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ABSTRACT
Supervised learning models often make systematic errors on rare
subsets of the data. When these subsets correspond to explicit
labels in the data (e.g., gender, race) such poor performance can
be identified straightforwardly. This paper introduces a method
for discovering systematic errors that do not correspond to such
explicitly labelled subgroups. The key idea is that similar inputs tend
to have similar representations in the final hidden layer of a neural
network. We leverage this structure by “shining a spotlight” on this
representation space to find contiguous regions in which the model
performs poorly. We show that the Spotlight surfaces semantically
meaningful areas of weakness in a wide variety of existing models
spanning computer vision, NLP, and recommender systems, and
we verify its performance through quantitative experiments.
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1 INTRODUCTION
Despite their superhuman performance on an ever-growing variety
of problems, deep learning models that perform well on average
often make systematic errors, performing poorly on semantically
coherent subsets of the data. A landmark example is the Gender
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Shades study [3], which showed that visionmodels for gender recog-
nition tend to exhibit abnormally high error rates when presented
with images of black women. AI systems have also been shown to
perform poorly for marginalized groups in object recognition [12],
speech recognition [25], mortality prediction [7], and recruiting
tools [7]. Other systematic errors can be harder for practitioners
to anticipate in advance. Medical imaging classifiers can be sen-
sitive to changes in the imaging hardware [6, 11]; essay scoring
software can give high scores to long, poorly-written essays [36];
and visual question-answering systems can fail when questions are
rephrased [41].

Recognizing and mitigating such errors is critical to avoid de-
signing systems that will exhibit discriminatory or systematically
unreliable behaviour. These issues have led the community to de-
velop better tools for testing model performance, clearer standards
for reporting model biases, and a plethora of methods for training
more equitable or robust models. Even when making repairs is
difficult or infeasible, identifying and flagging edge cases where
systems fail can also help expert users work around an algorithm’s
flaws [5]. However, these methods require practitioners to recog-
nize and label well-defined groups in their datasets ahead of time,
necessarily overlooking semantically related sets of inputs that
are not identified in advance. While practitioners certainly should
explicitly assess model performance on sensitive subpopulations,
it is extremely difficult to anticipate all of the sorts of inputs upon
which models might systematically fail: for example, vision models
could perform poorly on a particular age group, pose, background,
lighting condition, etc.

In this work, we introduce the Spotlight, a method for finding
systematic errors in deep learning models even when the common
feature linking these errors was not anticipated by the practitioner
and hence was not surfaced via an explicit label. Our key idea is
that similar inputs tend to have similar representations in the final
hidden layer of a neural network. We leverage this similarity by
“shining a spotlight” on this representation space, searching for
contiguous regions in which the model performs poorly. Using the
final layer in this manner makes the Spotlight agnostic to most
details of the neural network, making it easily applicable to a wide
range of datasets and model architectures.

We demonstrate the Spotlight’s broad applicability through qual-
itative experiments on a variety of otherwise dissimilar models
and datasets, including image classifiers, language models, and
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recommender systems. These spotlights identified several kinds
of systematic errors. Some were unexpected to us (for example,
failures of language models on Spanish text in an otherwise mono-
lingual English dataset), showing that spotlights can discover novel
failure modes. Others found known issues (for example, failures
of facial recognition systems on black faces), which are well docu-
mented in prior work and are readily confirmed by existing group
labels, establishing that the Spotlight does not overlook important
existing issues. While some spotlights are more difficult to inter-
pret or might require more domain expertise to understand, on
balance, our findings provide evidence that the Spotlight can iden-
tify systematically meaningful areas of weakness in many disparate
domains. Additionally, we validate the Spotlight’s performance
through two quantitative experiments, showing that the Spotlight
is more effective than a standard clustering baseline at finding high-
loss groups in several datasets, and that it can consistently find
synthetically-generated systematic errors, even when they span
multiple labels.

We hope that practitioners will add the Spotlight to their model
development pipelines to complement their existing auditing and
training tools. Rather than replacing existing methods for measur-
ing biases in trained models, the Spotlight augments these audit-
ing practices, identifying failure modes that do not correspond to
known labels. Further, our results demonstrate that the Spotlight’s
findings are complementary to other error discovery methods, and
the issues that the Spotlight discovers can often be addressed out-
side of the training loop by collecting higher-quality data, adjusting
the model architecture, limiting the model’s use cases, or flagging
the problems to expert users – all solutions that avoid making per-
formance tradeoffs with robust optimization methods. In support
of these goals, we provide an open-source implementation of the
Spotlight.1

2 RELATEDWORK
Systematic errors on known groups. A standard approach for au-

diting a machine learning model is to create a dataset partitioned by
group information, (e.g., demographics, lighting conditions, hospital
ID, . . . ), and to check whether the model exhibits poor performance
on any of these groups.With one or two particularly sensitive group
variables, it is straightforward to check the model’s performance
on each group; e.g., the NLP community advocates for including
such disaggregated evaluations in model cards [31]. When there are
more group variables—inducing exponentially many intersectional
groups—there exist a variety of computational methods for effi-
ciently identifying groups for which performance is poor [8, 27, 35]
and model dashboards for interactively exploring groups [1, 4, 44].

Once a systematic model weakness has been identified, a substan-
tial literature proposes methods for making repairs. Fair machine
learning methods can incorporate group information into shallow
models, requiring that the model perform similarly on each group
[see, e.g., 9, for a review] or evaluating the model on its worst
group [29]. There also exist generalizations to support many in-
tersectional groups [24]. Additionally, two recent, robust training
methods exist to repair deep models that exhibit such biases. First,
distributionally robust language modelling [34] allows an adversary

1https://github.com/gregdeon/spotlight

to change the distribution over groups during training, requiring
the model to do well on each group. Second, invariant learning [2]
requires the model to learn a representation of the data that induces
the same classifier for each group, protecting against spurious cor-
relations. The Spotlight differs from all of these approaches by
aiming to identify systematic failure modes that go beyond existing
group labels. Our approach is thus complementary to those just
surveyed: after using the Spotlight to uncover a new failure mode,
practitioners can augment their datasets with appropriate labels
and turn to one of these existing methods to monitor or repair their
model’s performance.

Systematic errors on unknown groups. When it is difficult to pre-
dict in advance which subgroups of inputs may be problematic for a
model, practitioners are faced with the task of examining a model’s
errors and searching for regularities—a process that Oakden-Rayner
et al. [32] refer to as error auditing. In some cases, this process is
entirely manual: e.g., some medical applications rely on experts to
dig deeply into a model’s false positives and false negatives [28]. To
alleviate this manual effort, Oakden-Rayner et al. also discuss the
possibility of directing the error discovery process with algorith-
mic tools, such as clustering algorithms; accordingly, we compare
against a Gaussian mixture model baseline in several of our experi-
ments. The Spotlight aims to serve as another such algorithmic tool,
finding semantically coherent groups of inputs to flag to experts,
but it differs from standard clustering algorithms in that it searches
more directly for groups where a model performs poorly.

The existingmethodmost similar to our approach is GEORGE [42],
a robust optimization method that does not rely on group labels;
indeed, we evaluate it in Section 4. GEORGE infers “subclasses”
within the dataset by clustering points within a trained neural net-
work’s representation space, then allows an adversary to modify
the distribution over subclasses. While Sohoni et al. focused on
the more difficult problem of training robust models, they observe
that the clusters identified in their first stage tend to correspond to
semantically meaningful subsets of the data (for instance, images
of birds on land vs. on water). They also observe that their reliance
upon a superlinear-time clustering method limits its applicability to
large datasets. The Spotlight exploits the same underlying insight
as GEORGE: that semantic similarity will correlate with proximity
in the embedding space. However, the Spotlight has several advan-
tages: it avoids partitioning the entire embedding space, searching
only for contiguous, high-loss regions; it is able to identify issues
that involve examples from multiple classes; and it runs in linear
time.

Another notable method is Errudite [45], an interactive system
for analyzing errors made by NLP models. It allows a user to query
a subset of their dataset using a domain-specific language, reporting
the model’s performance on this query set and proposing related
queries to help the user dig deeper into their model. This interactive
query system can help developers discover and confirm systematic
issues in their models without the need for pre-existing group
labels. However, Errudite is very specifically designed for use with
models for NLP tasks; in contrast, the Spotlight is domain agnostic,
applying to deep models designed for many different domains.

Finally, the spotlight is inspired by related methods for training
robust models that perform well across the entire dataset; such
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a model is guaranteed to achieve similar performance on any se-
mantically meaningful subset of the data. For example, distribu-
tionally robust optimization (DRO) methods allow an adversary
to change the relative importance of each data point during train-
ing [14, 19, 26], and invariant learning algorithms can infer groups
during training [10]. While these methods sometimes leverage in-
formation from a trained model’s representation space, they are
required to carefully constrain the set of possible groups in order to
keep the optimization problem tractable. For example, the standard
DRO algorithm [19] assigns equally high importance to all exam-
ples on which losses are high. In contrast, the Spotlight only aims
to surface model biases to a human expert, and hence focuses on
semantically similar subsets of high-loss inputs.

3 THE SPOTLIGHT
We would like to identify subsets of the data that emphasize poor
performance of a model. However, sets of data points upon which
the model performs badly may have little semantic similarity, mak-
ing them ineffective tools for model auditing. We propose instead
to search the model’s final layer embedding space to identify one
or more contiguous sets of points of limited size (“spotlights”) that
maximize loss (Figure 1). We allow for “soft assignment” of points
into the spotlight, making a spotlight a kind of soft clustering;
however, note that our method is driven by a supervised objective
function and that it pays attention only to the loss of points that
fall inside the spotlight rather than seeking to partition the entire
dataset.

Formally, suppose that we have 𝑁 data points with final-layer
representations 𝑥1, . . . , 𝑥𝑁 ∈ R𝑑 and losses ℓ1, . . . , ℓ𝑁 ∈ R. A spot-
light is a set of weights 𝑘1, . . . , 𝑘𝑛 ∈ [0, 1], calculated using the
kernel

𝑘𝑖 = max(1 − 𝜏 ∥𝑥𝑖 − 𝜇∥22 , 0), (1)

where 𝜇 ∈ R𝑑 is the spotlight’s center in the model’s embedding
space, and 𝜏 ∈ R is the precision of the spotlight, with large pre-
cisions producing small spotlights and vice versa. Notice that 𝑘𝑖
has a maximum of 1 when 𝑥𝑖 = 𝜇 and a minimum of 0 when 𝑥𝑖
is sufficiently far from 𝜇; intermediate values of 𝑘𝑖 allow for “soft
assignment” of points into the spotlight. Then, we wish to solve
the optimization problem

max
𝜇,𝜏

𝑁∑
𝑖=1

(
𝑘𝑖∑
𝑗 𝑘 𝑗

)
ℓ𝑖 (2)

s.t.
𝑁∑
𝑖=1

𝑘𝑖 ≥ 𝑆, (3)

for some choice of the hyperparameter 𝑆 . We interpret 𝑆 as the
“spotlight size,” as this setting ensures a lower bound on the total
weight that the spotlight assigns across the dataset.

To make optimization tractable, we replace the hard constraint∑
𝑖 𝑘𝑖 ≥ 𝑆 with a soft penalty term in the objective. In preliminary

tests, we considered using penalty terms that are positive only
when the constraint is violated, but we found that the optimization
process frequently got stuck in suboptimal local maxima. Instead,
we apply a quadratic penalty for coming close to the constraint,
penalizing reweightings that include fewer than 𝑆 +𝑤 points, and
shrink the value of𝑤 throughout the optimization. Specifically, we

define the penalty term as

𝑝 (𝑘) = 𝐶 ·max

(
(∑𝑁

𝑖=1 𝑘𝑖 − (𝑆 +𝑤))2

𝑤2 , 0

)
(4)

and optimize the unconstrained objective
𝑁∑
𝑖=1

(
𝑘𝑖∑
𝑗 𝑘 𝑗

)
ℓ𝑖 − 𝑝 (𝑘) . (5)

We fix 𝐶 to be large relative to typical losses in the dataset (e.g.,
𝐶 = 1 for binary classification;𝐶 = 10 for problems with thousands
of classes).

We optimized Equation (5) by beginning with a large, diffuse
spotlight containing the entire dataset, initializing to 𝜇 = 0 and
𝜏 = 10−4. We ran the Adam optimizer for 5000 steps with an adap-
tive learning rate, halving the learning rate each time the objective
reached a plateau, and shrinking the width of the barrier geometri-
cally from𝑤 = 𝑁 − 𝑆 to𝑤 = 0.05𝑆 .

Optimizing multiple spotlights. In practice, models often have
several distinct failure modes. So far we have only shown how to
find a single spotlight, highlighting a single systematic error. We
can find additional spotlights by decreasing the losses of points to
the extent that they participated in previous spotlights and then
running the same procedure again. More formally, after computing
spotlight weights 𝑘𝑖 , we update the losses to

ℓ ′𝑖 :=
(
1 − 𝑘𝑖

max𝑗 𝑘 𝑗

)
ℓ𝑖 , (6)

and then compute a new spotlight as above using these updated
losses. This process can be repeated until it starts finding spot-
lights with relatively low error or semantic coherence. Each of our
experiments presents three to five spotlights obtained in this way.

Choosing a spotlight size. Our procedure has one free parameter,
the spotlight size 𝑆 . Since it is not possible to quantify whether
a spotlight has captured a semantically meaningful subset of a
dataset, this parameter cannot be set automatically. However, it is
straightforward to optimize spotlights of several different sizes and
compare them qualitatively. During testing, we generally found
that very small spotlights (around 0.1% of the dataset) were too
selective to identify sets of points linked by a meaninful semantic
trait, whereas very large spotlights (around 10% of the dataset)
were too inclusive to focus on high-loss data points. For example,
Figure D1 shows spotlights ranging in size from 0.1% to 10% on Fair-
Face (see Section 4.1); the smallest spotlight is difficult to describe,
while the largest spotlight has a substantially lower average loss.
Taking this balance into account, in our experiments, we settled on
a spotlight size of 2% for vision models, where images can be simply
be scanned for cohesion, and a spotlight size of 5% for non-vision
models, where we found it necessary to describe spotlights using
summary statistics.

4 EXPERIMENTS
The Spotlight is model-agnostic: it can be applied to any deep model
that exposes its final layer representations and for which per-input
losses are available. We demonstrate this flexibility by using the
Spotlight to qualitatively evaluate a broad range of classification
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Figure 1: An example of a spotlight in a image classification model’s representation space.

models from the literature, spanning image classification (faces;
objects; x-rays), NLP (sentiment analysis; question answering), and
recommender systems (movies). Our goal was to investigate how
useful the Spotlight would be for auditing models used in produc-
tion, and sowewe focused on popular, publicly available pre-trained
models whenever possible and tested the models’ performance on
datasets that were not seen during training. In each domain, we
found one or more spotlights providing evidence of distinct, sys-
tematic failure modes, without leveraging any information about
existing group labels. Full results can be found for every dataset
we tested (most in the appendix), showing the method’s broad ap-
plicability. We ran all experiments using a single NVIDIA Tesla
V100 GPU; each spotlight presented in this section took under 1
minute to identify, emphasizing the computational tractability of
our approach even on very large datasets.

In these qualitative experiments, we compared our spotlights to
two baselines. First, we found the examples with the highest losses
on each dataset, demonstrating the issues that DRO’s reweightings
would uncover. On most of our datasets, these high loss examples
are difficult to interpret, highlighting quirks of the datasets more
than systematic issues with the models. Second, because spotlights
are contiguous (weighted) sets of points in a model’s representa-
tion space, clustering algorithms offer a sensible baseline. We thus
compared our spotlights with clusters identified by GEORGE. In par-
ticular, we use the publicly available implementation of GEORGE2,
which separately clusters examples from each class, automatically
selecting the number of clusters using a Silhouette-based heuris-
tic. Wherever feasible, we identified the three highest-loss clusters,
summarized the examples in each of these clusters, and compared
them to our spotlights. Overall, we found that our spotlights often
differed from GEORGE’s clusters, identifying both more granu-
lar problem areas within classes and systematic errors that span
multiple classes.

Finally, while these qualitative experiments test the Spotlight’s
ability to identify semantically meaningful areas of weakness, they

2https://github.com/HazyResearch/hidden-stratification

do not explicitly test whether it identifies themost egregious system-
atic errors in each model. We round out this section with two quan-
titative experiments, where we compared the Spotlight, GEORGE,
and a standard Gaussian mixture model [32].3 In Section 4.6, we
test each method’s ability to identify synthetically-generated issues
that span multiple classes, showing that the Spotlight can find these
issues more consistently than either baseline. We follow upwith Ap-
pendix B, where we provide a quantitative comparison between the
clusters found by the Spotlight and the clustering baseline. These
results confirm that the Spotlight’s optimization algorithm success-
fully finds systematic issues, and that these issues would often be
difficult to identify using an off-the-shelf clustering algorithm.

4.1 FairFace
We first studied FairFace [22], a collection of 100,000 face images
annotated with crowd-sourced labels about the perceived age, race,
and gender of each face. FairFace is notable for being approximately
balanced across 7 races and 2 genders. In particular, we trained a
model to predict the perceived gender label as a proxy for the
gender prediction systems studied in prior work [3]. Our model
was a ResNet-18, trained using Adam with cross-entropy loss and
a learning rate of 3e-4; we stopped training after 2 epochs when
we found that the validation loss began increasing. We ran the
Spotlight on the validation set, using the final 512-dimensional
hidden layer as the representation space.

The spotlights and highest-loss examples are shown in Figures 2
and D2. We found that each of the spotlights discovered a strikingly
different set of faces. The first shows a set of profile (i.e., side) views;
the second consists mostly of young children; the third contains
a preponderance of faces that are shadowed or partially occluded.
The fourth and fifth spotlights consist of black faces in poor lighting
and Asian faces, respectively. (These demographic disparities are
summarized in Figure D3, which illustrates the distribution of ages
and races on each spotlight.) Overall, our spotlights identified that
the model performs poorly on pictures of very young and old people

3We chose to only compare to a clustering baseline on these quantitative terms. Like
the Spotlight, a clustering method finds contiguous sets of points in representation
space, so it is likely to produce sets of inputs that are semantically coherent. These
experiments test whether the resulting clusters can also identify high-loss regions.

https://github.com/HazyResearch/hidden-stratification
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Random sample:

Highest losses: a diffuse set

Spotlight 1: side profile views/poor framing

Spotlight 2: Asian children

Spotlight 3: obscured/shadowed faces

Figure 2: Spotlights on FairFace validation set. Image captions list true label.

and of Black people without access to these demographic labels;
it also identified additional, semantically meaningful groups for
which labels did not exist.

In comparison, the high-loss images are an unstructured set of
examples that include occluded faces, poor lighting, blurry shots,
and out-of-frame faces.
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GEORGE identified a total of six clusters. A random sample of
the images from the three clusters with the highest average losses
are shown in Figure D2. Notably, all of the images in each cluster
have the same label, but share little in common beyond their labels.
While several images in cluster 2 include people wearing glasses,
most of GEORGE’s clusters display a combination of camera angles,
lighting conditions, and occlusions that made the images difficult
for us to classify.

4.2 ImageNet
For a second vision dataset, we study the pre-trained ResNet-18
model from the PyTorch model zoo [37], running the Spotlight on
the 50,000 image validation set. As in FairFace, we used the final
512-dimensional hidden layer of the model as the representation
space.

Our results are shown in Figures 3 and D5. Each spotlight identi-
fied a set of images having awide variety of distinct but semantically
similar labels. The first spotlight contains a variety of images of
people working, where it is difficult to tell whether the label should
be about the person in the image, the task they’re performing, or
another object; the second shows a variety of tools; the third shows
a variety of green plants, where there is often an animal hiding in
the image; the fourth identifies some food and people posing; and
the fifth shows a variety of dogs.

In contrast, the high-loss images appear to have little structure,
with many of them having unexpected labels, such as “pizza” for
an image of a squirrel in a tree holding a piece of pizza.

We did not run GEORGE on this model, as the clustering algo-
rithm failed when attempting to split the 50 images in each class
into even smaller clusters. We are nevertheless able to conclude that
GEORGE’s clusters would be much different from the spotlights
just described. The reason is that GEORGE’s “subclass” clusters de-
aggregate existing classes, whereas the Spotlight tended to reveal
semantically similar groups of classes that the model had trouble
distinguishing.

4.3 Sentiment analysis: Amazon reviews
Next, we turn to the Amazon polarity dataset [46], a collection
of 4 million plain-text Amazon reviews labelled as “positive” (4-
5 stars) or “negative” (1-2 stars). We used a popular pre-trained
checkpoint of a DistilBERT model from Huggingface [21], which
was fine-tuned on SST-2. We ran the Spotlight on a sample of 20,000
reviews from the validation set, using the final 768-dimensional
hidden layer as the representation space.

We found it more difficult to spot patterns in the spotlights on
this dataset by simply reading the highest-weight reviews, so we
instead summarized each spotlight by identifying the tokens that
appeared most frequently in the spotlight distributions, relative
to their frequencies in the validation set. These results are shown
in Figure 4. Remarkably, the first spotlight surfaced reviews that
were written in Spanish, which the model consistently classified
as negative. We determined that the model was only trained on
English sentences; its tokenizer appears to work poorly on Spanish
sentences. The second spotlight highlighted long-winded reviews
of novels, which the model has difficulty parsing. The third found
reviews that mention aspects of customer service, such as product

returns, which the model confidently classifies as negative; these
predictions lead to high losses on positive reviews that describe
customer service.

The highest-loss reviews in the dataset are quite different, con-
sisting almost entirely of mislabelled reviews. For example, one
review reads “The background music is not clear and the CD was
a waste of money. One star is too high.”, but has a 4-5 star rating;
dozens of high-loss outliers follow this pattern, where the rating
clearly contradicts the review text. We note that this type of label
noise would pose a problem for many robust optimization methods,
which could insist that the model learn to memorize these outliers
rather than focusing on other important portions of the dataset.

GEORGE found a total of 11 clusters; the three with the highest
losses are also summarized in Figure 4. The first cluster is similar to
our second spotlight, containing many negative and wordy reviews
for novels and movies that are misleading or difficult to parse.
The second consists entirely of positive reviews, including many
written in Spanish. The third is small, only containing 0.5% of the
dataset, and we found it difficult to summarize. Overall, we found
the spotlights more coherent, but observed more overlap between
spotlights and GEORGE clusters than in other datasets.

4.4 MovieLens 100k
We investigated a third domain, recommender systems. Specifically,
we considered the MovieLens 100k dataset [17], a collection of
100,000 movie reviews of 1,000 movies from 1,700 different users.
It also includes basic information about each movie (titles, release
dates, genres) and user (age, gender, occupation), which we use
during the analysis, but did not make available to the model. For
our model, we used a deep factorized autoencoder [18], using the
final 600-dimensional hidden layer for our representation space.

The highest-weight movies in each spotlight are shown in Fig-
ure D7. The first spotlight mostly identifies 3–4 star action and
adventure films rated by prolific users, where the model is highly
uncertain about which review they will give. The second finds
reviews of highly rated drama films from a small group of users
with little reviewing history. The third shows unpopular action and
comedy films, where the model is nonetheless optimistic about the
rating. In comparison, the highest-loss predictions consist mostly
of 1-star ratings on movies with high average scores.

GEORGE identified 21 clusters; we show the highest-loss pre-
dictions from three in Figure D8. The first two consist of a variety
of 1- or 2-star ratings respectively, where the model confidently
makes 4- or 5-star predictions for both categories. Both clusters
have similar genre distributions to the entire dataset. The third
cluster instead contains many 5-star ratings on comedy and drama
films where the model is skeptical about these high ratings. The
GEORGE clusters differ from the spotlights, which tend to have
more consistent movies or genres, but less consistent ratings.

4.5 Additional Datasets: SQuAD; Chest X-Rays
We ran the Spotlight on two additional datasets: SQuAD, an NLP
question-answering benchmark; and a chest x-ray image dataset.
Our results here were more ambiguous, but we describe these ex-
periments regardless to emphasize the Spotlight’s generality and
to reassure the reader that we have presented all of our findings
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Random sample:

Highest losses: a diffuse set

Spotlight 1: busy/cluttered workplaces

Spotlight 2: tools and toys

Spotlight 3: animals in foliage

Figure 3: Spotlights on ImageNet validation set. Image captions list true label.

rather than cherry-picking favourable results. Full details can be
found in the appendix.

SQuAD. The Stanford question answering dataset (SQuAD) [38]
is a benchmark of question–answer pairs constructed from 536

Wikipedia articles.We analyzed a pre-trainedDistilBERTmodel [20]
fine-tuned on this dataset, running spotlights on the test set. We
excluded long examples where the sum of the context and answer
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Subset Avg Length Frequent words

High loss 68.8 length, outdated, potter, bubble, contact, cinematography, adjusting,
functions, stock, versus

Spotlight 1: Spanish 79.1 que, est, como, y, las, tod, es, la, si, por

Spotlight 2: novels 88.7 super, wearing, job, prefer, bigger, hang, discover, killing, slip, source

Spotlight 3: customer service 80.7 problem, returned, que, hoping, ok, unfortunately, returning, however,
las, maybe

GEORGE cluster 1 77.6 ok, moore, fiction, okay, above, potter, thank, cinematography, usa,
jean

GEORGE cluster 2 75.9 que, para, y, est, como, es, tod, las, installation, la

GEORGE cluster 3 87.7 visuals, sugar, investment, score, study, surfer, dimensional, era, dune,
scarlet

Figure 4: Spotlight on Amazon reviews.

sequence lengths was greater than 384, leaving 10,386 question–
answer pairs. It was unclear which representation to use for the
SQuAD spotlights, as the model’s last layer has a representation for
each token in the context rather than a single representation for the
entire example.We chose to discard the representations of all tokens
except for the first one—a special [CLS] token prepended to each
example—because BERT’s representation of this token is trained
to summarize the entire text through a “next sentence prediction”
task [13].

The results are summarized in Figure D11. The spotlights partic-
ularly highlighted questions from the “packet switching” and “civil
disobedience” categories, which were the two categories with the
highest loss, despite not having had access to category labels; ex-
plicit consideration of individual questions with the highest losses
identified the latter but not the former. We found little semantic
structure beyond these high-level categories; a richer representa-
tion space is likely required to get more insight into this dataset.

Chest X-Rays. The chest x-ray dataset consists of 6,000 chest
x-rays labelled as “pneumonia” or “healthy” [23]. Using the Spot-
light, we were able to identify at least two semantically meaningful
failure modes in this domain: images with a text label “R” on their
sides, and images with very high contrast. However, such images
were also relatively easy to identify in the set of high-loss inputs, so
we were unconvinced that the Spotlight offered a decisive benefit in
this domain. More broadly, it became clear to us that our lack of ex-
pertise in radiology made it impossible for us to determine whether
data points in other spotlighted clusters shared more fundamental
semantic relationships, reminding us that model auditing requires
enough domain knowledge to assess the coherence of failure modes.
Separately, we were also unsure of whether our model gave rise to
a meaningful embedding space: the dataset is small, leading to a
risk of overfitting, and in this case we were unable to leverage an
existing, pre-trained model.

4.6 Synthetic Evaluation
While the qualitative results in this section demonstrate the Spot-
light’s ability to identify areas of weakness in a variety of domains,

these findings are subjective. To back up these claims, we ran a brief
quantitative experiment, where we generated synthetic datasets
with known systematic errors and evaluated the methods’ ability
to recover these errors.

Specifically, we beganwith a superclassed version of ImageNet [15]
containing 3000 images from 10 superclasses (dog, bird, insect, mon-
key, car, feline, truck, fruit, fungus, boat), each consisting of images
from 6 subclasses (e.g., the dog superclass consists of Chihuahua,
Japanese spaniel, Maltese dog, Pekinese, Shih-Tzu, and Blenheim
spaniel). We chose an arbitrary subclass and randomized the (su-
perclass) labels of all 50 images in this subclass, creating a group
of semantically coherent examples where our ImageNet model
performs poorly. Then, without retraining the model, we ran the
Spotlight, GEORGE, and a standard Gaussian mixture model (GMM)
clustering algorithm on the model’s representations.

The Spotlight depends on a hyperparameter: the number of data
points to include. We could simply have set this value to 50, but this
may have biased results in favor of our methods. We thus tuned
the spotlight size on this dataset, running spotlights ranging from
10 to 100 points in size and keeping the spotlight that was the best
predictor of the model’s misclassified examples.4 For the GMM, we
fit 60 clusters, keeping the cluster with the highest average loss.
For GEORGE, also we kept the cluster with the highest loss. We
evaluated each cluster on its F1 score—the harmonic mean of its
precision and recall—at detecting the erroneous subclass.

The results from 600 runs of this experiment are shown in Fig-
ure 5. The Spotlight tended to achieve F1 scores around 0.7, de-
tecting most of the examples from the subclass while including
relatively few points from other subclasses. Some GMM clusters
had comparable performance to the Spotlight, but many had much
lower F1 scores. Investigating these clusters revealed that the GMM
produced clusters varying wildly in size; small clusters typically had
low precision while large clusters typically had low recall. GEORGE

4We computed each spotlight’s F1 score on predicting which examples the model
classified incorrectly and kept the spotlight with the highest score. Note that this
differs from the F1 score reported in the results, and does not require any knowledge
of an existing systematic error.



The Spotlight: A General Method for Discovering
Systematic Errors in Deep Learning Models FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

(a) (b)

Figure 5: Results from 600 runs of our synthetic experiment, showing (a) F1 score and (b) cluster size.

had even lower F1 scores. It almost always produced small clus-
ters with high recall but low precision: as the errors span multiple
classes, GEORGE cannot capture them in a single subclass clus-
ter. Overall, these results show that the Spotlight can consistently
discover systematic errors, even when they span multiple class la-
bels. Additional plots in Appendix C confirm these precision–recall
tradeoffs and demonstrate performance after including multiple
clusters.

5 FUTURE DIRECTIONS
Our methods give rise to various promising directions for future
work, many of which we have begun to investigate. This section
describes some of these ideas along with our initial findings.

Using the Spotlight for adversarial training. While this paper ad-
vocates for the Spotlight as a method for auditing deep learning
models, it also gives rise to a natural, adversarial objective that could
be optimized during training in the style of the distributionally ro-
bust methods surveyed earlier [14, 26]. That is, model training could
iterate between identifying a spotlight distribution, reweighting the
input data accordingly, and minimizing loss on this reweighted in-
put. A model that performed well on this objective would have very
balanced performance, distributing inputs with poor performance
diffusely across the representation space. Unfortunately, our prelim-
inary tests suggest that optimizing for this objective is not simple.
With large spotlights (10% of dataset), we found that this method
made little difference, with the model improving more slowly than
in regular training; with smaller spotlights (1%), the model strug-
gled to learn anything, fluctuating wildly in performance between
epochs. We intend to continue investigating approaches for training
against this flexible adversary.

Structure in representations. An important assumption that the
Spotlight makes is that nearby points in the representation space
will tend to correspond to semantically similar inputs. While this
assumption is empirically supported both by our results and by
prior work [30, 32, 33, 39, 42, 43], it is an emergent property of deep
learningmodels, andwe do not currently understand this property’s
sensitivity to details of the architecture and training method. For
instance, does the choice of optimizer (SGD/Adam, weight decay,

learning rate, . . . ) affect the representation space in a way that inter-
acts with the Spotlight? Could we instead leverage representations
learned by alternative models, such as autoencoders?

Spurious correlations. In particular, models that have learned spu-
rious correlations could act quite differently from the models we
studied in this work. For example, consider a model trained on the
Waterbirds dataset [40], where it is possible to reach high training
accuracy by learning to recognize land/water backgrounds instead
of correctly identifying land/water birds. The model’s representa-
tion would then focus mostly on details of the backgrounds, and
spotlights would be unable to substantially change the distribution
of bird types. Investigating a model’s representation spaces with
tools like the Spotlight could help to understand why a model is
failing on a particular distribution shift.

Comparing to Domino. While this paper was under review, we
became aware of late-breaking work by several of the authors of
GEORGE. Their new method, Domino [16], builds on the Spotlight
(citing this paper’s arXiv preprint). Like the Spotlight, Domino
attempts to identify contiguous regions in a model’s embedding
space in which a model makes systematically incorrect predictions.
A key advantage of Domino is that it aims to find multiple sys-
tematic biases in a model simultaneously, whereas the Spotlight
identifies such biases sequentially (effectively, corresponding to a
greedy algorithm). Domino works by fitting a Gaussian mixture
model to a model’s entire representation space, augmented with
information about the predictions and labels for each input. Given
that Domino takes model loss into account and fits Gaussians in the
representation space, we expect it to perform well. However, since
Domino aims to cluster the entire embedding space, we expect that
it could exhibit weaker performance on high-loss regions than the
Spotlight, which focuses solely on modeling these regions. A thor-
ough comparison of the two approaches is an important direction
for future work.5

5The Domino paper does already include a comparison to the Spotlight, but the
performance they describe is inconsistent with our own experiences. We are concerned
that these experiments may have used low learning rates that would cause the Spotlight
to perform poorly.
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6 CONCLUSIONS
The Spotlight is an automatic and computationally efficient method
for surfacing semantically related inputs upon which a deep learn-
ing model performs poorly. In experiments, we repeatedly observed
that the Spotlight was able to discover meaningful groups of prob-
lematic inputs across a wide variety of models and datasets, in-
cluding poorly modelled age groups and races, ImageNet classes
that were difficult to distinguish, reviews written in Spanish, and
specific movies with unpredictable reviews. These findings often
complemented systematic issues identified by GEORGE’s cluster-
ing stage, a related auditing method. The Spotlight found all of
these sets without access to side information such as demographics,
topics, or genres.

The Spotlight’s ability to discover systematic errors in deep
learning models makes it well-suited for use in a broader feedback
loop of developing, auditing, and mitigating models. The Spotlight
is useful in the auditing stage of this loop, helping practitioners
to discover semantically meaningful areas of weakness that they
can then test in more depth and address through changes to their
pipeline. For instance, a machine learning engineer armed with
our results might seek higher-quality data for poorly represented
demographics (on FairFace), switch to a multi-label classification
model (on ImageNet), restrict use of their model to English text (on
Amazon reviews), or avoid using their model on users with little
data (on MovieLens). Such a human-in-the-loop discovery process
is critical to identify systematic failure modes in deep learning
systems and mitigate them before they are able to cause harmful
consequences in deployed systems.

Potential social impacts. The Spotlight can be a useful addition
to machine learning practitioners’ toolboxes, augmenting their
existing robustness tests. However, the Spotlight can only show the
existence of a systematic error, not prove that a model has none. It
is possible that a practitioner could get a false sense of security if
the Spotlight turns up no significant issues—perhaps because their
model’s biased representation hides an important issue, or because
they miss a systematic error on visual inspection. On balance, we
believe that the potential to uncover new issues outweighs the risk
of believing there are none, especially when the Spotlight is used
in concert with other fairness or robustness methods.

Additionally, it is conceivable that the Spotlight could be used
for debugging harmful AI systems, such as surveillance technology,
to identify regimes under which these technologies fail and to
further improve their efficacy. This is unavoidable: the Spotlight
is general enough to work on a wide range of model architectures,
including those that might cause negative social impacts. Overall,
though, we do not see this as a likely use case; the Spotlight’s
main likely effect would be helping practitioners to increase the
fairness and robustness of deployed deep learning systems and to
gain confidence that their models to not systematically discriminate
against coherent subpopulations of users.
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A DATASET DETAILS
In Figure A1, we summarize licensing and content considerations
for each of the datasets used in this work.

B QUANTITATIVE RESULTS
While the qualitative results in the main text demonstrate the Spot-
light’s ability to identify semantically meaningful groups of inputs,
one might wonder whether it successfully identifies high loss re-
gions in the model’s representation space. As a sanity check, we
confirmed that the spotlights have higher average losses than the
clusters found by a naive clustering baseline, which does not use
information about the model’s losses during optimization. In partic-
ular, we fit a Gaussian mixture model to each representation space
and compared the Spotlight to the cluster with the highest average
loss. We fit 50 clusters on FairFace and ImageNet and 20 clusters
on Amazon and MovieLens, ensuring that a typical cluster would
be comparable in size to the spotlights, and compared the size and
average loss of each of these clusters to the spotlights.

The results are shown in Figure B1. On FairFace, ImageNet,
and MovieLens, the first spotlight had higher loss than any of the
clusters, showing that spotlight effectively identified a high-loss
region. On Amazon, two clusters had higher average loss than the
first spotlight, but they incorporated considerably fewer points,
finding a less widespread error. These results indicate that the
spotlights reliably use information about the model’s losses to
identify a large systematic error, while a naive clustering method
tends to split high-loss regions across several clusters or identify
smaller failure modes.

C ADDITIONAL SYNTHETIC RESULTS
In this section, we include additional results from our synthetic
experiments in Section 4.6:

• Figure C1: the precision and recall of the clusters identified
by each method. The Spotlight has both moderate precision
and recall; GEORGE has very low precision but high recall;
and the GMM shows more variability in both metrics.

• Figure C2: changes in precision and recall as additional clus-
ters are added. The spotlights tend to overlap, producing few
new points in each cluster; GEORGE splits the single sys-
tematic issue across many clusters; the GMM quickly loses
recall as more points from outside of the subclass are added.
(Note that spotlights in these two plots have their sizes fixed
at 50 points, rather than having their sizes tuned for each
dataset.)

D ADDITIONAL SPOTLIGHTS
In this section, we include additional outputs from the spotlights
on the datasets that were described in the text. In particular, we
include:

• FairFace: examples of spotlights of different sizes in Fig-
ure D1; fourth and fifth spotlights and GEORGE clusters in
Figure D2; demographic info in Figure D3 and average losses
by demographic in Figure D4

• ImageNet: fourth and fifth spotlights in Figure D5

• MovieLens: high loss ratings in Figure D6; spotlight examples
in Figure D7; GEORGE clusters in Figure D8.

• Chest x-rays: random sample, high loss examples, and first
three spotlights in Figure D9; final two spotlights in Fig-
ure D10

• SQuAD: common words and topics from each spotlight in
Figure D11
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Dataset License PII Offensive content

FairFace CC BY 4.0 none none
ImageNet custom non-commercial none none
Amazon reviews Apache 2.0 none Offensive words in reviews are censored
SQuAD CC BY 4.0 none none
MovieLens 100K custom non-commercial none none
Chest x-rays CC BY 4.0 none none
Adult MIT none none
Wine quality MIT none none

Figure A1: Details for each of the datasets used in this paper.

Figure B1: Sizes and average losses for clusters and spotlights. FairFace and ImageNet show spotlights containing 2% of the
dataset and 50 clusters; Amazon reviews and MovieLens show spotlights containing 5% of the dataset and 20 clusters.

(a) (b)

Figure C1: Additional results from our synthetic experiment, showing (a) precision and (b) recall of each method’s clusters.
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(a) (b)

Figure C2: Additional results from our synthetic experiment, showing how precision and recall change as multiple clusters
are included. Filled area shows 1 standard deviation.
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Spotlight size: 0.1% (average loss: 1.51)

Spotlight size: 0.5% (average loss: 0.91)

Spotlight size: 2% (average loss: 0.70)

Spotlight size: 10% (average loss: 0.56)

Figure D1: Spotlights on FairFace ranging in size from 0.1% to 10% of the dataset’s size.
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Spotlight 4: dark skin tones; poor lighting

Spotlight 5: Asian faces

GEORGE cluster 1

GEORGE cluster 2

GEORGE cluster 3

Figure D2: Additional spotlights and GEORGE clusters on FairFace.
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Figure D3: Demographics captured in each spotlight on FairFace.

Figure D4: Average losses broken down by age group (left) and race (right) on FairFace.

Spotlight 4: food; people posing

Spotlight 5: outdoor dogs

Figure D5: Additional spotlights on ImageNet.
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Prediction Rating Loss Movie Genre Avg (# Reviews) User ID (# Reviews)

4 1 11.2 Pulp Fiction Crime 4.2 (82) 305 (97)
4 5 11.0 Princess Bride, The Action 4.1 (58) 419 (3)
5 1 10.9 Face/Off Action 3.9 (42) 296 (73)
4 1 10.5 Usual Suspects, The Crime 4.3 (56) 234 (202)
4 1 8.8 Fargo Crime 4.3 (113) 198 (75)
3 5 8.7 Wizard of Oz, The Adventure 4.2 (46) 358 (8)
5 1 8.1 Alien Action 4.2 (68) 295 (96)
3 1 8.0 Mother Comedy 3.2 (34) 100 (25)
4 1 7.9 Boot, Das Action 4.0 (35) 102 (104)
5 1 7.9 English Patient, The Drama 3.7 (93) 239 (73)
5 1 7.8 Shallow Grave Thriller 3.7 (14) 342 (73)
5 1 7.8 Face/Off Action 3.9 (42) 145 (131)
4 1 7.7 Devil’s Advocate, The Crime 3.7 (31) 15 (44)
3 5 7.6 Addams Family Values Comedy 3.1 (18) 326 (74)
5 1 7.5 Raiders of the Lost Ark Action 4.3 (76) 269 (156)

Figure D6: Rating predictions with highest losses from MovieLens 100k.
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Spotlight 1: 3-4 star action films; high model uncertainty
Prediction Rating Loss Movie Genre Avg (# Reviews) User ID (# Reviews)

4 2 1.7 Romeo and Juliet Drama 3.4 (27) 13 (263)
5 1 1.6 Lost Highway Mystery 2.8 (26) 347 (78)
1 3 1.6 Crow, The Action 3.4 (30) 217 (39)
4 3 1.4 True Lies Action 3.2 (40) 13 (263)
3 2 1.8 Crow, The Action 3.4 (30) 197 (66)
4 3 1.7 Jurassic Park Action 3.6 (53) 363 (102)
5 4 1.4 Happy Gilmore Comedy 3.2 (19) 145 (131)
3 3 1.2 Crow, The Action 3.4 (30) 109 (100)
4 1 1.3 Crash Drama 2.5 (35) 286 (130)
4 3 1.5 Happy Gilmore Comedy 3.2 (19) 223 (53)
5 5 1.0 Cook the Thief, The Drama 3.6 (13) 269 (156)
4 4 1.1 True Lies Action 3.2 (40) 347 (78)
2 2 1.1 Romeo and Juliet Drama 3.4 (27) 201 (171)

Spotlight 2: highly rated drama films; users with few reviews
Prediction Rating Loss Movie Genre Avg (# Reviews) User ID (# Reviews)

3 4 1.2 Shine Drama 4.0 (23) 382 (20)
4 2 1.9 Big Night Drama 4.0 (30) 382 (20)
4 5 1.4 Madness of King George Drama 4.0 (22) 354 (81)
5 3 1.2 Godfather, The Action 4.4 (73) 382 (20)
4 3 1.3 Bound Crime 3.8 (30) 329 (28)
4 4 0.8 Shine Drama 4.0 (23) 214 (65)
5 2 3.4 Fish Called Wanda, A Comedy 4.0 (50) 370 (19)
3 3 0.7 People vs. Larry Flynt, The Drama 3.6 (49) 382 (20)
4 2 3.5 Pulp Fiction Crime 4.2 (82) 370 (19)
4 3 1.3 Singin’ in the Rain Musical 4.2 (38) 370 (19)
4 2 2.4 Shine Drama 4.0 (23) 116 (55)
3 3 1.0 Alien Action 4.2 (68) 382 (20)
3 4 1.1 Braveheart Action 4.2 (67) 370 (19)

Spotlight 3: unpopular action/comedy movies; users with many reviews
Prediction Rating Loss Movie Genre Avg (# Reviews) User ID (# Reviews)

4 4 0.4 Drop Zone Action 2.4 (9) 130 (175)
4 2 1.8 Mouse Hunt Childrens 2.6 (7) 29 (17)
4 4 0.9 Arrival, The Action 2.7 (14) 363 (102)
3 4 1.1 Father of the Bride Part II Comedy 2.7 (22) 222 (174)
4 1 1.8 Father of the Bride Part II Comedy 2.7 (22) 81 (28)
4 3 1.1 Drop Zone Action 2.4 (9) 393 (133)
3 3 0.8 Space Jam Adventure 2.6 (13) 303 (208)
4 3 1.3 Father of the Bride Part II Comedy 2.7 (22) 223 (53)
1 3 1.2 Disclosure Drama 2.7 (10) 303 (208)
4 3 1.2 Arrival, The Action 2.7 (14) 303 (208)
3 3 0.9 Space Jam Adventure 2.6 (13) 21 (84)
4 4 0.6 Casper Adventure 2.6 (12) 83 (77)
4 2 1.6 Last Man Standing Action 2.8 (14) 303 (208)

Figure D7: Spotlights on MovieLens 100k.
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GEORGE cluster 1
Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

4 1 11.2 Pulp Fiction Crime 4.2 (82) 97
5 1 10.9 Face/Off Action 3.9 (42) 73
4 1 10.5 Usual Suspects, The Crime 4.3 (56) 202
4 1 8.8 Fargo Crime 4.3 (113) 75
5 1 8.1 Alien Action 4.2 (68) 96
3 1 8.0 Mother Comedy 3.2 (34) 25
4 1 7.9 Boot, Das Action 4.0 (35) 104
5 1 7.9 English Patient, The Drama 3.7 (93) 73
5 1 7.8 Shallow Grave Thriller 3.7 (14) 73
5 1 7.8 Face/Off Action 3.9 (42) 131
4 1 7.7 Devil’s Advocate, The Crime 3.7 (31) 44
5 1 7.5 Raiders of the Lost Ark Action 4.3 (76) 156
4 1 7.3 Devil’s Own, The Action 2.9 (47) 175

GEORGE cluster 2
Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

4 2 7.4 Grosse Pointe Blank Comedy 3.7 (29) 208
5 2 7.2 Citizen Kane Drama 4.3 (40) 102
5 2 6.0 Fargo Crime 4.3 (113) 22
4 2 5.9 Jaws Action 3.8 (62) 84
5 2 5.8 Schindler’s List Drama 4.4 (61) 184
5 2 5.8 Sense and Sensibility Drama 4.2 (51) 131
3 2 5.6 Peacemaker, The Action 3.4 (24) 12
4 2 5.4 Star Wars Action 4.4 (99) 78
5 2 5.4 Full Monty, The Comedy 4.0 (63) 263
4 2 5.3 Shawshank Redemption, The Drama 4.5 (60) 109
4 2 5.2 Groundhog Day Comedy 3.6 (56) 179
4 2 5.2 Sweet Hereafter, The Drama 3.3 (9) 12
4 2 5.2 Usual Suspects, The Crime 4.3 (56) 76

GEORGE cluster 3
Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

2 5 4.8 2001: A Space Odyssey Drama 4.1 (57) 155
4 5 4.2 Cool Hand Luke Comedy 4.1 (31) 143
2 5 4.2 Birdcage, The Comedy 3.4 (62) 217
3 5 2.8 Gandhi Drama 4.0 (38) 155
3 5 2.4 Schindler’s List Drama 4.4 (61) 155
4 5 2.2 Cape Fear Film-Noir 3.7 (20) 155
4 5 1.7 Blues Brothers, The Action 3.9 (45) 155
4 5 1.5 Cool Hand Luke Comedy 4.1 (31) 146
4 5 1.4 Cool Hand Luke Comedy 4.1 (31) 98
4 5 1.3 Cool Hand Luke Comedy 4.1 (31) 33
4 5 1.2 Cool Hand Luke Comedy 4.1 (31) 47
4 5 1.1 Cool Hand Luke Comedy 4.1 (31) 101
5 5 1.1 Grease Comedy 3.6 (32) 155

Figure D8: GEORGE clusters on MovieLens 100k.
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Random sample:

Highest losses:

Spotlight 1:

Spotlight 2:

Spotlight 3:

Figure D9: Chest xray sample images, high loss images, and spotlights.
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Spotlight 4:

Spotlight 5:

Figure D10: Additional chest xray spotlights.

Subset Frequent words Frequent topics

High loss sacks, tackles, confused, yards, behavior,
touchdowns, defendants, protesters, corner-
back, interceptions

civil disobedience, 1973 oil crisis, com-
plexity theory

Spotlight 1 packet, packets, switching, circuit, pad, mes-
sages, dialogue, aim, networking, why,

packet switching, civil disobedience,
computational complexity theory

Spotlight 2 touchdowns, passes, offense, yards, recep-
tions, rating, anderson, receiver, punt, selec-
tions

civil disobedience, ctenophora, yuan dy-
nasty

Spotlight 3 networking, alice, capacity, consequence,
combining, teach, views, protest, acceleration,
switching

packet switching, teacher, force

Figure D11: Spotlights on SQuAD.
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