice cream (strawberrydlmenin the same or neighboring
locations, and are simultaneously positively affectedhgyfdresence of nearby strawberry (ice
cream) vendors.

The AGGH representation of this game is illustrated in Figure 1. Asways, nodes represent
actions and directed edges represent membership in a noéasborhood. The dotted boxes
represent the action sets for each group of players; for edanthe ice cream vendors have
action setA;. Note that this game exhibits context-specific indeperslarithout any strict
independence, and that the graph structure is independent o

2.1.2 Size of an AGGH Representation
Intuitively, AGG-Js capture two types of structure in games:

1. Shared actions capture the ganmai®nymitystructure: agent's utility depends only on
her actiona; and the configuration. Thus, agentares about thaumberof players that
play each action, but not the identities of those players.

2. The (lack of) edges between nodes in the action graph esggeontext-specific indepen-
denciesof utilities of the game: for ali € N, if i chose actionx € A, thens’s utility
depends only on the configuration over the neighborhoad &f other words, the config-
uration over actions not in(«) does not affect’s utility.

We have claimed informally that action graph games provigeg of representing games
compactly. But what exactly is the size of an AGGepresentation, and how does it grow with
the number of agents? In this subsection we give a bound on the size of an AG&nd show
that asymptotically it is never worse than the size of thewedent normal form.

From Definition 2.4 we observe that to completely specify &GA) we need to specify (1)
the set of agents, (2) each agent’s set of actions, (3) thenagptaph, and (4) the utility functions.
The first three can easily be compactly represented:

1. The set of agentdy = {1,...,n} can be specified by the integer

2. The set of actionsl can be specified by the integet|. Each agent’s action set; C A
can be specified i0(|.A|) space.

3. The action graplé = (A, E) can be straightforwardly represented as neighbor lists: fo
each nodex € A we specify its list of neighbors(«) C A. The space required is
> aca lV(@)], which is bounded byA|Z, whereZ = max, |[v(a)l, i.e., the maximum
in-degree of.

We observe that whereas the first three components of an AG&-A, G,) can always
be represented in space polynomiahimnd|A;|, the size of the utility functions is worst-case
exponential. So the size of the utility functions determsimédnether an AGG}can be tractably
represented. Indeed, for the rest of the paper we will reféné number of payoff values stored
as the representation size of the A@GFhe following proposition gives an upper bound on the
number of payoff values stored.

Proposition 2.6 Given an AGG}), the number of payoff values stored by its utility functiens

at most|A|%. If Z is bounded by a constant asgrows, the number of payoff values is

O(|A|n?), i.e. polynomial with respect to.

Proof. For each utility function,® : C(®) — R, we need to specify a utility value for each
distinct configuratior:(®) € C(®). The set of configurations(®) can be derived from the
action graph, and can be sorted in lexicographical ordensTWe can just specify a list of
|C()] utility values that correspond to the (ordered) set of camijons? In general there
is no closed form expression fa£(®)|, the number of distinct configurations ove). In-
stead, we consider the operation of extending all agent®irasets viavi : A; — A. The
number of configurations over(«) under the new action sets is an upper bound@) |.
This is the number of (ordered) combinatorial compositiafts— 1 (since one player has al-

ready chosen) into |v()| + 1 nonnegative integers, which ngllyu”)(la)‘) = %

Then the total space required for the utilities is boundethfabove b){A|%. If Zis
bounded by a constant aggrows, this grows like)(|A|n%). m

For each AGG), there exists a uniquaduced normal formmepresentation with the same set
of players andA;| actions for eacli; its utility function is a matrix that specifies each playsr
payoff for each possible action profilec A. This implies a space complexity ef[)", | A;|.
When A; > 2 for all 7, the size of the induced normal form representation groyg®eentially
with respect tor. On the other hand, we observe that the number of payoff saltered in an
AGG-) representation is always less than or equal to the numbexyaiffivalues in the induced
normal form representation. Of course, the A@Gepresentation has the extra overhead of
representing the action graph, which is bounded¢ld¥. But this overhead is dominated by the
size of the induced normal form,]_[j |A;|. Thus, an AGGH’'s asymptotic space complexity is
never worse than that of its induced normal form game.

Itis also possible to describe a reverse transformatidreth@odes any arbitrary game in nor-
mal form as an AGG}. Specifically, a unique node must be created for each action available
to each agent ThusVa € A, c(a) € {0,1},andvi, 4. c¢(o) mustequal. The configura-
tion simply indicates each agent’s action choice, and esgg®no anonymity or context-specific
independence structure.

This representation is no more or less compact than the ndoma. More precisely, the
number of distinct configurations ovefa;) is the number of action profiles of the other players,

6This is the most compact way of representing the utility fiows, but does not provide easy random access to the
utilities. Therefore, when we want to do computation usirg@s, we may convert each utility functiarf* to a data
structure that efficiently implements a mapping from seqasrof integers to (floating-point) numbers, (e.g. trieshha
tables or Red-Black trees), with space complexitfZ|C () |).

Figure 2: AGG#H representation of a 3-player, 3-action graphical game.

whichis[]; , [4;]. Sincei has|A;| actions [, [4;| payoff values are needed to represént
payoffs. So in totah Hj |A;| payoff values are stored, exactly the number in the normai fo

One might ask whether AG®s can compactly represent known classes of structured games
Consider the graphical game representation [Keatred, 2001]. In a graphical game nodes
denote agents, and there is an (undirected) edge conneaaigageni to each other agent
whose actions can affe¢s utility. Each agent then has a payoff matrix representiizglocal
game with neighboring agents. Graphical games can be mpessas AGGhs by replacing
each nodé in the graphical game by a distinct cluster of nodgsrepresenting the action set
of agent:. If the graphical game has an edge fromo j, edges must be created in the AGG-
so thatva; € A;,Va; € A;, a; € v(a;). The resulting AGGJs are as compact as the original
graphical games. Figure 2 shows the A@Gepresentation of a graphical game having three
nodes and two edges (i.e., player 1 and player 3 do not direffdct each others’ payoffs).

Another important class of structured games are symmediiceg. A symmetric game is
one in which all players are identical and indistinguislealdymmetric games exhibit anonymity
structure: the utility of a player who chose a certain acti@pends only on the numbers of
players who played each of the actions. An arbitrary symimgaime can be encoded as an
AGG-)) without an increase in asymptotic size. Specifically,Aet= A for all i € N. The
resulting action graph is a clique, i2(«a) = Aforall « € A.

2.2 AGGs with Function Nodes

There are games with certain kinds of context-specific iedepnce structures that AGG-are
not able to exploit (see, e.g., Example 2.7 below). In thidise we extend the AG@-repre-
sentation by introducinfunction nodesallowing us to exploit a much wider variety of utility
structures. Of course, as always, compact representatioot interesting as an end in itself. In
Section 4.2 we identify broad subclasses of AGG-FNs—inddgeld enough to encompass all
AGG-FN examples presented in this paper—which are amenablficient computation.

2.2.1 Examples: Coffee Shops and Parity

Example 2.7 (Coffee Shop gamefonsider a game involving players; each player plans to
open a coffee shop in a downtown area, represented by a grid. Each player can choose
to open a shop located within any of tli& = rk blocks or decide not to enter the market.
Conditioned on playei choosing some locatiam, her utility depends on the numbers of players
who chose (i) the same block; (ii) any of the surrounding képand (iii) any other location.

The normal form representation of this game has siz4|” = n(B + 1)™. Since there
are no strict independencies in the utility function, thgnagtotic size of the graphical game

representation is the same. Let us now represent the game&3G@). We observe that if agent

1 chooses an actiom corresponding to one of th locations, then her payoff is affected by the
configuration over alB locations. Hencey(«) must consist of3 action nodes corresponding to
the B locations, and so the action graph has in-de@ree B. Since the action sets completely

overlap, the representation sized$|.A||C(*)|) = © (B%). If we hold B constant, this

become® (Bn?), which is exponentially more compact than the normal forehtwe graphical
game representation. If we instead haldconstant, the size of the representatio®isB"),
which is only slightly better than the normal form and gragathpame representations.

Intuitively, the AGGY representation is able to exploit anonymity structure iis tame.
However, this game’s payoff function also has context-#jpestructure that the AG@-does not
capture. Observe that* depends only on three quantities: the number of players \wbheecthe
same block, the number of players who chose an adjacent,ldadkhe number of players who
chose another location. In other words, can be written as a functianof only three integers:
u(c) = gle(@), > e c(@), 3 anean c(@”)) whereA’ is the set of actions surrounding
a and A” the set of actions corresponding to other locations. The AlGE€presentation is not
able to exploit this context-specific information, and splitates some utility values.

There exist many similar examples in which the utility fuoos «® can be expressed as
functions of a small number of intermediate parameterse ber give one more.

Example 2.8 (Parity game) In a “parity game”, eachu® depends only on whether the number
of agents at neighboring nodes is even or odd, as follows:

uo Loif 3 ena () . mod 2 = 0;
0 otherwise.

Observe that in the Parity gamé can take just two distinct values; however, the AG@epre-
sentation must specify a value for every configuration.

2.2.2 Definition of AGG-FNs

Structure such as that in Examples 2.7 and 2.8 can be exploitein the AGG framework by
introducingfunction nodeso the action grapldr; intuitively, we use them to describe intermedi-
ate parameters upon which players’ utilities depend. Mswertices consist of both the set of
action nodesA and the set of function nodés i.e. G = (AUP, E). We require that no function
nodep € P can be in any player’s action sett NP = {}. Thus, the total number of nodes in
G is |A| + |P|. Each node irG can have action nodes and/or function nodes as neighbors. We
associate a functiofi” : C(?) — R with eachp € P, wherec?) ¢ C?) denotes configurations
overp’s neighbors. The configuratiorsare extended to include the function nodes by the def-
inition ¢(p) = f?(cP)). If p € P has no neighbors(? is a constant function. To ensure that
the AGG is meaningful, the graphi restricted to nodes i® is required to be a directed acyclic
graph (DAG). This condition ensures that for allandp, ¢(«) andc(p) are well defined. To
ensure that every € P is “useful”, we also require that has at least one outgoing edge. As
before, for each action nodewe define a utility function.® : C(®) — R. We call this extended
representation an Action Graph Game with Function NodesGA®), and define it formally as
follows.

Definition 2.9 (AGG-FN) An Action Graph Game with Function Nodes (AGG-FN) is a tuple
(N,A,P,G, f,u), where:

e N is the set of agents;

A =[],cn Aiis the set of action profiles;

P is a finite set of function nodes;

G = (AUP, E) is an action graph, whergl = J, ; A; is the set of distinct actions. We
require that the restriction of to the nodesP is acyclic and that for every € P there
exists ann € AU P such that(p,m) € E;

fis atuple(f?),cp, where eacly? : C®) — R is an arbitrary mapping from neighbors
of p to real numbers;

e uis atuple(u®)qc.4, where eachi® : C(®) — R is theutility function for actiona.

Given an AGG-FN, we can construct an equivalent AG@ith the same playerd’ and
actions.A and equivalent utility functions, but without any functioodes. We call this the
induced AGGA of the AGG-FN. There is an edge fromi to « in the induced AGG} either
if there is an edge from’ to « in the AGG-FN, or if there is a path from’ to « through
a chain consisting entirely of function nodes. From the diidim of AGG-FNs, the utility of
playing action is uniquely determined by the configuratidft), which is uniquely determined
by the configuration over the actions that are neighborsiofthe induced AGGA. As a result,
the utility tables of the induced AG@-can be filled in unambiguously. We observe that the
number of utility values stored in an AGG-FN is no greatenttiae number of utility values in
the induced AGGA. On the other hand, AGG-FNs have to represent the functférfer each
p € P. In the worst case, these functions can be represented &sitex@ppings similar to
the utility functionsu®. However, it is often possible to define these functionstaigieally by
combining elementary operations, as we do in most of the plesiven in this paper. In this
case the functions’ representations require a negligitleusnt of space.

2.2.3 Representation Size

What is the size of an AGG-FKRIV, A, P, G, f,u)? The following proposition gives a sufficient
condition for the representation size to be polynomial.eHee speak about@dassof AGG-FNs
because our statement is about the asymptotic behavioreafeiresentation size. This is in
contrast to Proposition 2.6, where we gave an exact bounldeosize of an individual AGGx

Proposition 2.10 A class of AGG-FNs has representation size bounded by aduarpmlynomial
inn, |.A] and|P] if the following conditions hold:

1. for all function node® < P, the size ofp’s range |R(f?)| is bounded by a function
polynomial inn, |.A| and|P|; and

2. max,caup v(m) (the maximum in-degree in the action graph) is bounded bynstemt.

Proof. Given an AGG-FN(N, A, P, G, f,u), it is straightforward to check that all compo-
nents except and f are polynomial im, |.A| and|P|.

First, consider an action node € A. Recall that the size of the utility functiom™
is C(@). Partitionv(a), the set ofa’s neighbors, inta/4(a) = v(a) N A andvp(a) =
v(a) NP (neighboring action nodes and function nodes respec)ivBince for each action
o € vala), c(a’) € {0,...,n}, and for eachy’ € vp(a), ¢(p) € R(f?), thenC(® <
(n+ 1)la@IT]) IR(f7)]. This is polynomial because all action node in-degrees are
bounded by a constant.

Now consider a function nodec P. Without loss of generality, assume that its function
fPisrepresented explicitly as a mapping. (Any other reprediem of f” can be transformed

10

into this explicit representation.) The representatiae sif f* is thenC'?). Using the same
reasoning as above, we hav&”) < (n+ 1)M4WIT] IR(f7)], which is polynomial
since all function node in-degrees are bounded by a constant

When the functiong? do not have to be represented explicitly, we can drop theireaent
on the in-degree of function nodes.

Corollary 2.11 A class of AGG-FNs has representation size bounded by aidmrblynomial
inn, |.A] and|P] if the following conditions hold:

1. forall function nodep € P, the functionf? has a representation whose size is polynomial
inn, |Al and|P|;

2. for each function nodg € P that is a neighbor of some action node the size of’s
range|R(f?)| is bounded by a function polynomialin |.A| and|P|; and

3. max,ea v(a) (the maximum in-degree among action nodes) is bounded bysiard.
A very useful type of function node is ttsémple aggregator

Definition 2.12 (Simple aggregator)A function node € P is asimple aggregatafeach of its

neighbors/(p) are action nodes ang? is the summation functiory?(c()) = 2 mew(p) €(m).

Simple aggregator function nodes take the value of the tataiber of players who chose
any of the node’s neighbors. Since these functions can befigokin constant space, and
sinceR(f?) = {0,...,n} for all p, Corollary 2.11 applies. That is, the representation sizes
of AGG-FNs whose function nodes are all simple aggregat@palynomial whenever the in-
degrees of action nodes are bounded by a constant. In fatgy wertain assumptions we can
prove an even tighter bound on the representation sizepgmas to Proposition 2.6 for AG@s.
Intuitively, this works because both configurations on@ttiodes and configurations on simple
aggregators count the numbers of players who behave inrceréys.

Proposition 2.13 Consider a class of AGG-FNs whose function nodes are alllsimggrega-
tors. For eachm € AU P, define the function

m m € A,

Blm) _{ v(m) otherwise.

Intuitively, 5(m) is the set of nodes whose counts are aggregated by mod&for eacha € A
and for eachm, m’ € v(a), 8(m) N B(m') = {} unlessm = m’ (i.e., no action node affects
« in more than one way), then the AGG-FNs’ representatiorssize bounded bjA| ("}*I)
whereZ = max,c4 |v(«)| is the maximum in-degree of action nodes.

Proof. Consider the utility function.® for an arbitrary actionv. Each neighbom € v(«)

is either an action or a simple aggregator. Observe thatfigemationc(®) € C(®) is a tuple

of integers specifying the numbers of players choosing eatibn in the se(m) for each

m € v(a). As in the proof of Proposition 2.6, we extend each playeto$ actions td.A|,
making the game symmetric. This weakly increases the nupflmenfigurations. Since the
setsf(m) are non-overlapping, the number of configurations possiltlee extended action
space is equal to the number of (ordered) combinatorial esitipns ofn — 1 into |v(«)|+ 1
nonnegative integers, which (§"1j(‘a”)(‘a)‘). This includes one bin for each action or simple

aggregator inv(«), plus one bin for agents that take an action that is neithes(dr) nor
in the neighborhood of any simple aggregatoria). Then the total space required for

representing is bounded byA|(" 1) whereZ = max,c4 [v(c)|. W

11

Figure 3: A5 x 6 Coffee Shop game: Left: the AGGrepresentation without function nodes
(looking at only the neighborhood of). Middle: we introduce two function nodeg, (bottom)
andp” (top). Right:a. now has only 3 neighbors.

Consider the Coffee Shop game from Example 2.7. For eaatraatidery corresponding to
a location, we introduce two simple aggregator functionesygl, andp’. Letv(p.,) be the set
of actions surrounding, andv(p’) be the set of actions corresponding to other locations. Then
we setv(a) = {a,p/,,p""}, as shown in Figure 3. Now eaef*) is a configuration over only
three nodes. Since eaglt is a simple aggregator, Corollary 2.11 applies and the dizbi®
AGG-FN is polynomial inn and.A. In fact since the game is symmetric and thg's as defined
in Proposition 2.13 are non-overlapping, we can calculsekact value ofi”'(*)| as the number

of compositions of: — 1 into four nonnegative integer% =n(n+1)(n+2)/6 = O(n?).
We must therefore stoBn(n+1)(n+2)/6 = O(Bn?) utility values. This is significantly more

compact than the AG@-representation, which has a representation si@(ﬁ%).

We can represent the parity game from Example 2.8 in a simidgr For each action we
create a function node,, and letv(p,) = v(«). We then modifyv(«) so that it has only one
memberp, . For each function nodewe definef” asf?(c”)) = 3) ¢(@) mod 2. Since
R(f?) = {0,1}, Corollary 2.11 applies. In fact, each utility function juseeds to store two

values, and so the representation siz@(s4|) plus the size of the action graph.

2.3 AGG-FNs with Additive Structure

So far we have assumed that the utility functiafts: C(®) — R are represented explicitly, i.e.,
by specifying the payoffs for all®) ¢ C(®). This is not the only way to represent a mapping; the
utility functions could be defined as analytical functiodsgision trees, logic programs, circuits,
or even arbitrary algorithms. These alternative reprediems might be more natural for humans
to specify, and in many cases are more compact than the gxpficesentation. However, this
extra compactness does not always allow us to reason maceeffy with the games. In this
section, we look at utility functions withdditive structure These functions can be represented
compactly and do allow more efficient computation.

2.3.1 Definition of AGG-FNs with Additive Structure

We say that a multivariate function hadditive structuref it can be written as a (weighted) sum
of functions of subsets of the variables. This form is mormpact because we only need to
represent the summands, which have lower dimensionaty titie entire function.

We extend the AGG-FN representation by allowirfgto be represented as a weighted sum
of the configuration of the neighbors af’

7Such a utility function could also be represented usingdstethfunction nodes representing summation. However,

12

Definition 2.14 A utility functionu® of an AGG-FN isadditiveif for all m € v(«) there exist
Am € R, such that
u(@)= Y Ape(m (2.1)

mev(a)

Such an additive utility function can be represented asdpéet(\,,) e, (o). This is a very
versatile representation of additivity, because the rmgh of o« can be function nodes. Thus
additive utility functions can represent weighted sumsrbiteary functions of configurations
over action nodes. We now formally define an AGG-FN repregent where some of the utility
functions are additive.

Definition 2.15 AnAGG-FN with additive structure (AGG-FNA$ atuple(N, A, P, G, f, Ay,
A, u) whereN, A, P, G, f are as defined in Definition 2.9, and

o A, C Aisthe set of actions whose utility functions are additive;

o A= (A")qa, ca,, Where eachh\®t = (A"),e.(a) is the tuple of coefficients represent-
ing the additive utility functiom“+;

o u = (u")qeca\4,, Where eachu® is as defined in Definition 2.9. These are the non-
additive utility functions of the game, which are represeingxplicitly.

2.3.2 Representation Size

We only need|v(«)| numbers to represent the coefficients of an additive utflityction u,
whereas the explicit representation requi€$*)| numbers. Of course we also need to take
into account the sizes of the neighboring function noges v(«) and their corresponding
functions f?, which represent the summands of the additive functionchB& either has a
simple description requiring negligible space, or is repraed explicitly as a mapping. In the
latter case its size can be analyzed the same way as utilitiuns on action nodes. That is,
when the neighbors gf are all actions then Proposition 2.6 applies; otherwisaltbeussion in
Section 2.2.3 applies.

2.3.3 Representing Congestion Games as AGG-FNAs

A congestion game is a tupleV, M, (A;)ien, (Kjk)jem k<n), WhereN = {1,...,n} is the
set of playersjM = {1,...,m} is a set of facilities (or resources}; is playeri’s set of actions;
each actioru; € A; is a subset of the facilitiess; C M. Ky, is the cost on facilityj when

k players have chosen actions that include facilityror notational convenience we also define
K;(k) = Kji. Let#(j, a) be the number of players that chose facilitgiven the action profile
a. The total cost, or disutility of playerunder pure strategy profite= (a;, a_;) is the sum of
the cost on each of the facilities in,

Costi(a;,a—;) = —ui(a;, a—;) Z K;((2.2)

Jjeai

Congestion games exhibit a specific combination of anonyamt additive structure, which
allows them to be represented compactly. Omly numbers are needed to specify the costs
(Kjx)jemk<n- The representation also needs to specifyXhe , |4;| actions, each of which

we treat the common case of additivity separately becausseainenable to special-purpose computational methods
(intuitively, leveraging the linearity of expectation;esBection 4.3).

13

A2

Figure 4: Left: a two-player congestion game with threeliiéges. The actions are shown as
ovals containing their respective facilities. Right: th&®&-FNA representation of the same
congestion game.

is a subset of\/. If we use anm-bit binary string to represent each of these subsets, the to
size of the congestion game representatidd(isin +m >,y |Ail).

An arbitrary congestion game can be encoded as an AGG-FNAneiloss of compactness,
where allu® are represented as additive utility functions. Given a estign game N, M,
(Ai)ien, (i) jem k<n), We construct an AGG-FNA with the same number of players antes
number of actions for each player as follows.

e Create) . |A;| action nodes, corresponding to the actions in the congegtime. In
other words, the action sets do not overlap.

e Create2m function nodes, labele@, . .., pm,q1, - .-, qm). FOr eachy € M, there is an
edge fromp; to ¢;. For allj € M and for alla € A, if facility j is included in actionx
in the congestion game, then in the action graph there is ga fedm the action node to
pj, and also an edge frogp) to a.

o For eactyp;, definec(p;) = Zaey(j) c(a), i.e.,p; is a simple aggregator. Since its neigh-
bors are the actions that includes faciljtythusc(p;) is the number of players that chose
facility j, which is#(j, a).

o Assign eacly; only one neighbor, namejy;, and define(¢;) = f% (c(p;)) = K;(c(pj)).

In other words¢(g;) is exactlyK;(#(j, a)), the cost on facility;.

e For each action node, represent the utility function® as an additive function with weight
—1 for each of its neighbors,

u (@) = N i) =— D K;(#(a)). (2.3)

Jjev(a) jev(a)

Example 2.16 (Congestion gameLonsider the AGG-FNA representation of a two-player con-
gestion game (see Figure 4). The congestion game has thoititda labeled{1, 2, 3}. Player
A has actions A1£1} and A2={1, 2}; Player B has actions B1{2, 3} and B2={3}.

Now let us consider the representation size of this AGG-FINAe action graph hdsl|+2m
nodes and(m/|.A|) edges; the function nodes, . . ., p,,, are simple aggregators and each only
requires constant space; eg¢h requires: numbers to specify so the total size of the AGG-FNA
is ©(mn +m|Al) = O(mn+m}_, n|As). Thus this AGG-FNA representation has the same
space complexity as the original congestion game repratsemt

14

Computer Electrical

Economics Science Engineering

Figure 5: AGG#H representation of the Job Market game.

One extension of congestion gamegplayer-specific congestion gamidgilchtaich, 1996;
Monderer, 2007]. Instead of all players having the samesdgs, in these games each player
has a different set of costs. This can be easily represestat AGG-FNA by following the
construction above, but using a different set of functiodesy;1, . . ., ¢;,, for each playei.

3 Further Examples

In this section we provide several more examples of stradtigames that can be compactly
represented as AGGs.

3.1 A Job Market

Here we describe a class of example games that can be coymegpe#sented as AG@s. Unlike
the Ice Cream Vendor game, the following example does notimchoosing among actions that
correspond to geographical locations.

Example 3.1 (Job Market game) Consider the individuals competing in a job market. Each
player chooses a field of study and a level of education toesehiThe utility of playef is the
sum of two terms: (a) a constant cost depending only on theerhfield and education level,
capturing the difficulty of studies and the cost of tuitiorddargone wages; and (b) a variable
reward, depending on (i) the number of players who chosedheedield and education level as
1, (ii) the number of players who chose a related field at theesaducation level, and (iii) the
number of players who chose the same field at one level abdyel@w:.

Figure 5 gives an action graph modeling one such job markemnado, in which there are
three fields, Economics, Computer Science and Electricgirterering . For each field there
are four levels of postsecondary study: Diploma, Bachaaster and PhD. Economics and
Computer Science are considered related fields, and so ampQGter Science and Electrical En-
gineering. There is another action representing high stlkedacation, which does not require a

15

Figure 6: AGG-FN representation of a game with agent-spadiility functions.

choice of field. The maximum in-degree of the action graplvés fihereas a naive representa-
tion of the game as a symmetric game (see Section 2.1) worrkspond to a complete action
graph with in-degree 13. Thus this AGiFepresentation is able to take advantage of anonymity
as well as context-specific independence structure.

3.2 Representing Anonymous Games as AGG-FNs

One property of the AG@-representation as defined in Section 2.1 is that utility fimmcu® is
shared by all players who havein their action sets. What if we want to represent games with
agent-specifiatility functions, where utilities depend not only enand¢(®), but also on the
identityof the player playingv?

Researchers have studiadonymous gamesvhich deviate from symmetric games by al-
lowing agent-specific utility functions [Kalai, 2004; Kal&2005; Daskalakis & Papadimitriou,
2007]. To represent games of this type as AGGs, we canndejusiultiple players share action
«, because that would force those players to have the santg fitiiction u®. It does work to
give agents non-overlapping action sets, replicating @ation once for each agent. However,
the resulting AGG) is not compact; it does not take advantage of the fact thét efihe repli-
cated actions affects other players’ utilities in the samg.Wsing function nodes, it is possible
to compactly represent this kind of structure. We agairt spinto separate action nodes for
each playet able to take the action. Now we also introduce a function nodéth everya;
as a neighbor, and defin@ to be a simple aggregator. Ngwgives the total number of agents
who chose action, expressing anonymity, and action nodes inclpde a neighbor instead of
eachw;. This allows agents to have different utility functionsiatt sacrificing representational
compactness.

Example 3.2 (Anonymous game)Consider an anonymous game with two classes of players,
each class sharing the same utility functions. The AGG-Fixergentation of the game is shown

in Figure 6. Players from the first class have action §Atl, A2, A3, and players from the
second class have action @81, B2, B3. Furthermore, the utility functions of the second class
of players exhibit certain context-specific independetniaectire, which are expressed by the
absence of some of the possible edges from function nodeido aodes B1, B2, B3.

16

Figure 7. AGG-FNA representation of a 3-player polymatrinte. Function nod& 45 repre-
sents player A's payoffs in his bimatrix game against/B,4 represents player B’s payoffs in his
bimatrix game against A, and so on. To avoid clutter we do howsthe edges from the action
nodes to the function nodes in this graph. Such edges eaistA and B’s actions té/ 4z and
Upa, from A and C’s actions t&/ 4, andU¢ 4, and from B and C’s actions #@g- andU¢ 5.

3.3 Representing Polymatrix Games as AGG-FNAs

In a polymatrix gamgYanovskaya, 1968], each player’s utility is the sum ofitiéik resulting
from her bilateral interactions with each of the- 1 other players. This can be represented by
specifying for each pair of playeisand; a bimatrix game (two-player normal form game) with
set of actions4; and A;. A polymatrix game can be compactly represented as an AGG-FN
The encoding is as follows. The AGG-FNA has non-overlappictipn sets. For each pair of
players(i, j), we create two function nodes to represemind j's payoffs under the bimatrix
game between them. Each of these function nodes has incadges from all of’'s andj's
actions. For each playérand each of his actions,;, there are incoming edges from the- 1
function nodes representinig payoffs in his bimatrix games against each of the otheygra
u% is an additive utility function with weights equal to 1. Bdsen arguments similar to those
in Section 2.1.2, this AGG-FNA representation has the sgraeescomplexity as the total size
of the bimatrix games.

Example 3.3 (Polymatrix game) Consider the AGG-FNA representation of a three-playerpoly
matrix game, given in Figure 7. Each player’s payoff is thesf her payoffs i2 x 2 game with
played with each of the other players; she is only able to shdter action once. This additive
utility function can be captured by introducing a functioodeU;; to represent each playeis
utility in the bimatrix game played with playgr

3.4 Congestion Games with Action-Specific Rewards

So far the only use we have shown for AGG-FNAs is bringing texgjsgame representations
into the AGG framework. Of course, another key advantageuofapproach is the ability to
compactly represent games that would not have been compdet these existing game repre-
sentations. We now give such an example.

Example 3.4 (Congestion game with action-specific rewardsfonsider the following game with
n players. As in a congestion game, there is a set of facilitie®ach action involves choosing a

17

subset of the facilities, and the cost for faciljtdepends only on the number of players that chose
facility 7. Now further assume that, in addition to the cost of usingfétudities, each playei
also derives some utiliti®; depending only on her own action, i.e., the set of facilisles chose.
This utility is not necessarily additive across facilitie¥hat is, in general ifA, B € M and
ANB=10,R;,(AUB) # R;(A) + R;(B). Soi’s total utility is

wi(a) = Ria) = Y K;(#(j, a)). (3.1

JEa;

This game can model a situation in which the players use tikti@as to complete a task, and the
utility of the task depends on the facilities chosen. Anatiterpretation is given by Ben-Sasson
et al.[2006], in their analysis of “congestion games with stragempsts,” which also have exactly
this type of utility function. This work interpreted (thegaéive of)R;(a;) as the computational
cost of choosing the pure strategyin a congestion game.

This game cannot be compactly represented as a congestina gaa player-specific con-
gestion gamé,but it can be compactly represented as an AGG-FNA. We cheated;| action
nodes, giving the agents nonoverlapping action sets. We shown in Section 2.3.3 that we
can use function nodes and additive utility functions ta@spnt the congestion-game-like costs.
Beyond this construction, we just need to create a functamen; for each player and define
¢(r;) to be equal taR;(a;). The neighbors of; are i’s entire action setv(r;) = A;. Since the
action sets do not overlap, there are ol | distinct configurations over;. In other words,
|C(r)| = |A;| and we need only)(|A4;|) space to represent eadR;. The total size of the
representation i€)(mn +m .y [Aq]).

4 Computing Expected Payoff with AGGs

Up to this point, we have concentrated on how AGGs may be wsearhpactly represent games
of interest. But compact representation is only half theystand indeed by itself is relatively
easy to achieve. Our goal is to identify a compact repretientthat can be used directly (e.g.,
without conversion to its induced normal form) for the corgtion of game-theoretic quantities
of interest. We now turn to this computational perspectwvel show that we can indeed leverage
AGG's representational compactness in the computatioawfegtheoretic quantities. In this sec-
tion we focus on the computational task of computing an agerpected payoff under a mixed
strategy profile. While this quantity can be important irelsit is even more important as an
inner-loop problem in the computation of many game-théogpiantities. Some examples in-
clude computing best responses, checking if a given mixatesty profile is a Nash equilibrium,
Govindan and Wilson’s continuation methods for finding Neghilibria [Govindan & Wilson,
2003; Govindan & Wilson, 2004], the simplicial subdivisialgorithm for finding Nash equi-
libria [van der Laaret al,, 1987], Turocy’s algorithm for computing quantal respoagailibria
[Turocy, 2005], and Papadimitriou and Roughgarden’s digarfor finding correlated equilibria
[Papadimitriou & Roughgarden, 2008]. We discuss some afelapplications in Section 5.

Our main result of this section is an algorithm that efficigmomputes expected payoffs
of AGGs by exploiting their context-specific independerargnymity and additivity structure.
In Section 4.1 we introduce our expected payoff algorithmAGG-()s, and show (in Theorem

8Interestingly, Ben-Sassaet al. [2006] showed that this game belongs to the set of potendialeg, which implies
that there exists an equivalent congestion game. Howeuidjrig such a congestion game from the potential function
following Monderer and Shapley’s [1996] construction gielan exponential number of facilities, meaning that this
congestion game representation is exponentially larger the AGG-FNA representation presented here.

18

4.1) that the algorithm runs in time polynomial in the sizetwd input AGGY. For the special
case of symmetric strategies in symmetric A@§-we present a different algorithm in Section
4.1.4 which runs asymptotically faster than our generadritigm for AGGH)s; in Section 4.1.5
we extend this approach to the broader class-sfmmetricAGG-)s. Finally, in Sections 4.2
and 4.3 we extend our expected payoff algorithm to AGG-FN$ ABG-FNASs respectively,
and identify (in Theorems 4.5 and 4.6) conditions under Withese extended algorithms run in
polynomial time.

4.1 Computing Expected Payoff for AGG#s

We must begin by introducing some notation. L#£tX') denote the set of all probability distri-
butions over a seX. Define the set of mixed strategies foas>; = ¢(4;), and the set of all
mixed strategy profiles as =][,y X;. Denote an element af; by o;, an element ok by o,
and the probability that plays actionx aso;(«). Thesupportof a mixed strategy; is the set
of pure strategies played with positive probability (imure strategies; for whicho;(a;) > 0).

Now we can write the expected utility to agerfor playing pure strategy;, given that all
other agents play the mixed strategy profile;, as

Viloi)= > wilas,a i) Pr(alos), (4.1)
a_;€EA_;
Pr(a_;|lo—;) = Haj(aj). (4.2)
i

Note that Equation 4.2 gives the probability @f, under the mixed strategy_;. In the rest
of this section we focus on the problem of computlrjjg(a_i) giveni, a; ando_;. Having
established the machinery to compufg (o0_;), we can then compute the expected utility of
playeri under a mixed strategy profiteasy ", . 4 oi(a;)Vy, (0-;).

One might wonder why Equations (4.1) and (4.2) are not theafride story. Notice that
Equation (4.1) is a sum over the sét; of action profiles of players other than The number
of terms is][,_, |4;[, which grows exponentially im. If we were to use the normal form
representation, there really would pé_;| different outcomes to consider, each with potentially
distinct payoff values. Thus, using normal form the evabrabf Equation (4.1) would be the
best possible algorithm for computir’tgi,. Since AGGs are fully expressive, the same is true
for games without any structure represented as AGGs. Howen®t about games that are
exponentially more compact when represented as AGGs thamn wdpresented in the normal
form? For these games, evaluating Equation (4.1) amouats éxponential-time algorithm.

In this section we present an algorithm that given gny;, ando_;, computes the expected
payoff V! (o_;) in time polynomial in the size of the AGB-epresentation. In other words,
our algorithm is efficient if the AGG}is compact, and requires time exponentiahirf it is
not. In particular, recall from Proposition 2.6 any AGGwith maximum in-degree bounded
by a constant has a representation size that is polynomial ids a result our algorithm is
polynomial inn for such games.

4.1.1 Exploiting Context-Specific Independence: Projeatin

First, we consider how to take advantage of the contextfsp@&adependence structure of an
AGG-): the fact that’s payoff when playing:; only depends on configurations over the neigh-
borhood ofi. The key idea is that we carojectother players’ strategies onto a smaller action
space that is strategically the same from the point of viearo@igent who chose actian. That

19

A§Il)

A%l)

Aéfl)

Figure 8: Projection of the action graph. Left: action graptihe Ice Cream Vendor game. Right:
projected action graph and action sets with respect to tienaC1.

is, we construct a graph from the point of view of a given agexpressing his sense that actions
that do not affect his chosen action are in a sense the “satio@ Ad his can be seen as inducing
a context-specific graphical game. Formally, for everyamti € A define a reduced gragh(®)

by including only the nodes(a) and a new node denotéd The only edges included ifi(*) are
the directed edges from each of the nodés) to the nodex. Player;j’s actiona; is projected

to a nodeago‘) in the reduced grap&(® by the mapping

o = { Gomsn 4.3)

In other words, actions that are notiff) (and therefore do not affect the payoffs of agents

playing«) are projected onto a new actidh, The resultingprojectedaction setAg.”) has cardi-
nality at mostmin(|A4,|, |[v(«)| + 1). This is illustrated in Figure 8, using the Ice Cream Vendor
game described in Example 2.5.

We define the set of mixed strategies on the projected aomm<§) by E(O‘) = (AS.O‘)). A
mixed strategy; on the original action sed; is projected tofjo‘) E§.a by the mapping

o_.ga) (a§a)) = { Z 0j (aj) / a(.z(f) V:(O‘) . (4.4)

a’€Aj\v(a) gy (O[)

So givena,; ando_;, we can computer(‘“ in O(n|.A|) time in the worst case. Now we can
operate entirely on the projected space, and write the ésg@ayoff as

Vai (0-i) = Z u (aZ clai)(al)) Pr((al)|cr(a7)) ,

o eal®)

) Ha(a(a)

JFi

e

The summation is oveA(f;), which in the worst case hasv(a;)| + 1)»~1) terms. So for
AGG-{s with strict or context-specific independence structlmmmutingvlji (o—;) in this way
is exponentially faster than doing the summation in (4.0gatly. However, the time complexity
of this approach is still exponential in

20

4.1.2 Exploiting Anonymity: Summing over Configurations

Next, we want to take advantage of the anonymity structurth@fAGG+. Recall from our
discussion of representation size that the number of distianfigurations is usually smaller
than the number of distinct pure action profiles. So ideally,want to compute the expected
payoffVlji (o—;) as a sum over the possible configurations, weighted by thefrgbilities:

Viloo) = w; (@i, @) Pr (cl@)]gla)) | (4.5)
’ c(anezc:mi,i) () ()
Pr (C(ai)b(ai)) = > ﬁ o;(aj). (4.6)
a: J=1
€@ (a) = (@)

wheres(@) = (a;,0”) andPr(c(@)|o(21)) is the probability of(*:) given the mixed strategy
profile o(@), Recall thatC'(*9) is the set of configurations overa;) given thati playeda;.

So Equation (4.5) is a summation of sigg(®*)|, the number of configurations given that
playeda;, which is polynomial inn if |v(a;)| is bounded by a constant. The difficult task is
to computePr(c(*)|s(@)) for all ¢() € C@9) j.e., the probability distribution ovef(®)
induced byo (%), We observe that the sum in Equation (4.6) is over the set attibn profiles
corresponding to the configuratieff). The size of this set is exponential in the number of
players. Therefore directly computing the probabilitytdizition using Equation (4.6) would
take time exponential in.

Can we do better? We observe that the players’ mixed stestege independent, i.e.,is a
product probability distribution(a) = [, 0:(a;). Also, each player affects the configuration
independently. This structure allows us to use dynamicramogiing (DP) to efficiently compute
the probability distributiorPr(c(¢!)|o(#:)). The intuition behind our algorithm is to apply one
agent’s mixed strategy at a time, effectively adding onenaigea time to the action graph. Let
og"i denote the projected strategy profile of agefis...,k}. Denote byC,g‘“) the set of
configurations induced by actions of agefits. .., k}. Similarly, writec,(fi) € C,i‘“). Denote
by P, the probability distribution orC{*) induced bys{""), and by P;[c] the probability of
configurationc. At iteration k of the algorithm, we comput&;, from P,_; and 0,(;“). After
iterationn, the algorithm stops and returiiy. The pseudocode of our DP algorithm is shown
as Algorithm 1, and our full algorithm for computiﬂgji (o—;) is summarized in Algorithm 2.

Eachcgc‘”) is represented as a sequence of integerB;, 38 a mapping from sequences of inte-
gers to real numbers. We need a data structure to manipuletiepsobability distributions over
configurations (sequences of integers) which permits glaickup, insertion and enumeration.
An efficient data structure for this purpose i@ [Fredkin, 1962]. Tries are commonly used in
text processing to store strings of characters, e.g. aedaries for spell checkers. Here we use
tries to store strings of integers rather than characteosh Bokup and insertion complexity is
linear in|v(a;)|. To achieve efficient enumeration of all elements of a trie store the elements
in a list, in the order of their insertion. We omit the proofaafrrectness of our algorithm, which
is relatively straightforward. It is given in Section 2.28[Jiang, 2006].

4.1.3 Complexity

Let C(@)(s_;) denote the set of configurations owvef;) that have positive probability of
occurring under the mixed strate@y;,o_;). In other words, this is the number of terms we

21

olei)y,

Algorithm 1: Computing the induced probability distributidir(c(*:)

Input: a;, o(*)

Output: P, which is the distributiorPr(c(*)
) =(0,...,0);

Pyl =1.0;/1 Initialization: €™ ={c{")}
for k=1tondo

Initialize Py, to be an empty trie;

foreach c,(g‘ﬁ)l from P;,_; do

foreacha\" € A" such that*") (a\"")) > 0 do

) =

o(*)) represented as a trie.

if o\ - then
| (@) +=1;/1 Apply action a”

if P,[c\"")] does not exist yethen
L By [C;(cai)] =0.0;
L Pk[cgcai)] += Pkfl[Cgclﬁ)l] X O-I(Cai)(agcai));

return P,

need to add together when doing the weighted sum in Equatidh Whero_,; has full support,
C(aisi) (U—i) = ((aii)

Theorem 4.1 Given an AGG) representation of a gameé’s expected payowf;i (o0_;) can be
computed inO(n|A| + n|v(a;)|?|C*(c_;)|) time, which is polynomial in the size of the
representation. IZ, the in-degree of the action graph, is bounded by a conslajjg(a_i) can
be computed in time polynomialin

Proof. Since looking up an entry in a trie takes time linear in thee 93¢ the key, which
is |v(a;)| in our case, the complexity of doing the weighted sum in Equaf4.5) is
O([v(a)[|Ct* (a-3))).

Algorithm 1 requiresn iterations; in iterationk, we look at all possible combina-
tions of cgﬁ)l and a;‘“), and in each case do a trie look-up which co&§v(a;)l).
Since|A\")| < [v(a;)] + 1, and|CL")| < |Cla9)], the complexity of Algorithm 1 is
O(n|v(a;)|?|C (a_;)|). This dominates the complexity of summing up Equation (4.5)
Adding the cost of computing(j), we get the overall complexity of expected payoff com-
putation® (n|A| + n|v(a;)|?|C@) (0_;)]).

Since|C@:) (o) < |Clei)| < |C(e)|, and|C(®)| is the number of payoff values
stored in payoff function.®, this means that expected payoffs can be computed in polyno-
mial time with respect to the size of the AGGFurthermore, our algorithm is able to exploit
strategies with small supports which lead to a si@@li*) (o_;)|. Since|C'(®*)| is bounded
by % this implies that if the in-degree of the graph is boundedlponstant,
then the complexity of computing expected payoff®is|.A| + nZ+1). m

The proof of Theorem 4.1 shows that besides exploiting thapaxtness of the AG®-
representation, our algorithm is also able to exploit treesavhere the mixed strategy profiles

22

Algorithm 2 Computing expected utilitV;'i (o—;), givena; ando_;.

1. for eachj # ¢, compute the projected mixed strate@é?” using Equation (4.4):

(a;)
a;

a{%)) = { Uj(aj) a; € u(ai)

J Zo/EAj\u(ai) Jj (Oé/) a’jai) =0

2. compute the probability distributidpr (c(*|a;, o'*) by following Algorithm 1.
3. calculate the expected utility using the following wegghsum (Equation (4.5)):

Vai:(”*’i) = Z Ui (ai,c(‘”)) Pr (c<“i)|g(a¢)))

clai) eolag,i)

given have small support sizes, because the time complégjtgnds onC*%) (s_;)| which

is small when support sizes are small. This is important acfice, since we will often need
to carry out expected utility computations for strategyfiee with small supports. Portet al.
[2008] observed that quite often games have Nash equilitaitiasmall support, and proposed
algorithms that explicitly search for such equilibria. Ither algorithms for computing Nash
equilibria such as Govindan-Wilson and simplicial subsiom, it is also quite often necessary to
compute expected payoffs for mixed strategy profiles witalssupport.

Of course it is not necessary to apply the agents’ mixedegjias in the ordet .. . n. In fact,
we can apply the strategies in any order. Although the nurabeonfigurationgC(:%) (5_;)|
remains the same, the ordering does affect the interme:ﬁafﬂgurationsﬁ,i“i). We can use the
following heuristic to try to minimize the number of interdiate configurations: sort the players
in ascending order of the sizes of their projected actios. s€his reduces the amount of work
we do in earlier iterations of Algorithm 1, but does not chaitg overall complexity.

4.1.4 The Case of Symmetric Strategies in Symmetric AG@s

As described in Section 2.1, if a game is symmetric it can Ipeesented as an AG@Gwith

A; = Aforalli € N. Given a symmetric game, we are often interested in comgetipected
utilities undersymmetriamixed strategy profiles, where a mixed strategy prefile symmetric

if 0; = 0; = o, foralli,j € N. In Section 5.2.2 we will discuss algorithms that make use
of expected utility computation under symmetric strategyfifes to compute a symmetric Nash
equilibrium of symmetric games.

To compute the expected utiliﬁ/;i (0+), we could use the algorithm we proposed for gen-
eral AGGY)s under arbitrary mixed strategies, which requires timgmaiial in the size of the
AGG-{). But we can gain additional computational speedup by etippthe symmetry in the
game and the strategy profile.

As before, we want to use Equation (4.5) to compute the ergadility, so the crucial task
is again computing the probability distribution over paigd configurationsPr(c(#:)|o(:)),
Recall thatr(®) = (q;,0'""). DefinePr(c(®)|s{*) to be the distribution induced by"*",
the partial mixed strategy profile of players other thaeach playing the symmetric strategy
o\’ Once we have the distributioBr(c(#+) ofk‘“)), we can then compute the distribution
Pr(c(*)|a () straightforwardly by applying players strategya;. In the rest of this section
we focus on computingr(c(@)|o{"").

DefineS(c(#)) to be the set containing all action profile§:) such thatC(a(®)) = (@),

23

Since all agents have the same mixed strategies, each pioe poofile in S(c(*)) is equally
likely, so for anya(*) € S(c(@))

Pr (c(‘“) Uﬁai)) = ‘S(C(‘“))‘ Pr (a(‘“) Giai))) (4.7)
Pr (o)) =] (o)), (4.8)
acAlai)

The sizes of5(c(#)) are given by the multinomial coefficient

5 (c=)| = HQEA((Z)_(;L@))!' (4.9)

Better still, using a Gray code technique we can avoid reewalg these equations for every
clei) € ¢(e), Denote the configuration obtained frafit?) by decrementing by one the number
of agents taking action € A(*) and incrementing by one the number of agents taking action
o € Al gselad) = cg‘;ia/). Then consider the grapt .., whose nodes are the elements
of the setC(@), and whose directed edges indicate the effect of the operéii — o'). This
graph is a regular triangular lattice inscribed withif}.d4(*)| — 1)-dimensional simplex. Having
computedPr(c(®)|o{"")) for one node offf ., corresponding to configuratiaf®:), we can
compute the result for an adjacent nodéifl) time,

(@i) (1 .(a:)
Pr (cgaﬂ /)|o>(kai)) = o () (a) Pr (c(‘“)
a—a Giai)(a) (C(ai)(O/) + 1)

aia“) . (4.10)

H ., always has a Hamiltonian path (attributed to an unpublisesalt of Knuth by Klings-
berg [1982]), so having computdt(c(e)|o{*)) for an initial ¢(*) using Equation (4.8), the
results for all other projected configurations (node#/{a.,)) can be computed by using Equa-
tion (4.10) at each subsequent step on the path. Generhgnigamiltonian path corresponds
to finding a combinatorial Gray code for compositions; arpetgm with constant amortized
running time is given by Klingsberg [1982]. Intuitively, ig easy to see that a simple, “lawn-
mower” Hamiltonian path exists for any lower-dimensionadjpction of H -, with the only
state required to compute the next node in the path beingeatitin value for each dimension.

Our algorithm for computing the distributidpr (c(‘“) o{%)) is summarized in Algorithm
3. For computing expected utility, we again use Algorithnex;ept with Algorithm 3 replacing
Algorithm 1 as the subroutine for computing the distribatir (c(‘“) |a£‘“)).

Theorem 4.2 Computation of the expected utilwi (c.) under a symmetric strategy profile for
symmetric action-graph games using Equati¢hs), (4.7), (4.8)and (4.10)takes timeD(|.A| +
[p(an)] [0 @)]).

Proof. Projection too(*") takesO(|.A|) time since the strategies are symmetric. Equa-
tion (4.5) has|C(®)(o(*))| summands. The probability for the initial configuration re-
quires O(n) time. Using Gray codes the computation of subsequent pilitiesh can

be done in constant amortized time for each configuratiomceSieach look-up of the
utility function takesO(|v(a;)|) time, the total complexity of the algorithm i9(|.A| +
v(a:)] [0 (o)), m

24

Algorithm 3 Computing distributiorPr (c(‘“) |0£ai)) in a symmetric AGG)

1. letc) = c*), wherecy'" is the initial node of a Hamiltonian path éf .,).

2. computePr (c““)|a£“i)) using Equation (4.7):

Pr (C<ai)|aiai)) _ (n—1)! = [T (o).

) (ai)
[Tacato (€ e

3. While there are more configurationsGf®::

() get the next configurationgzﬂa,) in the Hamiltonian path, using Klingsberg's algorithm
[Klingsberg, 1982].

(b) computePr (c(‘”) |a£‘”)) using Equation (4.10):

(a—a’)
(ai) ¢ 1\ (a;)
Pr (cgzila,)b*ai)) = — ‘?)* (@) (a) Pr (C(ai)biai)))
o (a) () (o) + 1)

(©) lete(@s) = o)

(a—al)"

4. outputPr (c“’f?)|g£“i)) for all ¢(#) ¢ ¢lad),

Algorithm 4 Computing the probability distributioRr(c(*)|o(*)) in a k-symmetric AGGf)
under ak-symmetric mixed strategy profite(@:).

1. Partition the players according {1, ..., Ni}.

2. Foreacti € {1,...,k}, computePr(c(*|o")), the probability distribution induced by\'*), the
partial strategy profile of players iN;. Sincea%i) is symmetric, this can be computed efficiently
using Algorithm 3 as discussed in Section 4.1.4.

3. Combine thek probability distributions together using Algorithm 1, véing in the distribution

Pr(c(ai) |O-(ai))_

Note that this is faster than our dynamic programming atgorifor general AGGjs under
arbitrary strategies, whose complexitydgn| Al +n|v(a;)[* |C@) (c(2))|) by Theorem 4.1. In
the usual case where the second term dominates the firsigtivétlam for symmetric strategies
is faster by a factor of|v(a;)|.

4.1.5 k-symmetric Games

We now move to a generalization of symmetry in games that We:esymmetry.

Definition 4.3 An AGG# is k-symmetric if there exists a partitighVy, . . ., Ni. } of N such that
foralll € {1,...,k}, foralli,j € Ni, A; = Aj.

Intuitively, k-symmetric AGGHs represent games withclasses of identical agents, where

agents within each class are identical. Note that all gamegrigially n-symmetric. The Ice
Cream Vendor game of Example 2.5 is a nontriiadymmetric AGGH with k = 3.

25

Given ak-symmetric AGG@ with partition { Ny, ..., N}, a mixed strategy profile is k-
symmetric if for alll € {1,...,k}, forall i, € N;, 0; = o;. We are often interested in
computing expected utility undérsymmetric strategy profiles. For example in Section 5.22 w
will discuss algorithms that make use of such expectedytibmputations to find-symmetric
Nash equilibria ink-symmetric games. To compute expected utility undersymmetric mixed
strategy profile, we can use a hybrid approach when comptiiagrobability distribution over
configurations, shown in Algorithm 4. Observe that this alfpon combines our specialized Al-
gorithm 3 for handling symmetric games from Section 4.1 #hwie idea of running Algorithm 1
on the joint mixed strategies of subgroups of agents disclasthe end of Section 4.1.3.

4.2 Computing Expected Payoff with AGG-FNs

Algorithm 1 cannot be directly applied to AGG-FNs with arbity /7. First of all, projection of
strategies does not work directly, because a plgydaying an actiom; ¢ v(«) could still affect
() via function nodes. Furthermore, the general idea of usymgwhic programming to build up
the probability distribution by adding one player at a tinoes not work because for an arbitrary
function nodep € v(«), each player would not be guaranteed to aftép) independently. We
could convert the AGG-FN to an AG@-n order to apply our algorithm, but then we would
not be able to translate the extra compactness of AGG-FNsAB&-)s into more efficient
computation. In this section we identify two subclasses GIGAFN for which expected utility
can be efficiently computed. In Section 4.2.1 we show thatnadiefunction nodes belong to
a restricted class of contribution-independent functiodes, expected utility can be computed
in polynomial time. In Section 4.2.2 we reinterpret the estpd utility problem as a Bayesian
network inference problem, which can be computed in polyiabtime if the resulting Bayesian
network has bounded treewidth.

4.2.1 Contribution-Independent Function Nodes
Definition 4.4 A function node in an AGG-FN iscontribution-independent (CHf

e v(p) C A, i.e., the neighbors qf are action nodes.

e There exists a commutative and associative operat@nd for eachv € v(p) an integer
w,, such that given an action profite= (a1, ..., an), ¢(p) = *icN:a,ev(p) Wa; -

e The running time of eachk operation is bounded by a polynomialin |.A| and|P|. Fur-
thermorex can be represented in space polynomiahin.4| and|P|.

An AGG-FN is contribution-independent if all its functioodes are contribution-independent.

Note that it follows from this definition that(p) can be written as a function ef?) by
collecting termse(p) = f?(cP)) = *aey(p)(*z(o‘l) W)

Simple aggregators can be represented as contributi@pémdient function nodes, with the
+ operator serving ag, andw, = 1 for all . The Coffee Shop game is thus an example of a
contribution-independent AGG-FN. For the parity game iraBple 2.8 is instead addition
mod 2. An example of a non-additive ClI function node arisea perfect-information model
of an (advertising) auction in which actions corresponditbamounts [Thompson & Leyton-
Brown, 2009]. Here we want(p) to represent the amount of the winning bid, and so wevlet
be the bid amount corresponding to actigrand* be themax operator.

The advantage of contribution-independent AGG-FNs is fiiaall function node®, each
player’s strategy affects(p) independently. This fact allows us to adapt our algorithreffe
ciently compute the expected utiliwji (o_;). For simplicity we present the algorithm for the

26

case where we have one operatdior all p € P, but our approach can be directly applied to
games with different operators ang, associated with different function nodes.

We define thecontributionof actiona to nodem € AU P, denoted, (m), as 1 ifm = a,
0ifm e A\ {a}, and*mley(m)(*i‘:‘:({”/) wy) if m € P. Then it is easy to verify that given an
action profilea = (a1, ..., a,), c(a) = 327, da,(a) foralla € Aande(p) = *7_, o4, (p) for
all p € P. Given that playet playeda;, and for alla € A, we define therojected contribution
of actiona undera;, denoteds’’”, as the tupl€(da (m))mev(a,)- Note that different actions
a may have identical projected contributions undgr Player;’s mixed strategy; induces a
probability distribution ovey’s projected contribution®1(5(%)|o;) = Zaﬂ(ai)_éw oi(a;).
Now we can operate entirely using the probabilities on mteje contributions instead of the
mixed strategy probabilities. This is analogous to theqmtipn ofo; to a§‘“) in our algorithm

for AGG-0s.
Algorithm 1 for computing the distributioRr(c(**)|o) can be straightforwardly adopted to
work with contribution-independent AGG-FNs. Whenever \wplg playerk’s contributionzia‘zi)

to Cl(ctﬁ)l’ the resulting configuratioa;“i) is computed componentwise as follo ‘“)(m) =

55 (m) +) (m) it m € A, andel™ (m) = 559 (m) %) (m) it m € P.

To analyze the complexity of computing expected utilitys ihecessary to know the represen-
tation size of a contribution-independent AGG-FN. For efactttion nodep we need to specify
* and (wa)aew(p) instead of f? directly. Let|| x || denote the representation sizesof Then
the total size of a contribution-independent AGG-FNII§ ", 4 [C()| + || *[|). As discussed
in Section 2.2.3, this size is not necessarily polynomiatinA| and|P|; although when the
conditions in Corollary 2.11 are satisfied, the repres@niaize is polynomial.

Theorem 4.5 Expected utility can be computed in time polynomial in tlze sif a contribution-
independent AGG-FN. Furthermore, if the in-degrees of tbtioa nodes are bounded by a
constant and the sizes of rangg®(f?)| for all p € P are bounded by a polynomial im, |.A|
and|P|, then expected utility can be computed in time polynomial ipd| and|P].

Proof Sketch. Following similar complexity analysis as Theorem 4.1, if A8G-FN is
contribution-independent, expected utilit§ (o_;) can be computed i@ (n|A||C@)|(T, +
|v(a;)])) time, whereT, denotes the maximum running time of aroperation. Sinc’, is
polynomial inn, |.A| and|P| by Definition 4.4, the running time for computing expecteit ut
ity is polynomial in the size of the AGG-FN representatiolmeTsecond part of the theorem
follows from a direct application of Corollary 2.1m.

For AGG-FNs whose function nodes are all simple aggregagah player’s set of projected
contributions has size at mdst(a;) + 1|, as opposed t0A4] in the general case. This leads to a
run time complexity ofO(n|A| + n|v(a;)|?|C@)]), which is better than the complexity of the
general case proved in Theorem 4.5. Applied to the Coffeg $fame, sincéC(®)| = O(n?)
and all function nodes are simple aggregators, our algarttikesO(n|.A| + n*) time, which
growslinearlyin |.A|.

4.2.2 Beyond Contribution Independence

What about the case where not all function nodes are cotitibindependent—is there any-
thing we can do besides converting the AGG-FN into its indu&G+)? It turns out that by
reducing the problem of computing expected utility to a Bage network inference problem,
we can still efficiently compute expected utilities for @@ntadditional classes of AGG-FNs.

27

Bayesian networks compactly represent probability distions exhibiting conditional in-
dependence structure (see, e.g., Russell and Norvig [RO@3Bayesian network is a DAG
in which nodes represent random variables and edges repisect probabilistic dependence.
Each nodeX is associated with a conditional probability distributi@PD) specifying the prob-
ability of each realization of random variablé conditional on the realizations of its parent
random variables.

A key step in our approach for computing expected utility i@@-FNs is computing the
probability distribution over configuratioriar(c(¢!)|s(¢)). If we treat each node:’s configu-
ration ¢(m) as a random variable, then the distribution over configonatican be interpreted
as the joint probability distribution over the set of randeamiables{c(m)} ey (q,)- Given an
AGG-FN, a playei and an actiom; € A;, we can construct anduced Bayesian netwolk, :

e The nodes of3: consist of (i) one node for each element.;); (i) one node for each
neighbor of a functlon node belonging tda;); and (iii) one node for each neighbor of
a function node added in the previous step, and so on until ox@ fiunction nodes are
added. Each of these nodesrepresents the random variallen). We further introduce
another kind of node: (ivh nodesoy, ..., 0,, representing each player's mixed strategy.
The domain of each random variablgis A;.

e The edges oBl are constructed by keeping all edges that go into the funcidmes that
are included |rB ignoring edges that go into action nodes. Furthermoredohglayer;,
we create an edge fromy to each ofj’s actionsa; € A;.

e The conditional probability distribution (CPD) at each €tion nodep is just the determin-
istic function f?. The CPD at each action nodéis a deterministic function that returns
the number of its parents (observe that these are all mixategy nodes) that take the
valuea’. Mixed strategy nodes have no incoming edges; their (uridondl) probabil-
ity distributions are the mixed strategies of the corresiog players, except for player
whose noder; takes the deterministic valug.

It is straightforward to verify thalei is a DAG, and that the joint distribution on random vari-

ables{c(m)}eu(a) is exactly the distribution over configuratioRs(c()|(a;, o—(“)). This
joint distribution can then be computed using a standardréfgn such as clique tree propaga-
tion or variable elimination. The running times of such altfons are worst-case exponential;
however, for Bayesian networks with bounded tree-widtairtrunning times are polynomial.

Further speedups are possible at nodes in the induced Bayestwork that correspond
to action nodes and contribution-independent functionesodrhe deterministic CPDs at such
nodes can be formulated using independent contributias frach player’s strategy. This is
an example otausal independencsructure in Bayesian networks studied by Heckerman and
Breese [1996] and Zhang and Poole [1996], who proposedteéliftenethods for exploiting such
structure to speed up Bayesian network inference. Suchadgtthare the common underlying
idea of decomposing the CPDs into independent contribsitiwhich is intuitively similar to our
approach in Algorithm 1.

4.3 Computing Expected Payoff with AGG-FNAs

Due to the linearity of expectation, the expected utilityi pfaying an actior; with an additive
utility function with coefficientS \,,,) e (a,) 1S

= > AmEle(m)lai, o], (4.11)

mev(a;)

28

whereE[c(m)|a;,0_;] is the expected value @fm) given the strategy profiléi;,o_;). Thus
we can compute these expected values for each v(a;), then sum them up as in Equation
(4.11) to get the expected utility. th is an action node, theR[c(m)|a;, o—;] is the expected
number of players that chose whichis} _,_ , oi(m). The more interesting case is wheris a
function node. Recall thaim) = ™ (c™)) wherec(™) is the configuration over the neighbors
of m. We can write the expected valuedin) as

Ele(m)lai o= > (™) Pr(c"™]ai,0_,). (4.12)
c(m) gc(m)

This has the same form as Equation (4.5) for the expectétyutiji (o_i), except that we have
f™ instead ofu®. Thus our results for the computation of Equation (4.5) alsply here. That
is, if the neighbors ofn are action nodes and/or contribution-independent functimdes, then
E[c(m)|a;,o—;] can be computed in polynomial time.

Theorem 4.6 Suppose.© is represented as an additive utility function in a given AGBA. If
each of the neighbors ofis either (i) an action node, or (ii) a function node whoseghdiors are
action nodes and/or contribution-independent functiode® then the expected utility (o_;)
can be computed in time polynomial in the size of the reptaten. Furthermore, if the in-
degrees of the neighbors afare bounded by a constant, and the sizes of raii§ég?)| for all

p € P are bounded by a polynomial in, |.4| and|P|, then the expected utility can be computed
in time polynomial im, |.A| and|P|.

It is straightforward to verify that our AGG-FNA represetidas of polymatrix games, con-
gestion games, player-specific congestion games and the gaExample 3.4 all satisfy the
conditions of Theorem 4.6.

5 Computing Sample Equilibria with AGGs

In this section we consider some theoretical and practipplieations of our expected utility
algorithm. In Section 5.1 we analyze the complexity of figdan sample:-Nash equilibrium
in an AGG and show that it is PPAD-complete. In Section 5.2 wtered our expected utility
algorithm to the computation of payoff Jacobians, which ke step in several algorithms for
computinge-Nash equilibria, including the Govindan-Wilson algonithin Section 5.3 we show
that it can also speed up the simplicial subdivision algponitand in Section 5.4 we show that it
can be used to find ancorrelated equilibrium in polynomial tim@.

5.1 Complexity of Finding a Nash Equilibrium

In this section we consider the complexity of finding a Nashildzrium of an AGG. Since a Nash
equilibrium for a game of more that two players may requirational numbers in the probabili-
ties, for practical computation it is necessary to consigigaroximations to Nash equilibria. Here
we consider the frequently-used notioncaflash equilibrium:

9Here we focus on the problems of finding a sample Nash or eveeklequilibrium: in other words, identifying
any single equilibrium. In games with multiple equilibrid,can be useful to find all equilibria or to find the “best”
equilibrium according to some criterion. However, negatiemplexity results hold for both problems (see e.g. [Genit
& Sandholm, 2008; Papadimitriou & Roughgarden, 2008; ShoRBal eyton-Brown, 2009]). For the case of bimatrix
games, Mangasarian [1964] proposed an algorithm for eratmgrall Nash equilibria, and Sandholet al. [2005]
proposed and evaluated a practical approach for compupitimal Nash equilibria using mixed-integer programming.
Finding practical heuristic algorithms for these problesns:-player games remains an interesting open problem, but
has received relatively little study to date.

29

Definition 5.1 (e-Nash Equilibrium) A mixed strategy profile is an e-Nash equilibrium for
somee > O ifforall i € N, forall a; € A;, u;(0) + € > u;(a;, 0-;)

Intuitively, each player cannot gain more thahy deviating from her mixed strategy. For any
game representation, define its NASH problem to be the pmobliefinding ane-Nash equilib-
rium of a game encoded in that representation, for segieen as part of the input. A series of
recent papers [Chen & Deng, 2006; Goldberg & Papadimit2006; Daskalakigt al., 2006b]
have shown that the NASH problem farplayer normal-form games with > 2 is complete
for the complexity class PPAD, which is contained in NP butkmown to be in P. Turning to
compact representations, Daskalagisal. [2006a] showed that the complexity of computing
expected utility plays a vital role in the complexity of fimndiane-Nash equilibrium.

Definition 5.2 (Polynomial type [Daskalakiset al., 2006a]) A game representation hgsly-
nomial typeif the number of agents and the sizes of the action sét$;| are bounded by a
polynomial in the size of the representation.

All AGG variants have polynomial type, since action setsrapgesented explicitly.

Theorem 5.3 ([Daskalakiset al., 2006a]) If a game representation satisfies the following prop-
erties: (1) the representation has polynomial type, andgf@®ected utility can be computed using
an arithmetic binary circuit with polynomial length, wittodes evaluating to constant values or
performing addition, substraction, or multiplication ohelir inputs, then the NASH problem
for this representation can be polynomially reduced to t#SN problem for some two-player,
normal-form game.

Since the NASH problem is in PPAD for two-player, normalrfogames, the theorem implies
that if the above properties hold, the NASH problem for suclompact game representation is
in PPAD.

Corollary 5.4 The complexity of NASH for AG@ is PPAD-complete.

Remark. It may not be clear why this would be surprising or encourggimdeed, the PPAD-
hardness part of the claim is neither. However, the PPAD-begehip part of the claim is a
positive result. Specifically, it implies that the problerfimding a Nash equilibrium in an
AGG-) can be reduced to the problem of finding a Nash equilibrium fwaplayer normal-
form game with size polynomial in the size of the AGGThis is in contrast to the normal form
representation of the original game, which can be expoalntarger than the AGG In other
words, if we instead try to solve for a Nash equilibrium usihg normal form representation of
the original game, we would face a PPAD-complete problerh ait input exponentially larger
than the AGGH representation.

Proof sketch We first show that the problem belongs to PPAD, by constrgcéirtircuit
that computes expected utility and satisfies the secondittemadf Theorem 5.3° Recall
that our expected utility algorithm consists of Equatio®jdthen Algorithm 1, and finally
Equation (4.5). Equations (4.4) and (4.5) can be straightadly translated into arithmetic
circuits using addition and multiplication nodes. Alghbrit 1 involves for loops that cannot
be directly translated to an arithmetic circuit, but we alssghat we can unroll the for loops
and still end up with a polynomial number of operations. Tésuiting circuit resembles a
lattice withn levels; at thek-th level there ar¢C,(C“7‘)| addition nodes. Each addition node

corresponds to a configuratieff”) € C,(C“f'), and calculateg’, [cge‘“)] as in iterationk of

30

Algorithm 1. Also there ar¢A,(€‘“) multiplication nodes for eacbfc‘“), in order to carry out
the multiplications in iteratiott of Algorithm 1.

To show PPAD-hardness, we observe that an arbitrary grapgiéene can be encoded
as an AGG} without loss of compactness (see Section 2.1). Thus thelgrobf finding
a Nash equilibrium in a graphical game can be reduced to thielggn of finding a Nash
equilibrium in an AGG#. Since finding a Nash equilibrium in a graphical game is kntavn
be PPAD-hard, finding a Nash equilibrium in an AGGs PPAD-hardm

For AGG-FNs that satisfy the conditions for Theorem 4.5 orGAENAS that satisfy Theo-
rem 4.6, similar arguments apply, and we can prove PPAD-tetemess for those subclasses of
games if we make the reasonable assumption that the operased to define the CI function
nodes can be implemented as an arithmetic circuit of polyaldength that satisfies the second
condition of Theorem 5.3.

Although any Nash equilibrium is close to arNash equilibrium (in the space of mixed
strategy profiles), a giverrNash equilibrium may be arbitrarily far from any Nash eiprilim
of the game. Etessami and Yannakakis [2007] consideredttizées notion of approximate
Nash equilibrium in the sense of being close to an exact Nagshilerium, and showed that the
problem of finding such a solution given a normal-form ganmisplete for the complexity class
FIXP, which is contained in PSPACE but not known to be in NRe TMaeaker” notion of-Nash
equilibrium that we consider here is more amenable to gralatomputation: the corresponding
complexity class PPAD is in NP, implying that checking wresth mixed-strategy profile is an
e-Nash equilibriumis in P (e.g., for AGGs this can be doneightfiorwardly by computing best
responses using the expected utility algorithm).

5.2 Computing a Nash Equilibrium: The Govindan-Wilson Algorithm

Now we move from the theoretical to the practical. The PPAIDdhess result of Corollary 5.4
implies that a polynomial-time algorithm for Nash equiiibn is unlikely to exist, and indeed
known algorithms for identifying sample Nash equilibriasbavorst-case exponential running
times. Nevertheless, we will show that our dynamic programgralgorithm for expected utility
can be used to achieve exponential speedups in such algeri#fs well as an algorithm for com-
puting a sample correlated equilibrium. Specifically, wevgihow to speed up key computations
in the inner loops of these algorithms.

First we consider Govindan and Wilson’s [2003] continuatimethod, a state-of-the-art
method for finding mixed-strategy Nash equilibria in myltayer games. This algorithm starts
by perturbing the payoffs to obtain a game with a known eluilim. It then follows a path that
is guaranteed to lead to at least one equilibrium of the walgunperturbed game. To take each
step, we need to compute thayoff Jacobiaminder the current mixed strategy in order to get the
direction of the path; we then take a small step along the gadirepeat.

The payoff Jacobian under a mixed strategg a (>, |4;|) x (>, |A;|) matrix with entries

oVi(o_,)

Do (an) =VV, ., (@) (5.1)
= u (ai,C(a;,ay,a)) Pr(ala). (5.2)
acA

100bserve that the second condition in Theorem 5.3 impliestitieaexpected utility algorithm must take polynomial
time; however, some polynomial algorithms (e.g., thoseértg on division) do not satisfy this condition.

31

Here an overbar is shorthand for the subscrigt, i’} where: # i are two players; e.gg =
a_g;,+}- The rows of the matrix are indexed bynda; while the columns are indexed byand
ay. Given entryVVai;f;_,(E), we callq; its primary action nodeanda, its secondary action
node '

We note that efficient computation of the payoff Jacobiamigartant for more than simply
Govindan and Wilson’s continuation method. For example,itérated polymatrix approxima-
tion (IPA) method [Govindan & Wilson, 2004] has the same catafional problem at its core.
At each step the IPA method constructs a polymatrix gameishatinearization of the current
game with respect to the mixed strategy profile, the Lemkersttm algorithm is used to solve
this game, and the result updates the mixed strategy prafd in the next iteration. Though
theoretically it offers no convergence guarantee, IPA isrofmuch faster than the continuation
method. Also, it can be used to give the continuation methgdiek start. The payoff Jacobian
may also be useful to multiagent reinforcement learningritigms that perform policy search.

5.2.1 Computing the Payoff Jacobian

Now we consider how the payoff Jacobian may be computed. tieoués.2) shows that the
VV;';?;,, () element of the Jacobian can be interpreted as the expediigdaftagent: when

she takes actiom;, agent’ takes actiom;/, and all other agents use mixed strategies according to
7. So a straightforward—and quite effective—approach iss® aur expected utility algorithm

to compute each entry of the Jacobian.

However, the Jacobian matrix has certain extra structiaedtiows us to achieve further
speedup. For example, observe that some entries of theidacmie identical. If two entries
have the same primary action nadgthen they are expected payoffs on the same utility function
u®, and so have the same values if their induced probabilityibigions overC(®) are the same.
We need to consider two cases:

1. The two entries come from the same row of the Jacobian, lsggmp’s actiona,. There
are two sub-cases to consider:

(a) The columns of the two entries belong to the same playleut different actions;
andaj. If a§‘“> = a’.g.‘”), i.e., a; anda’; both project to the same projected action
in a;’'s projected action graph, then VVJ;{% = VVji’ja,_. This implies that when
aj,af & v(a;), VViI, =YV,

" R}

(b) The columns of the entries correspond to actions of idiffeplayers. We observe
that for allj anda, such thab(ai)(a§“i)) =1,VV;J, (@) =V, (0-;). As a special
case, ifAlg.“i) = {0}, i.e., ageny does not affect’s payoff wheni playsa;, then for
all a; € Aj, VV;;faj (E) = Vui (O'_i).

2. If a; anda; correspond to the same action nad¢but owned by agentsandj respec-
tively), thus sharing the same payoff functiofi, thenVV,"J, = VV;, . Furthermore,
if there exista; € A;,a); € A; such thata,(*) = afj(“) (oréfl?“) = 52?_‘) for contribution-
independent AGG-FNs), theaV,”/,, = VV/' .

11For contribution-independent AGG-FNs, the condition tmeséfl‘;i) = 52‘?1'), i.e., a; anda’; have the same
j
projected contribution undet;.

32

A consequence of 1(a) is that any Jacobian of an AGG has atmost,, 4. (n—1)(v(a:)+
1) distinct entries. For AGGs with bounded in-degree, thi9(a), | A;|). For each set of iden-
tical entries, we only need to do the expected utility corapah once. Even when two entries
in the Jacobian are not identical, we can exploit the siiitylaf the projected strategy profiles
(and thus the similarity of the induced distributions) begéw entries, reusing intermediate results
when computing the induced distributions of different exstr Since computing the induced prob-
ability distributions is the bottleneck of our expected pfialgorithm, this provides significant
speedup.

First we observe that if we fix the ro#, a;) and the column’s player, thens is the same for
all secondary actions; € A;. We can compute the probability distributi®(c,, 1 |a;, 7)),
thenforalla; € A;, we just need to apply the actiaf to get the induced probability distribution
for the entryVV,J, .

Now suppose we fix the roW, ;). For two column playerg andj’, their corresponding
strategy profilesr_(; ;; ando_y; ;) are very similar, in fact they are identical in— 3 of
then — 2 components. For AG®s, we can exploit this similarity by computing the distriioumt
Pr(cn,1|o(_“;)), then for each # 4, we “undo”j’s mixed strategy to get the distribution induced
by o_¢; ;3. by treating distribution:?r(cn_l|a(f;)) ando; as coefficients of polynomials and
computing their quotient using long division. (See Sect08.5 of [Jiang, 2006] for a more
detailed discussion of interpreting distributions ovenfaggurations as polynomials.)

5.2.2 Finding equilibria of symmetric and k-symmetric games

Nash proved [1951] that all finite symmetric games have &t le@e symmetric Nash equilibrium.
The Govindan-Wilson algorithm can be adapted to find symimiash equilibria in symmetric
AGG-{s. The modified algorithm now operates in the space of synenmixed strategy pro-
files, and follows a path of symmetric equilibria of pertudlsymmetric games to a symmetric
equilibrium of the unperturbed game. The correspondingfialacobian undes, is now a
|A] x |.A| matrix whose entry at row and column’ is n — 1 multiplied by the expected util-
ity of a player choosing action, when another player is choosing actiehand the rest of the
players play mixed strategy.. Such an entry can be efficiently computed using the teclesiqu
for symmetric expected utility computation discussed intla 4.1.4, which are faster than our
expected utility algorithm for general AGGs. Techniquescdssed in the current section can
further be used to speed up the computation of Jacobians isytnmetric case. In particular, it
is straightforward to check that the Jacobian has at fost ,(v(a) + 1) = O(|E|) identical
entries, wherd” is the set of edges of the action graph.

A straightforward corollary of Nash’s [1951] proof is thatyak-symmetric AGG# has at
least ongi-symmetric Nash equilibrium. Relying on similar argumesgsabove, we can adapt
the Govindan-Wilson algorithm to find-symmetric equilibria ink-symmetric AGG#s. The
bottleneck is the computation of thesymmetric version of payoff Jacobians, the entries of
which can be shown to be equal to constant multiples of ceetgdected utilities. Such expected
utilities can be efficiently computed using the techniqusswbsed in Section 4.1.5.

5.3 Computing a Nash Equilibrium: The Simplicial Subdivision Algorithm

Another algorithm for computing a sample Nash equilibrigman der Laan, Talman & van der
Heyden'’s [1987] simplicial subdivision algorithm, whicé derived from Scarf’s [1967] algo-
rithm for computing fixed points. At a high level, the algbrit does the following.

1. The space of mixed strategy profils= [[, 3; is partitioned into a set of subsimplexes.

33

2. We assign labels to vertices of the subsimplexes, in a wely that a “completely labeled”
subsimplex corresponds to an approximate Nash equilibrium

3. The algorithm follows a path of “almost completely lali€lsubsimplexes, and eventually
reaches a “completely labeled” subsimplex.

4. Such an approximate equilibrium can be refined by restattie algorithm near the ap-
proximate equilibrium using a finer grid.

At each step along the path, the algorithm needs to complogéslaf the subsimplex, which
in turn depends on computation of expected utilities und&echstrategy profiles. By using our
AGG-based Algorithm 2 for computing expected utility, tsiep can be sped up exponentially,
as compared to the normal-form-based implementation.

5.4 Computing a Correlated Equilibrium

Papadimitriou and Roughgarden [2008] proposed a polyreimia algorithm for computing a
sample correlated equilibrium given a game representaiiitrpolynomial type and a polynomial-
time subroutine for computing expected utility under mistchtegy profiles. Recently, Stein
et al. [2010] showed that Papadimitriou and Roughgarden’s dlgorican fail to find an ex-
act correlated equilibrium, and presented a slight modiéioaof the algorithm that efficiently
computes anr-correlated equilibrium. (Ar-correlated equilibrium is an approximation of the
correlated equilibrium solution concept, whemmeasures the extent to which the incentive con-
straints for correlated equilibrium are violated.) Incorgting this fix, we have the following.

Theorem 5.5 ([Papadimitriou & Roughgarden, 2008]) If a game representation has polyno-
mial type, and has a polynomial algorithm for computing etpé utility, then are-correlated
equilibrium can be computed in time ponnomialdxg% and the representation size.

The reader might wonder why it is difficult to compute cortethequilibrium—even in ex-
act form—given that there is a well-known linear programgnfarmulation for computing a
correlated equilibrium. The catch is that this LP has onéatée for each action profile. Thus,
while it amounts to a polynomial-time algorithm for gamegresented in normal form, its size
is exponential in the size of any compact representatiowfach the simple algorithm for com-
puting expected utility given by Equation 4.1 is inadequéteeed, in these cases ewégscrib-
ing a correlated equilibrium using these probabilities of @tiprofiles can require exponential
space. Papadimitriou and Roughgarden’s results are thak deeper than they may first seem.
The algorithm outputs ar-correlated equilibrium represented as the mixture of gmpahial
number of product distributions over action profiles. Sitieetheorem requires that the game
representation has polynomial type, this polynomial nrietof product distributions can also be
represented polynomially.

The second condition in this theorem involves the companatif expected utility. As a
direct corollary of Theorem 5.5 and our own Theorem 4.1 dlexists a polynomial algorithm
for computing are-correlated equilibrium given an AG@-

Corollary 5.6 Given a game represented as an A@Gn e-correlated equilibrium can be com-
puted in time polynomial itbg % and the size of the AG@®-

Similarly, for AGG-FNs and AGG-FNAs for which the expectetility problem can be
solved in polynomial time (see Theorems 4.5 and 4&)prrelated equilibria can be computed
in polynomial time.

34

6 Experiments

Although our theoretical results show that there are sicgnifi benefits to working with AGGs,
they might leave the reader with two worries. First, the ezadight be concerned that while
AGGs offer asymptotic computational benefits, they might lm® practically useful. Second,
even if convinced about the usefulness of AGGs, the readgintmiant to know the size of prob-
lems that can be tackled by the computational tools we hawealeed so far. We address both of
these warries in this section, by reporting on the resulex¢énsive computational experiments.
Specifically, we compare the performance of the AGG reptasen and our AGG-based algo-
rithms against normal-form-based solutions using theh(ligptimized) GameTracer package
[Blum et al,, 2002]. As benchmarks, we used AGG and normal-form reptasens of instances
of Coffee Shop games, Job Market games, and symmetric A&@ random graphs. We com-
pared the representation sizes of AGG and normal-form septations, and compared their
performance resulting from using these representationsrtpute expected utility, to compute
Nash equilibria using the Govindan-Wilson algorithm, amddmpute Nash equilibria using the
simplicial subdivision algorithm. Finally, we show how sple equilibria of these games can be
visualized on action graphs.

6.1 Software Implementation and Experimental Setup

We implemented our algorithms in a freely-available sofeaackage, in order to make it easy
for other researchers to use AGGs to model problems of istte@ur software is capable of:

e reading in a description of an AGG;
e computing expected utility and Jacobian given mixed stpap@ofile;

e computing Nash equilibria by adapting GameTracer’s [Bktral., 2002] implementation
of Govindan and Wilson’s [2003] continuation method; and

e computing Nash equilibria by adapting GAMBIT’s [McKelvey al., 2006] implementa-
tion of the simplicial subdivision algorithm [van der Laahal., 1987].

We extended GAMUT [Nudelmaet al., 2004], a suite of game instance generators, by imple-
menting generators of instances of AGGs including Ice Cr&amdor games (Example 2.5),
Coffee Shop games (Example 2.7), Job Market games (Exaniplardd symmetric AGG)s on
arandom action graph with random payoffs. Finally, with DemBargiacchi, we also developed
a graphical user interface for creating and editing AGGs$.oRbur software is freely available
athttp://agg. cs. ubc. ca.

When using Coffee Shop games in our experiments, we setfgsagoidomly in order to test
on a wide set of utility functions. For the visualization afudlibria in Section 6.7 we set the
Coffee Shop game utility functions to be

u®(c(@), c(pa), cPl)) = 20 = [e(a)]* = c(pg,) — log(c(pl) + 1),

wherep/, is the function node representing the number of players sihgaadjacent locations
andp!’ is the function node representing the number of playerssihgmther locations.
When using Job Market games in our experiments, we set tlity @iinctions to be

Ra
(@) + X cv(a)—{ay 0-Le(@)

with R, setto2,4,6,8,10 andK, settol, 2, 3,4, 5 for the five levels from high school to PhD.

u® (™) = — K,

35

When using Ice Cream Vendor games for the visualization oilibgia in Section 6.7 we set
the utilities so that for a playerchoosing actiony, each vendor choosing a locatioh € v(«)
contributesw yw; utility to i. wy is -1 whena! has the same food type asand 0.8 otherwisew,
is 1 whena’ anda correspond to the same location, and 0.6 when they corrdspatifferent
(but neighboring) locations. In other words, there is a tiegaeffect from players choosing
the same food type, and a weaker positive effect from plagieo®sing a different food type.
Furthermore, effects from neighboring locations are wetian effects from the same location.

All our experiments were performed using a computer clusiasisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, runningeSuinux 10.1.

6.2 Representation Size

First, we compared the representation sizes of AGG-FNs lagid induced normal forms. For
each game instance we counted the number of payoff valuesdkded to be stored.

We first looked ab x 5 block Coffee Shop games, varying the number of players.rEi§u
(left) has a log-scale plot of the number of payoff valuesdalerepresentation versus the number
of players. The normal form representation grew exponkytigth respect to the number of
players, and quickly became impractical. The size of the Ag@esentation grew polynomially
with respect tov. As we can see from Figure 9 (right), even for a game instariite80 players,
the AGG-FN representation stored only about 2 million nurabln contrast, the corresponding
normal form representation would have had to stiofex 10''° numbers.

We then fixed the number of players at 4 and varied the numbectidns; for ease of
comparison we fixed the number of columns at 5 and only chatigeedumber of rows. Recall
from Section 2.2.1 that the representation size of CoffepSfames—expressed both as AGGs
and in the normal form—depends only on the number of playedshamber of actions, but not
on the shape of the region. (Recall that the number of actois+ 1, whereB is the total
number of blocks.) Figure 9 (left) shows a log-scale plothaf humber of payoff values versus
the number of actions, and Figure 9 (right) gives a plot fet jne AGG-FN representation. The
size of the AGG representation grew linearly with the nundfelows, whereas the size of the
normal form representation grew like a higher-order potyiad. For a Coffee Shop game with 4
players on a0 x 5 grid, the AGG-FN representation stores only about 8000 rars)lvhereas
the normal form representation would have to stofex 10'" numbers.

We also tested on Job Market games from Example 3.1, which hawactions. We varied
the number of players from 3 to 24. The results are similashasvn in Figure 11 (left). This
is consistent with our theoretical observation that thesiaf normal form representations grow
exponentially inn while the sizes of AGG representations grow polynomiallyin

6.3 Expected Utility Computation

We tested the performance of our dynamic programming atyarfor computing expected util-
ities in AGG-FNs against GameTracer’s normal-form-badgdriéhm for computing expected
utilities. For each game instance, we generated 1000 rarsfi@ategy profiles with full sup-
port, and measured the CPU (user) time spent compiifih@r_,,) under these strategy profiles.
Then we divided this measurement by 1000 to obtain the ageZ&}) time.

We first looked at Coffee Shop games of different sizes. Waelfike size of blocks &t x 5
and varied the number of players. Figure 10 shows plots afgbgts. For very small games the
normal-form-based algorithm is faster due to its smalleskdkeeping overhead; as the number
of players grows larger, our AGG-based algorithm’s runrimg grows polynomially, while the

36

1 10000000

10000000 1000000
1000000 100000
100000 10000
10000 / 1000

1000
100 = 100
—
10
10 —a—NF
1 1
3 456 7 8 91011 12 13 14 15 16 6 14 22 30 38 46 54 6 70 78

payoffs stored
payoffs stored

number of players number of players
1000000000 9000
AGG
100000000 | 8000
- —a—NF o 7000
g 10000000 D 6000 |
2 1000000 | 2 5000
[
&£ 100000 g 4000
9 3000
> 10000 | 3
3 ® 2000
000 4 e 2 000 |
100 0
16 26 36 46 56 66 76 91 121 151 181 211 241 271 301 331 361 391
number of actions number of actions

Figure 9: Representation sizes of coffee shop games. Top beb grid with 3 to 16 players (log
scale). Top right: AGG onlyp x 5 grid with up to 80 players (log scale). Bottom left: 4-player
r x 5 grid, r varying from 3 to 15 (log scale). Bottom right: AGG only, up&0 rows.

normal-form-based algorithm scales exponentially. Forentbban five players, we were not able
to store the normal form representation in memory. Meareybilir AGG-based algorithm scaled
to much larger numbers of players, averaging about a secocmhtpute an expected utility for

an 80-player Coffee Shop game.

Next, we fixed the number of players at 4 and the number of cotuat 5, and varied the
number of rows. Our algorithm’s running time grew roughhyearly with the number of rows,
while the normal-form-based algorithm grew like a highestar polynomial. This was consistent
with our theoretical observation that our algorithm tak&s:|.A| + n*) time for this class of
games while normal-form-based algorithms tékg.A|" 1) time.

We also considered strategy profiles having partial supdhile ensuring that each player’s
support included at least one action, we generated stratedijes with each action included in
the support with probability 0.4. GameTracer took about &d%s full-support running times
to compute expected utilities for the Coffee Shop game mt&s mentioned above, while our
AGG-based algorithm required about 20% of its full-supponning times.

We also tested on Job Market games, varying the numbersysnslaThe results are shown
in Figure 11 (right). The normal-form-based implementatian out of memory for more than 6
players, while the AGG-based implementation averagedtabquarter of a second to compute
expected utility in a 24-player game.

6.4 Computing Payoff Jacobians

We ran similar experiments to investigate the computatfqragoff Jacobians. As discussed in
Section 5.2, the entries of a Jacobian can be formulatedpected payoffs, so a Jacobian can
be computed by doing an expected payoff computation for ehitk entries. In Section 5.2 we

discussed methods that exploit the structure of the Jagdbiturther speed up the computation.
GameTracer’s normal-form-based implementation alsoatgpthe structure of the Jacobian by
reusing partial results of expected payoff computationdied/comparing our AGG-based Ja-
cobian algorithm (as described in Section 5.2) to GameTsaraplementation, we observed

results very similar to those for computing expected payaftir implementation scaled polyno-

37

1 1
0.1 01
= =
-~ 0.01
[
g £ 0.01
k= 0.001 - =
= =
= & o001
O 0.0001 ——AGG o
——NF
0.00001 : — e e 0.0001
3 4 5 6 7 8 9 10 11 12 13 14 15 16 6 14 22 30 38 46 54 62 70 78
number of players number of players
01 0.0007
AGG 0.0006
0.01 N __ 0.0005
’IIT v
b o 0.0004
3 G)
0.001
£ £ 00003
] =
=]
& 00001 //‘___._.__/ 2 00002
© © 0.0001
0.00001 0

16 26 36 46 56 66 76 91 121 151 181 211 241 271 301 331 361 391
number of actions number of actions

Figure 10: Running times for payoff computation in the Ceffthop game. Top lefti x 5 grid
with 3 to 16 players. Top right: AGG onl$,x 5 grid with up to 80 players. Bottom left: 4-player
r x 5 grid, r varying from 3 to 15. Bottom right: AGG only, up to 80 rows.

100000000 1

10000000
1000000 = 0.1
3 100000 P 001
S £
S 10000 £
o 1000 S ooo |
5 100 5
0.0001
z 10 ——AGG ——AGG
o —a—NF —=—NF
11— 0.00001
9 12 15 21 24 4 6 8 10 12 14 16 18 20 22 24
number of players number of players

Figure 11: Job Market games, varying numbers of playerd: tefnparing representation sizes.
Right: running times for computing 1000 expected utilities

mially in n while GameTracer scaled exponentiallyrin We instead focus on the question of
how much speedup the methods in Section 5.2 provided, by @ongpour algorithm in Section
5.2 against the algorithm that computes expected payo$iaguour AGG-based algorithm de-
scribed in Section 4) for each of the Jacobian’s entries. &¥et on Coffee Shop games on a
5 x 5 grid with 3 to 10 players, as well as Coffee Shop games witha§eqsls, 5 columns and
varying numbers of rows. For each instance of the game weoralydgenerated 100 strategy
profiles with partial support. For each of these game ingsmur algorithm as described in Sec-
tion 5.2 was consistently about 50 times faster than comgukpected payoffs for each of the
Jacobian’s entries. This confirms that the methods disduss8ection 5.2 provide significant
speedup for computing payoff Jacobians.

6.5 Finding a Nash Equilibrium using the Govindan-Wilson aborithm

Now we show experimentally that the speedup we achieveddimpeiting Jacobians using the
AGG representation led to a speedup in the Govindan-Wilsgorighm. We compared two

versions of the Govindan-Wilson algorithm: one is the impéatation in GameTracer, where
the Jacobian computation is based on the normal-form reptatson; the other is identical to
the GameTracer implementation, except that the Jacobiart®aputed using our algorithm for

38

the AGG representation. Both techniques compute the Jacsleixactly. As a result, given an
initial perturbation to the original game, these two impéattations follow the same path and
return exactly the same Nash equilibrium.

Again, we tested the two algorithms on Coffee Shop gamesrgingsizes: first we fixed the
sizes of blocks at x 4 and varied the number of players; then we fixed the numbeayips at 4
and number of columns at 4 and varied the number of rows. Febrgame instance, we randomly
generated 10 initial perturbation vectors, and for eadfalmerturbation we ran the two versions
of the Govindan-Wilson algorithm. Although the algoritheng(sometimes) find more than one
equilibrium, we stopped both versions of the algorithmraftee equilibrium was found. Since
the running time of the Govindan-Wilson algorithm is verysiéive to the initial perturbation,
for each game instance the running times with differentahferturbations had large variance.
To control for this, for each initial perturbation we lookatitheratio of running times between
the normal-form implementation and the AGG implementaian, a ratio greater than 1 means
the AGG implementation ran more quickly than the normal famplementation). We present
the results in Figure 12 (left). We see that as the size of &émes grew (either in the number
of players or in the number of actions), the speedup of the A@idementation over that of the
normal-form implementation increased. The normal-formplementation ran out of memory for
game instances with more than 5 players, preventing us feparting ratios above = 5. Thus,
we ran the AGG-based implementation alone on game instavitetarger numbers of players,
giving the algorithm a one-day cutoff time. As shown by thg-&zale boxplot of CPU times in
Figure 12 (top right), for game instances with up to 12 play#re algorithm terminated within
one day for most initial perturbations. A normal form regmasition of such a game would have
needed to storg.0 x 10'® numbers. Figure 12 (bottom right) shows a boxplot of the CiRlg$
for the AGG-based implementation, varying the number obastwhile fixing the number of
players at 4. For game instances with up to 49 actions xal2 grid plus one action for not
entering the market), the algorithm terminated within aarho

We also tested on Job Market games with varying numbers gépaThe results are shown
in Figure 13. For the game instance with 6 players, the AG&8amplementation was about
100 times faster than the normal-form-based implememtatighile the normal-form-based im-
plementation ran out of memory for Job Market games with ntiwa 6 players, the AGG-based
implementation was able to solve games with 16 players irvarege of 24 minutes.

6.6 Finding a Nash Equilibrium using Simplicial Subdivision

As discussed in Section 5.3, we can speed up the normaldased simplicial subdivision al-
gorithm by replacing the subroutine that computes expadiéty by our AGG-based algorithm.
We have done so to GAMBIT’s implementation of simplicial disision. As with the Govindan-
Wilson algorithm, from a given starting point both the onigi version of simplicial subdivision
and our AGG version follow a deterministic path to determaxactly the same equilibrium.
Thus, all performance differences are due to the choice mfesentation. We compared the
performance of AGG-based simplicial subdivision agaimstmal-form-based simplicial subdi-
vision on instances of Coffee Shop games as well as instarficasdomly-generated symmetric
AGG-{s on small world graphs. We always started from the mixedesiyeprofile in which each
player gives equal probability to each of her actions.

We first considered instances of Coffee Shop games with 4,réve®lumns and varying
numbers of players. For each game size we generated 10destafith random payoffs. Figure
14 (left) gives a boxplot of the ratio of running times betwedke two implementations. The
AGG-based implementation was about 3 times faster for tpéager instances and about 30

39

30 H 100000f P
$ 25 —— .
£ + &8 10000 H
=] M)

920 5 . D .
< & 1000 B Q Q
215 £ =ank
1

L GE) T J'_
4 = 100 n
Z 10 3
a g ﬁ -
= i
5 5 109 T

1

of — e .

3 4 5 3 4 5 6 7 8 9 10 11 12
number of players number of players
10000
+ T T

o7 8 T b
Eg ﬁ T g 1000 0 - Ifl
: . 5 LR
s ot ¢ 100t T r = T 3 H
E all* s e

54 £ i
'y E kS
z3) s 10 ; H
S E ! rs
g2 % o . L

g :

i bl !
L
0.1
13 17 21 25 29 33 37 41 45 49 13 17 21 25 29 33 37 41 45 49
number of actions number of actions

Figure 12: Govindan-Wilson algorithm; Coffee Shop gamep iaw: 4 x 4 grid, varying number
of players. Bottom row: 4-playerx 4 grid, » varying from 3 to 12. For each row, the left figure
shows ratio of running times; the right figure shows logsgade of CPU times for the AGG-
based implementation. The dashed horizontal line indéciie one day cutoff time.

times faster for the 4-player instances. We also tested dfe€8hop games with 3 players, 3
columns and numbers of rows varying from 4 to 7, again geimgrd0 instances with random
payoffs at each size. Figure 14 (right) gives a boxplot ofrttim of running times. As expected,
the AGG-based implementation was faster and the gap inpeaftcce widened as games grew.

We then investigated symmetric AG(%-on randomly generated small world graphs with
random payoffs. The small world graphs were generated WA UT’s implementation with
parameterdC = 1 andp = 0.5. For each game size we generated 10 instances. We first fixed
the number of action nodes at 5 and varied the number of HayResults are shown in Fig-
ure 15 (top row). While there was large variance in the atiealunning times across different
instances, the ratios of running times between normal-foased and AGG-based implementa-
tions showed a clear increasing trend as the number of gayeneased. The normal-form-based
implementation ran out of memory for instances with morethglayers. Meanwhile, we ran
the AGG-based implementation on larger instances with adayecutoff time. As shown by the
boxplot, the AGG-based implementation solved most ingarth up to 8 players within 24
hours. We then fixed the number of players at 4 and varied th&beu of action nodes from
4 to 16. Results are shown in Figure 15 (bottom row). Againilevtne actual running times
on different instances varied substantially, the ratiosuohing times showed a clear increasing
trend as the number of actions increased. The AGG-basedingpitation was able to solve a 16-
action instance in an average of about 3 minutes, while thmaleform-based implementation
averaged about 2 hours.

40

140 T 10000 T
¢ 120 ' 1000 . !
E = : el
& 100 e - T ﬂ T
0] 8 100 T
< 80 7] . 1
2 S b ' .

@ 60 [
: g LAY T
5 40 =) 1h H ! *
) a (]
k<! o D T L
< 20 T
= 0.1 e
O —p— —
3 4 5 6 3456 7 8 910111213141516
number of players number of players

Figure 13: Govindan-Wilson algorithm; Job Market gamesywve numbers of players. Left:
ratios of running times. Right: logscale plot of CPU timestfte AGG-based implementation.

30
5
Y == Y
Q Q
E25 £ 45 E
(O] (O] - -
Q20 g 4 i
2 2 -
515 § 35 T
: = ¢
k] k]
8 10 3=l 25
K] 5 2. —
g | =
== 2 —_
4 13 16 19 22
number of players number of actions

Figure 14: Ratios of running times of simplicial subdivisialgorithms on Coffee Shop games.
Left: 4 x 4 grid with 3 to 4 players. Right: 3-playerx 3 grid, r varying from 4 to 7.

6.7 Visualizing Equilibria on the Action Graph

Besides facilitating representation and computationattion graph can also be used to visualize
strategy profiles in a natural way. A strategy profilée.g., a Nash equilibrium) can be visualized
on the action graph by displaying the expected numbers gépdahat choose each of the actions.
We call such a tuple thexpected configurationndero. This can be easily computed given
for each action node, we sum the probabilities of playing i.e. E[c(a)] = >, v 0i(a) where
o;(a) isOwhena ¢ A;. When the strategy profile consists of pure strategiesghdtris simply
the corresponding configuration.

The expected configuration often has natural interpratatid-or example in Coffee Shop
games and other scenarios where actions correspond t@lochibices, an expected configu-
ration can be seen as a density map describing expected pdaptions. We illustrate using
a 16-player Coffee Shop game ontax 4 grid. We ran the (AGG-based) Govindan-Wilson
algorithm, finding a Nash equilibrium in 77 seconds. The efge configuration of this (pure
strategy) equilibrium is visualized in Figure 16.

We also examined a Job Market game with 20 players. A normrad fepresentation of
this game would have needed to storé x 10'3* numbers. We ran the AGG-based Govindan-
Wilson algorithm, finding a Nash equilibrium in 860 secontlise expected configuration of this
equilibrium is visualized in Figure 17 (left). Note that teguilibrium expected configuration on
some of the nodes are non-integer values, as a result of reire@@gies by some of the players.
We also visualize two players’ mixed equilibrium strategie Figure 17 (right).

41

é 7 - 200000 v T s
— 1
6 » 10000 -
g 'g 1
55 . g 1000 -
(2} + 1
34 : £ w00 o+
g : g ‘ ; '
ER - T IO S R
% o} ! ! .
%- . % 1 = Q -L)
o
kel 0.1
- =
3 4 5 3 4 5 6 7 8
number of players number of players
1%
o 40 i
10000 -
£ 8! A
g Tt £ 1000 Tt ; 7
B 1 - N
E¥ L I M | EI S A
= 1
o @ 100f, || L
é + £ 1 1
220 - s -
° 1 £ 10p 1 : :
5 = 5 ' - CU
Z 10 - 5 1 L ‘
5 . +t
o 0.1
@ P I *
4 5 6 7 8 9 10111213 14 15 16 4 5 6 7 8 910111213141516
number of actions number of actions

Figure 15: Simplicial subdivision algorithm; symmetric 83)s on small world graphs. Top

row: 5 actions, varying number of players. Bottom row: 4 glay varying number of actions.
The left figures show ratios of running times; the right figusbow logscale plots of CPU times
for the AGG-based implementation. The dashed horizomtealitidicates the one day cutoff time.

Finally, we examined an Ice Cream Vendor game (Example dtB)nocations, 6 ice cream
vendors, 6 strawberry vendors, and 4 west-side vendorsGbiandan-Wilson algorithm found
an equilibrium in 9 seconds. The expected configuration isf (hure strategy) equilibrium is
visualized in Figure 18. Observe that the west side is kaltidenser due to the west-side
vendors. The locations at the east and west ends were chels¢imaly more often than the
middle locations, because the ends have fewer neighborthaa@xperience less competition.

7 Conclusions

We proposed action-graph games (AGGSs), a fully expressiveegrepresentation that can com-
pactly express utility functions with structure such astegtispecificindependence and anonymity.
We also extended the basic AGG representation by introduftinction nodes and additive
utility functions, allowing us to compactly represent a midange of structured utility func-
tions. We showed that AGGs can efficiently represent ganoes fnany previously studied com-
pact classes including graphical games, symmetric gamesyyanous games, and congestion
games. We presented a polynomial-time algorithm for compguexpected utilities in AGG)s
and contribution-independent AGG-FNs. For symmetric arsymmetric AGGHs, we gave
more efficient, specialized algorithms for computing expdaitilities under symmetric and
symmetric strategy profiles respectively. We also showedthaise these algorithms to achieve
exponential speedups of existing methods for computingrgpaNash equilibrium and a sam-
ple correlated equilibrium. We showed experimentally thehg AGGs allows us to model and

42

Figure 16: Visualization of a Nash equilibrium of a 16-play#offee Shop game on4éx 4
grid. The function nodes and the edges of the action graphatrghown. The action node at the
bottom corresponds to not entering the market.

analyze dramatically larger games than can be addressedth&inormal-form representation.

We briefly mention a few of our current and future researchdlions. We are currently ex-
ploring applications of AGGs for modeling and analyzingyareal-world systems, and have pre-
liminary results for network routing problems [Thompsaral, 2007] and complete-information
advertising auction problems [Thompson & Leyton-Brownp2D Another interesting prob-
lem is the computation of pure-strategy Nash equilibria BG\)s. While the problem is NP-
complete in general (Conitzer, personal communicatiodefrendently proved by Daskalakis
et al. [2009]), in Jiang and Leyton-Brown [2007] we presented a/poinial time algorithm
for the class of symmetric AG®s whose action graphs have bounded in-degree and bounded
tree-width. We are currently extending this algorithm tassles of asymmetric AG@ and
AGG-FNs. Another line of research is to extend our AGG framutbeyond complete-information
simultaneous-move games. In Jiang and Leyton-Brown [20&0proposed Bayesian action-
graph games (BAGGSs) for representing Bayesian games, ahdriget al. [2009] we proposed
temporal action-graph games (TAGGS) for representing ifepeinformation dynamic games.
In both cases, we showed that our representations can ctynegresent games with anonymity
or context-specificindependencies; we also provided efftalgorithms for computing expected
utility, which lead to speedups in the computation of Bajesh equilibria and behavior-strategy
Nash equilibria, respectively.

References

Ben-Sasson, E., Kalai, A., & Kalai, E. (2006). An approaclbéoinded rationalityNIPS: Proceedings of
the Neural Information Processing Systems Confer¢ppel45-152).

Bhat, N., & Leyton-Brown, K. (2004). Computing Nash equiibof action-graph gamesJAI: Proceed-
ings of the Conference on Uncertainty in Atrtificial Inteéligce(pp. 35-42).

Blum, B., Shelton, C., & Koller, D. (2002). Gametracdnt t p: / / dags. st anf or d. edu/ Ganes/
ganetracer. htnl .

43

]

()
Boé
5 GG
()
i @<
(=) s

" Z0=0=0=

OG>

1.90447

’@9@?@0@
@0&0@?&0@

Figure 17: Visualization of a Nash equilibrium of a Job Mdrgame with 20 players. Left:
expected configuration of the equilibrium. Right: two mixeglilibrium strategies.

Figure 18: Visualization of a Nash equilibrium of an Ice Gredendor game.

Blum, B., Shelton, C., & Koller, D. (2006). A continuation thed for Nash equilibria in structured games.
JAIR: Journal of Artificial Intelligence Researchs, 457-502.

Brandt, F., Fischer, F., & Holzer, M. (2010). Equilibria afaghical games with symmetrieTheoretical
Computer ScienceAccepted subject to minor revisions.

Chen, X., & Deng, X. (2006). Settling the complexity of 2ypa Nash-equilibrium FOCS: Proceedings
of the Annual IEEE Symposium on Foundations of Computen&e{pp. 261-272).

Conitzer, V., & Sandholm, T. (2008). New complexity resatsut nash equilibriatGames and Economic
Behavior 63(2), 621 — 641. Second World Congress of the Game Theory §ocie

Daskalakis, C., Fabrikant, A., & Papadimitriou, C. (2006ahe game world is flat: The complexity of
Nash equilibria in succinct game$CALP: Proceedings of the International Colloquium on Autda,
Languages and Programmir{gp. 513-524).
Daskalakis, C., Goldberg, P. W., & Papadimitriou, C. H. @00 The complexity of computing a Nash
equilibrium. STOC: Proceedings of the Annual ACM Symposium on Theoryrap@ing(pp. 71-78).
Daskalakis, C., & Papadimitriou, C. (2006). Computing pNish equilibria via Markov random fields.
EC: Proceedings of the ACM Conference on Electronic Comerem. 91-99).

Daskalakis, C., & Papadimitriou, C. (2007). Computing &ftia in anonymous game$-OCS: Proceed-
ings of the Annual IEEE Symposium on Foundations of Com3diencepp. 83-93).

Daskalakis, C., Schoenebeck, G., Valiant, G., & Valian{2P09). On the complexity of Nash equilibria
of Action-Graph GamesSODA: Proceedings of the ACM-SIAM Symposium on Discretarittigns(pp.
710-719).

44

Elkind, E., Goldberg, L., & Goldberg, P. (2006). Nash eduik in graphical games on trees revisit&L:
Proceedings of the ACM Conference on Electronic Commésa@-109.

Elkind, E., Goldberg, L., & Goldberg, P. (2007). Computirapd Nash equilibria in graphical gamdsC:
Proceedings of the ACM Conference on Electronic Commé@2-171.

Etessami, K., & Yannakakis, M. (2007). On the Complexity &Sk Equilibria and Other Fixed Points
(Extended Abstract)FOCS: Proceedings of the Annual IEEE Symposium on Fountatb Computer
Sciencgpp. 113-123).

Fredkin, E. (1962). Trie memorfCommunications of the ACN3, 490-499.

Goldberg, P. W., & Papadimitriou, C. H. (2006). Reduciifimong equilibrium problemsSTOC: Pro-
ceedings of the Annual ACM Symposium on Theory of Comp{im@1-70).

Gottlob, G., Greco, G., & Scarcello, F. (2005). Pure Nashliia: Hard and easy gameslournal of
Artificial Intelligence Researgt24, 357-406.

Govindan, S., & Wilson, R. (2003). A global Newton method taimpute Nash equilibria.Journal of
Economic Theoryl10, 65-86.

Govindan, S., & Wilson, R. (2004). Computing Nash equilbhy iterated polymatrix approximation.
Journal of Economic Dynamics and Contr@B, 1229-1241.

Heckerman, D., & Breese, J. S. (1996). Causal independaengerdbability assessment and inference
using Bayesian network$EEE Transactions on Systems, Man and Cyberne2ig$), 826—831.

Hotelling, H. (1929). Stability in competitiorEconomic Journal39, 41-57.

leong, S., McGrew, R., Nudelman, E., Shoham, Y., & Sun, Q0%20Fast and compact: A simple class of
congestion game#\AAI: Proceedings of the AAAI Conference on Artificial Iigeince 489-494.

Jiang, A. X. (2006). Computational problems in multiagergtems. Master’s thesis, University of British
Columbia.

Jiang, A. X., & Leyton-Brown, K. (2006). A polynomial-timdgorithm for Action-Graph GamesAAAI:
Proceedings of the AAAI Conference on Artificial Intellige(pp. 679-684).

Jiang, A. X., & Leyton-Brown, K. (2007). Computing pure Nasguilibria in symmetric Action-Graph
Games. AAAI: Proceedings of the AAAI Conference on Artificial Ilgeince(pp. 79-85).

Jiang, A. X., & Leyton-Brown, K. (2010). Bayesian actioragh gamesNIPS: Proceedings of the Neural
Information Processing Systems Conferernngress.

Jiang, A. X., Pfeffer, A., & Leyton-Brown, K. (2009). TemgrAction-Graph Games: A new representa-
tion for dynamic gamesUAI: Proceedings of the Conference on Uncertainty in Argfitntelligence

Kalai, E. (2004). Large robust gamesconometrica72(6), 1631-1665.

Kalai, E. (2005). Partially-specified large gamea/INE: Proceedings of the Workshop on Internet and
Network Economicéop. 3—13).

Kearns, M. (2007). Graphical games. In N. Nisan, T. Rougtgrar E. Tardos and V. Vazirani (Eds.),
Algorithmic game theorychapter 7, 159-180. Cambridge, UK: Cambridge Universigs®.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical madfdr game theorylJAI: Proceedings of the
Conference on Uncertainty in Atrtificial Intelligen¢ep. 253-260).

Kearns, M., & Suri, S. (2006). Networks Preserving Evolnény Stability and the Power of Randomization.
EC: Proceedings of the ACM Conference on Electronic Comen2@0—207.

Klingsberg, P. (1982). A Gray code for compositiodsurnal of Algorithms3, 41-44.

Koller, D., & Milch, B. (2003). Multi-agent influence diagrss for representing and solving gam&ames
and Economic Behavipd5(1), 181-221.

LaMura, P. (2000). Game networkdJAI: Proceedings of the Conference on Uncertainty in Aiiific
Intelligence(pp. 335—-342).

Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effea@mes.|JCAI: Proceedings of the International
Joint Conference on Artificial Intelligendpp. 772—780).

Mangasarian, O. (1964). Equilibrium points in bimatrix gganJournal of the Society for Industrial and
Applied Mathematicsl2(4), 778-780.

McKelvey, R. D., McLennan, A. M., & Turocy, T. L. (2006). GaiittbSoftware tools for game theory.
http://econweb. t anu. edu/ ganbi t.

Milchtaich, I. (1996). Congestion games with player-spegayoff functions. Games and Economic
Behavior 13, 111-124.

45

Monderer, D. (2007). Multipotential gameklCAI: Proceedings of the International Joint Conference o
Artificial Intelligence(pp. 1422-1427).

Monderer, D., & Shapley, L. (1996). Potential gam&ames and Economic Behavidd, 124-143.

Nash, J. F. (1951). Non-cooperative gameise Annals of Mathematic§54(2), 286—295.

Nudelman, E., Wortman, J., Shoham, Y., & Leyton-Brown, KOG2). Run the GAMUT: A comprehen-
sive approach to evaluating game-theoretic algorithAaSMAS: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Sygpm880-887).

Papadimitriou, C. (2005). Computing correlated equiéiin multiplayer gamesSTOC: Proceedings of
the Annual ACM Symposium on Theory of Computppy 49-56).

Papadimitriou, C., & Roughgarden, T. (2008). Computingrelated equilibria in multi-player games.
Journal of the ACM55(3), 14.

Porter, R., Nudelman, E., & Shoham, Y. (2008). Simple seamnethods for finding a nash equilibrium.
Games and Economic Behavi63(2), 642—662.

Rosenthal, R. (1973). A class of games possessing putegsirblash equilibrialnternational Journal of
Game Theory2, 65-67.

Roughgarden, T., & Tardog, (2002). How bad is selfish routingldurnal of the ACM49(2), 236—259.

Russell, S., & Norvig, P. (2003Artificial intelligence: A modern approach, 2nd editidgnglewood Cliffs,
NJ: Prentice Hall.

Ryan, C.T., Jiang, A. X., & Leyton-Brown, K. (2010). Commgipure strategy Nash equilibria in compact
symmetric gamesEC: Proceedings of the ACM Conference on Electronic Comer{pie. 63—72).

Sandholm, T., Gilpin, A., & Conitzer, V. (2005). Mixed-iger programming methods for finding Nash
equilibria. AAAI: Proceedings of the AAAI Conference on Artificial Iligeince(pp. 495-501).

Scarf, H. (1967). The approximation of fixed points of a contius mapping.SIAM Journal of Applied
Mathematics15, 1328—-1343.

Shoham, Y., & Leyton-Brown, K. (2009)Multiagent systems: Algorithmic, game-theoretic, anddab
foundations New York: Cambridge University Press.

Stein, N. D., Parrilo, P. A., & Ozdaglar, A. (2010Exchangeable equilibria contradict exactness of the
papadimitriou-roughgarden algorithr{ifechnical Report 2852). MIT LIDSht t p: // ar xi v. or g/
abs/ 1010. 2871v1.

Thompson, D. R., Jiang, A. X., & Leyton-Brown, K. (2007). Geuteoretic analysis of network quality-
of-service pricing. BC.NET Conference

Thompson, D. R., & Leyton-Brown, K. (2009). Computationabblysis of perfect-information position
auctions.EC: Proceedings of the ACM Conference on Electronic Comenerc

Turocy, T. (2005). A dynamic homotopy interpretation of thgistic quantal response equilibrium corre-
spondenceGames and Economic Behav;iéri(2), 243—-263.

van der Laan, G., Talman, A., & van der Heyden, L. (1987). Sicig) variable dimension algorithms for
solving the nonlinear complementarity problem on a proddicinit simplices using a general labelling.
Mathematics of Operations Researd(3), 377-397.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms fesolving graphical game#AAl: Proceedings
of the AAAI Conference on Artificial Intelligengp. 345-351).

Yanovskaya, E. (1968). Equilibrium points in polymatrixnges (in Russian)Litovskii Matematicheskii
Sbornik 8, 381-384.

Zhang, N., & Poole, D. (1996). Exploiting causal indepert@eim Bayesian network inferencelAIR:
Journal of Atrtificial Intelligence Research, 301-328.

46

