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Chapter 12

Automated Configuration
and Selection of SAT Solvers
Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown

12.1. Introduction

Although SAT is widely believed to be hard in the worst case, many interesting
types of SAT instances can be solved efficiently in practice, using heuristic algo-
rithms. A wide variety of different heuristic mechanisms have been identified by
the research community over the decades, partly by unambiguously improving on
past ideas, but largely by finding different heuristics that work well on different
types of SAT instances. Because of this sensitivity to instance characteristics,
there is no single best SAT solver, and state-of-the-art solvers typically expose
some design choices as parameters that can be set at runtime, thereby enabling
users to optimize performance to a given class of SAT instances. This chap-
ter focuses on automated approaches for performing such optimization, which is
termed algorithm configuration. We also discuss the related problem of algorithm
selection: i.e., methods for choosing one algorithm from a finite, typically mod-
estly sized portfolio on a per-instance basis, with the goal of achieving better
performance across instances than can be obtained from any single solver in the
portfolio.

Automated algorithm configuration and per-instance algorithm selection are
both examples of meta-algorithmic design techniques, i.e., generic methods for
building algorithms for a given problem from a set or space of candidate algo-
rithms (which can be small, as in the case of algorithm selection, or large, as
in the case of algorithm configuration). Automated algorithm configuration and
per-instance algorithm selection are of particular interest in the context of SAT,
because of their major impact on solving SAT and related problems, such as
MaxSAT, ASP, CSP and QBF. Conversely, SAT has played a major role in the
development of algorithm configuration and selection techniques.

While the major part of this chapter is focused on automated algorithm con-
figuration and per-instance algorithm selection, we also survey some conceptu-
ally more complex approaches that go beyond “pure” configuration and selec-
tion: combining configuration and selection together; building algorithm sched-
ules rather than simply picking a single algorithm; extending methods to leverage
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Figure 12.1. A configuration scenario includes an algorithm to be configured and a col-
lection of problem instances. A configuration procedure executes the target algorithm
with specified parameter settings on some or all of the instances, receives information
about the performance of these runs, and uses this information to decide which subse-
quent parameter configurations to evaluate.

parallel computation; analyzing the importance of parameters; dynamically con-
trolling parameters; and using configuration techniques for finding bugs in SAT
solvers. Finally, we outline some open challenges related to the methods discussed
in this chapter, the tools based on them, and their application.

12.2. Algorithm configuration

Algorithm configuration is the problem of automatically identifying parameter
settings that optimize the performance of a given algorithm on a specific set or
distribution of problem instances, as illustrated in Figure 12.1. Observe that an
algorithm configuration procedure is a meta-algorithm in the sense that it takes
another, arbitrary algorithm as part of its input.

More formally, the algorithm configuration problem can be stated as follows:
given an algorithm A with possible parameter settings Θ = Θ1 × · · · × Θn, a
distribution D over possible inputs with domain Π that A can be run on, and a cost
metric c : Θ×Π → R, find the configuration θ = ⟨θ1, . . . , θn⟩ ∈ Θ that minimizes
c in expectation over D. A common special case arises where D is a uniform
distribution over Π = {π1, . . . , πk}, in which case we can write the problem as
finding the minimizer of the blackbox function f(θ) := 1

k

∑k
i=1 c(θ, πi). When

applying algorithm configuration to SAT solvers, the πi are SAT instances deemed
representative for the kind of instances for which we aim to optimize performance.
We call f a blackbox function, because it depends on the cost c(θ, πi), which
cannot be reasoned about analytically, but can only be evaluated by actually
running A with configuration θ on πi.

Although the problem of “tuning” algorithm parameters might seem narrow,
we note that many aspects of algorithm design can be expressed parametrically,
from high-level design decisions to low-level aspects of specific heuristic mecha-
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nisms. For example, parameters can be real-valued, integer-valued, or categorical.
Parameters can also be conditional on an instantiation of other parameters—
consider, e.g., the parameters of a heuristic mechanism h, which are completely
ignored unless h is enabled via another, categorical parameter. Finally, combina-
tions of otherwise valid parameter instantiations can be forbidden.

Indeed, the flexibility offered by expressing heuristic ideas parametrically and
the effectiveness of algorithm configuration procedures can empower algorithm
developers to adopt a new design philosophy that is both easier and produces
better results. Instead of seeking to minimize the number of exposed parameters,
a developer can instead aim to encode all plausible design ideas parametrically,
leaving their eventual evaluation to the algorithm configuration procedure (see,
e.g., [HBHH07, KXHLB09, KXHLB16]). This philosophy has been formalized in
a design paradigm called Programming by Optimization (PbO), which facilitates
the exploration and automatic optimization of design choices as an integral part
of the software development process [Hoo12].

Over the past decade, evidence has accumulated that algorithm configuration
is an effective way to design high-performance algorithms across a wide range of
applications. This is because human experts are not only ill-suited for solving
these noisy high-dimensional optimization problems manually, but often also un-
motivated to carry out this tedious task (not to mention that experts rarely have
time and are also expensive in practice). Our focus in this chapter is on SAT;
nevertheless, it is important to point out that automated algorithm configuration
has been demonstrated to produce dramatic improvements in a wide range of
other combinatorial optimization problems beyond SAT, such as MIP [HHLB10],
AI planning [VFG+13], TSP [CFH08], and answer set programming [SLS12];
these improvements routinely exceed those achieved manually by human experts.
Likewise, very similar automated approaches have yielded better performance
than humans for optimizing hyperparameters of deep convolutional neural net-
works [BBBK11, SLA12] and their architectures [DSH15], as well as generic im-
age recognition pipelines [BYC14]; they have even led to effective push-button
approaches for machine learning, by jointly selecting feature selection methods,
algorithms and hyperparameter settings in prominent machine learning pack-
ages [THHLB13, FKE+15].

Automated algorithm configuration approaches also have benefits beyond op-
timizing algorithm performance. They can additionally be used to speed up the
process of developing effective software (freeing developers from the burden of
tedious experimentation); to apply highly parameterized algorithms to a new
problem domain; and to improve protocols for empirical research in computer
science (enabling fair comparisons of software based on the same fully formalized
parameter optimization approach).

In the remainder of this section, we briefly survey some widely used algorithm
configuration procedures—particularly those that have been widely applied to
SAT. Throughout, we emphasize key conceptual ideas and methods.

12.2.1. ParamILS

The ParamILS framework [HHS07, HHLBS09] was the first to give rise to prac-
tical, general-purpose algorithm configuration procedures; it still yields excel-
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lent performance on many problems today. This approach uses iterated local
search [LMS02] as its underlying search strategy. It begins with a default param-
eter configuration, evaluates performance against a list of random configurations,
and then performs local search in configuration space, starting from the best con-
figuration so far. The local search process changes the setting of one parameter at
a time and keeps those changes resulting in empirical performance improvements.
After finding a local minimum, ParamILS randomly changes some parameters in
order to escape; with a small probability, it also performs a complete restart to a
random point in the configuration space. Throughout, ParamILS keeps track of
the best configuration seen so far, the so-called incumbent.

ParamILS has two variants that differ in the approach they take to deciding
how many runs to use for estimating the performance of each configuration. The
BasicILS variant is most straightforward: it evaluates each configuration accord-
ing to a fixed number of runs on a fixed set of instances. However, this variant
has the drawback that it can spend far too long evaluating configurations that
exhibit poor overall performance. The more practical FocusedILS variant starts
by performing only a single run per configuration; if a new configuration does
not outperform the incumbent on the same instance, it is rejected. If it beats
the incumbent, FocusedILS doubles the number of instances to consider and tries
again, until eventually it evaluates the new configuration on the same set of in-
stances as the incumbent has been evaluated on. The number of runs allocated to
incumbents also grows slowly over time. Overall, FocusedILS thus devotes most
of its time to promising configurations, while also maintaining statistically robust
performance estimates for incumbent configurations.

Both ParamILS variants can be sped up via an adaptive capping strategy for
choosing the time after which to terminate unsuccessful target algorithm runs.
Intuitively, when comparing the performance of two configurations θ1 and θ2 on
an instance, and we already know that θ1 solves the instance in time t1, we do
not need to run θ2 for longer than t1: we do not need to know precisely how bad
θ2 is, as long as we know that θ1 is better. While this strategy exactly preserves
the search trajectory of ParamILS and leads to substantial speedups, it does not
perform effectively after a perturbation step. A more aggressive adaptive capping
variant terminates all evaluations prematurely if they require more time than the
corresponding evaluations of the incumbent configuration times a small bound
multiplier.

ParamILS has led to very substantial improvements of SAT solvers for various
applications. For example, it reduced the penalized average running time (with
penalty factor 10, i.e., PAR-10)1 of the SAT solver Spear [BH07] on a set of
formal software verification instances by a factor of 500 [HBHH07]; this allowed
Spear to win the QF BV category of the SMT competition 2007. More recently,
ParamILS was used to configure sat13, a high-performance SAT solver by Donald
Knuth, achieving a 1.4-fold improvement in geometric average speedup over a
default defined by the algorithm designer, even when tested on a diverse set of
benchmark instances up to over three orders of magnitude harder than those in
the given training set [Knu15]. This demonstrates that general-purpose automatic
algorithm configuration can achieve very significant performance improvements

1PAR-10 counts timeouts at a maximal captime κ̄ as having taken time 10 · κ̄ [HHLBS09].
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over manual optimization carried out by the very best algorithm designers.

12.2.2. GGA and GGA++

The Gender-based Genetic Algorithm (GGA) [AST09] is a genetic algorithm for
algorithm configuration that evolves a population of parameter configurations
(having pairs of configurations mate and produce offspring) and uses the concept
of gender to balance the diversity and fitness of the population. GGA’s inten-
sification mechanism for increasing the number of runs N it performs for each
configuration over time keeps N constant in each generation, starting with small
Nstart in the first generation and linearly increasing N up to a larger Ntarget in a
user-defined target generation and thereafter. GGA implements an adaptive cap-
ping mechanism by evaluating several candidate configurations in parallel until
the first ones succeed and then terminating the remaining evaluations.

In experiments by Ans’otegui et al. [AST09], GGA performed more robustly
than ParamILS on three configuration scenarios with 4 to 7 parameters. In a later
comparison by Hutter et al. [HHLB11], ParamILS and GGA performed compa-
rably across 15 configuration scenarios with 4 to 26 parameters, and ParamILS
performed substantially better for the 76-dimensional configuration problem of
optimizing the mixed integer programming solver CPLEX. GGA was also suc-
cessfully used to configure solvers for various variants of MaxSAT, allowing the
automated construction of portfolios that won several categories in the 2013 and
2014 MaxSAT evaluations [AMS14].

Inspired by the model-based approach underlying SMAC (see Section 12.2.3
below), Ans’otegui et al. [AMST15] introduced GGA++, a version of GGA that re-
lies on random forest models for performance prediction. More precisely, GGA++

enhances the evolutionary approach underlying GGA by using a novel random
forest variant in combination with a targeted sampling procedure to optimize
configurations obtained by recombination. Ans’otegui et al. ansotegui-ijcai15a
reported promising results compared to GGA and SMAC on two algorithm con-
figuration scenarios based on prominent SAT solvers; unfortunately, however, this
comparison was confounded by two significant bugs in the algorithm wrapper (see
Footnote 9 of Eggensperger et al.[ELH19] for details).

12.2.3. SMAC

Sequential, Model-based Algorithm Configuration (SMAC) [HHLB11] is an algo-
rithm configuration method that uses a empirical performance model [LBNS09,
HXHLB14] (that maps parameter values to algorithm performance and is learned
from data) to identify algorithm configurations worth evaluating. In essence,
SMAC can be understood as using this model to replace the local search compo-
nent of ParamILS. SMAC begins by carrying out some initial algorithm runs on
both the algorithm default and, optionally, a small set of random configurations.
It calls the best performing of these the incumbent and then iterates the following
steps until a given time budget is exhausted:

1. fit a probabilistic regression model to the performance data gathered so
far;
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2. use the model to determine a list of promising configurations2, interleaving
configurations sampled uniformly at random;

3. compare configurations from the promising list to the current incumbent,
saving the resulting performance data, and updating the incumbent if
appropriate.3

As with ParamILS, the mechanism used for comparing configurations is crit-
ical; SMAC uses an approach very similar to that of FocusedILS, performing
adaptive capping and dedicating more running time to better-performing con-
figurations. Another key element of SMAC involves the means by which the
model is used to identify promising configurations; it uses a so-called acquisition
function to trade off exploration (choosing configurations in parts of the space
where the model has low confidence) with exploitation (choosing configurations in
parts of the space where the model predicts fast running times). This acquisition
function is computed based on model predictions and then optimised across the
configuration space to identify the most promising next configuration.

SMAC can be used with different types of empirical performance models and
different acquisition functions. Work using it to configure solvers for SAT and
similar combinatorial problems most commonly uses random forests [Bre01] as its
underlying performance model and adopts the expected improvement acquisition
function [JSW98], optimised via iterated local search. Random forests are partic-
ularly suitable for modelling the running time of solvers for hard combinatorial
problems, as they can easily handle mixed continuous/categorical inputs, have a
low computational complexity for constructing the model and making predictions,
act as automated feature selectors to detect the few most important inputs, and
can deal with large heteroscedastic noise. However, since they do not usually make
probabilistic predictions, they had to be extended by using randomly-chosen split
points and uncertainties computed based on the discrepancy of the predictions
across the different trees [HXHLB14].

Hutter et al. [HHLB11] used 17 different configuration scenarios to compare
the performance of SMAC to that of GGA and ParamILS. In this evaluation,
SMAC performed statistically significantly better than ParamILS in 11 of 17
cases (achieving speedup factors ranging from 0.93× to 2.25×) and statistically
significantly better than GGA in 13 of 17 scenarios (achieving speedup factors
ranging from 1.01× to 2.76×).

SMAC has also been used in numerous practical applications. Notably, it
was used by the US Federal Communication Commission to build a solver for
determining the feasibility of radio spectrum repackings in its 2016–17 Incentive
Auction; this solver made use of SAT encodings and various prominent SAT algo-
rithms. The stakes of this auction were extremely high: 84 MHz of radio spectrum
were purchased across the whole US and Canada at a cost of over $10 billion. As
reported by Newman et al. [NFLB17], configuration with SMAC yielded large
performance gains in this domain. Gnovelty+PCL [DP13] was the best single

2It is not necessary to identify more than one configuration in this step, but doing so can
amortize the cost of fitting the model in Step 1.

3In order to ensure that the time for the construction and use of models does not outweigh
the time for actually running algorithms, SMAC iteratively evaluates configurations from the
promising list until the time for step 3 is larger than that required for steps 1 and 2 combined.
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solver, able to solve 79.96% of representative problem instances within a minute;
the parallel portfolio (see Section 12.4.3) of the best 20 algorithms could only solve
81.58% within the same amount of wall-clock time. After configuration, an eight-
algorithm parallel portfolio based on SATenstein [KXHLB16] and clasp [GKNS07]
identified using Hydra [XHLB10, see Section 12.4.1] was able to solve 96.03% of
these problems in a minute (and 87.73% in only a second). Subsequent analysis
showed that this improvement in solver performance is likely to have led directly
to better economic outcomes, on the order of over $700 million in cost savings
and over $300 million in additional economic value created by a more efficient
auction outcome [NLBMS17].

12.2.4. The Configurable SAT Solver Challenges

The SAT community has a long history of regularly assessing the state of the art
via competitions [JBRS12]. The first SAT competition dates back to the year
2002 [SBH05], and the event has been growing over time: in 2018, as many as
106 solver versions participated across four tracks [HJS18].

A drawback of traditional solver competitions is that they fail to reward solver
developers for identifying versatile, powerful designs that incorporate a large num-
ber of interchangeable heuristics; instead, they reward developers primarily for
configuring their solvers in a way that ultimately targets the distribution used
for evaluation. The Configurable SAT Solver Challenge (CSSC), held alongside
the SAT competition in 2013 and in 2014 as part of the 2014 FLoC Olympic
Games, addressed this issue [HLB+17]. It evaluated SAT solver performance
after application-specific customization, taking into account the fact that effec-
tive algorithm configuration procedures can automatically customize solvers for
a given distribution of benchmark instances. Specifically, for each distribution D
of instances and each SAT solver S with configuration space ΘS , an automated
fixed-time offline configuration phase determined parameter settings of θS ∈ ΘS

optimized for high performance on D. Then, the performance of S on new in-
stances from D (not seen during the configuration process) was evaluated with
these settings θS , and the solver with the best performance was declared the win-
ner. To avoid bias arising from the choice of algorithm configuration method, the
CSSC independently used all three of the most widely used algorithm configura-
tion methods: ParamILS, GGA, and SMAC.

Overall, the two CSSC events held to date have yielded four main insights.
First, algorithm configuration often improved performance substantially, in some
cases yielding orders-of-magnitude speedups (e.g., in the 2014 CSSC, the PAR-10
score of clasp [GKNS07] improved from 705 to 5 on N -Rooks instances [MS14],
and the PAR-10 score of ProbSAT [BS12] on 5-SAT instances improved from 3000
to 2, i.e., from solving no instance at all in 300 seconds to solving all instances in
an average of 2 seconds). Second, some solvers benefited more from configuration
than others, meaning that algorithm rankings were substantially different after
configuration than before. For example, in the Random SAT+UNSAT track of
CSSC 2013, the solvers ranking first (clasp [GKNS07]), second (Lingeling [Bie13])
and third (Riss3g [Man13]) would have ranked 6th, 4th and 5th, respectively,
based on performance with default parameter settings. Third, the configuration
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budget used also affected the ranking; in particular, algorithms with larger con-
figuration spaces needed longer configuration budgets (on the order of days) to
achieve peak performance. Fourth, out of the three configurators used in the
CSSC 2014, SMAC yielded the best performance in 51 configuration scenarios,
ParamILS in 17, and GGA in 4. If only SMAC had been used for the configura-
tion process, the largest slowdown of any solver on test instances would have been
by a factor of 1.5; the same slowdown factor would have been 1.8 if ParamILS
had been used exclusively, and 30.5 if GGA had been used exclusively.

12.2.5. Other Approaches

Finally, we survey some recent algorithm configuration approaches whose focus
is not on the strategy for selecting the next configuration to evaluate but on the
resources used for each evaluation.

12.2.5.1. iRace

The iterative racing procedure irace [LIDLSB11] uses an intensification mecha-
nism based on racing a set of candidate configurations against each other, i.e.,
performing runs for each of them on one instance at a time and dropping can-
didates whose performance is statistically dominated. Based on the evaluations
thus gathered, it constructs one-dimensional density estimates of which values
perform well for each parameter; its search strategy is then an estimation of
distribution approach that samples individual parameter values from these one-
dimensional distributions. To increasingly focus the sampling process towards the
most promising configurations, irace gradually decreases the standard deviations
of these distributions (this process is dubbed volume reduction). Recently, Pérez
Cáceres et al. [PCLHS17] have integrated a capping mechanism inspired by that
used in ParamILS into irace and reported promising initial results on various
configuration scenarios.

12.2.5.2. Structured Procrastination

The Structured Procrastination (SP) algorithm [KLBL17] is notable for offering
the first nontrivial performance guarantees for general algorithm configuration
with an average running time minimization objective. This work considered a
worst-case setting in which an adversary causes every deterministic choice to
play out as poorly as possible, but where observations of random variables are
unbiased samples. In this setting, it is straightforward to argue that any fixed,
deterministic heuristic for searching the space of configurations can be extremely
unhelpful. The approach underlying SP therefore focuses on obtaining candidate
configurations via random sampling.

Any method based on random sampling will eventually encounter the optimal
configuration; the crucial question is the amount of time that this will take and
whether the algorithm is guaranteed to eventually recognize the optimal config-
uration as such when it has been sampled often enough. Out of the methods
surveyed so far, in discrete configuration spaces, ParamILS and SMAC provably
converge to the optimal configuration, while GGA and GGA++ do not have this
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property.4 The key result of Kleinberg et al. [KLBL17] is that SP is guaran-
teed to find a near-optimal configuration with high probability, with worst-case
running time that nearly matches a lower bound on what is possible and that
asymptotically dominates that of existing alternatives, such as SMAC.

Unfortunately, SP is not useful in practice; it takes an extremely long time
to run, even on configuration scenarios that are easy for existing methods, and
hence has not been implemented or evaluated empirically. The problem is that
SP treats every instance like the worst case, in which it is necessary to achieve
a fine-grained understanding of every configuration’s running time in order to
distinguish between them. Extending SP to make it practical remains an active
topic of research. Notably, a new variant called Structured Procrastination with
Confidence [KLBLG19] maintains SP’s theoretical guarantees while improving
performance outside the worst case. While it is more promising than SP, this
very recent algorithm has only been evaluated empirically on a single dataset to
compare it to the two algorithms discussed next. (In this comparison, it achieved
better performance, but a much more extensive study would be required to draw
reliable conclusions.)

12.2.5.3. LeapsAndBounds, CapsAndRuns

A configuration procedure called LeapsAndBounds [WGS18b] is based on SP
but improves upon it in various ways. In theoretical terms, LeapsAndBounds
offers an improvement by more closely matching the lower bound in SP’s anal-
ysis and refining that analysis to remove dependence on one of the parameters
used. More importantly for our discussion here, LeapsAndBounds also improves
performance outside the worst case. A second refinement of SP called Cap-
sAndRuns [WGS18a] goes even further in this direction. Limited inital exper-
iments (running Minisat [ES04] on SAT instances generated using CNFuzzDD
(http://fmv.jku.at/cnfuzzdd) show considerable promise over the original ver-
sion of SP. However, LeapsAndBounds has not been evaluated beyond this single
setting, and has not been compared to ParamILS, SMAC, GGA/GGA++ or
irace.

12.3. Per-instance algorithm selection

Per-instance algorithm selection entails automatically choosing from a “portfolio”
of different algorithms for a given problem (such as SAT) every time a new prob-
lem instance is presented [Ric76]. This choice is made based on features of the
given instance π, as illustrated in Figure 12.2. Like an algorithm configurator, a
per-instance algorithm selector is a meta-algorithm that takes a set of algorithms
as part of its input.

More formally, the per-instance algorithm selection problem is defined as fol-
lows. We start with a set P of algorithms, which we call a portfolio, a distribution
D over possible inputs with domain Π, and a cost metric c : P ×Π → R. We will

4GGA and GGA++ use a finite maximum number Nend to evaluate each configuration, but
indefinite growth of this number is required for reliably selecting the optimal configuration in
the presence of noise.
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Compute
Features F(π)Instance π

Select Algorithm
a := f(Fπ)

Run a on π

Algorithm
Portfolio P

Figure 12.2. The computational core of algorithm selection at test time: for each new instance
π, features F(π) are computed, and based on these, function f selects an algorithm a from the
set of candidate algorithms P to run on π.

summarize problem instances as vectors of ϕ real-valued features; we represent
this reduction as F : D → Rϕ. Our goal is to construct a function f : Rϕ → P
that maps any given input (here: a SAT instance) to an algorithm from the port-
folio; this function is called a per-instance algorithm selector. Typically, the aim
is to minimize c in expectation over D, but more complex goals are possible, such
as aiming for diversity across subcategories of problem instances; indeed, such
evaluation functions have been used in past SAT competitions.

Per-instance algorithm selection has two distinct phases: an offline training
phase, in which a selector is constructed, and an online use phase, where that
selector is used to determine the algorithm to be run on new problem instances
π. As we will see in in the following, selector construction is often approached as
a supervised machine learning task, using (cost-based) classification or regression
techniques, although there also exist approaches based on feature-based clustering
of instances.

In the following, we consider per-instance algorithm selection approaches
along with two extensions, which turn out to be important for achieving state-
of-the-art performance in SAT and other problems: pre-solving schedules and
backup solvers. The former are sequences of algorithms run prior to the algorithm
selection process, mostly in order to avoid potentially costly feature extraction
on instances that are solved easily; the latter are used as a fall-back when feature
computation fails. We describe in the greatest detail approaches that have had
broad impact in the SAT community and that have been demonstrated to achieve
both strong and robust performance.

12.3.1. SATzilla

The first version of SATzilla was built for the 2003 SAT Competition and was
indeed the first algorithm selection system to be entered into such a competition
[NLBA+03, NLBH+04]. It used independent ridge regression models to predict
the performance of component SAT solvers based on a rich set of up to 84 in-
stance features, and selected the solver with the best predicted running time.
These models were trained in an offline phase on a broad and diverse set of train-
ing instances. In the 2004 submission, a local-search-based pre-solver was added
to quickly solve easily satisfiable instances without incurring the cost of comput-
ing features. Overall, SATzilla won two silver and one bronze medal across the
nine tracks of the 2003 SAT Competition and two bronze medals in the 2004
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SAT Competition, providing an early indication for the potential of per-instance
algorithm selection for SAT.

For the 2007 SAT Competition, this basic design was elaborated in various
ways [XHHLB07]. Two key updates were made to the empirical performance
models. First, SATzilla 2007 was based on so-called hierarchical hardness mod-
els, using a sparse multinomial logistic regression (SMLR) classifier to predict
the probability of instance satisfiability and then using this result to weight the
predictions of two quadratic regression models, trained only on satisfiable and
unsatisfiable instances respectively [XHLB07]. Second, a method from survival
analysis [SH79] was used to address bias stemming from the fact that true algo-
rithm running times are not fully observed when long runs are capped. Several
other innovations tuned performance by optimizing on a separate validation set
of instances. A pre-solver selection mechanism allowed up to two solvers to be
run sequentially before feature computation; an automatic solver subset selection
mechanism was used to drop solvers whose inclusion worsened overall perfor-
mance; and a backup solver was identified for use when feature computation
failed. Finally, the set of features was somewhat reduced (to 48) to exclude those
whose time complexity exceeded their marginal value. This version of SATzilla
was very successful in the 2007 SAT Competition, winning three gold, one silver,
and one bronze medal. Following the 2007 competition, SATzilla was improved
further by making the selector construction more scalable and completely au-
tomated, by integrating candidate solvers based on local search, by predicting
competition score instead of running time, and by using hierarchical hardness
models that take into account different types of SAT instances [XHHLB08]. The
resulting version won three gold and two silver medals in the 2009 competition
[XHHLB09].

In 2011, a substantially improved version of SATzilla was introduced, which
showed outstanding performance in the evaluation track of the 2011 SAT Com-
petition and in the 2012 SAT Challenge [XHHLB12]. This version of SATzilla
differed from the previous design by using cost-sensitive decision forests to predict
for every pair of component solvers the one that would perform better on a given
SAT instance, then employing majority voting over these predictions to select
the solver to run. Specifically, the pairwise classification mechanism at the heart
of this approach penalized misclassifications in direct proportion to their impact
on overall selector performance, without predicting running time or competition
score. As in earlier versions of SATzilla, pre- and backup-solvers were used in
addition to the main per-instance algorithm selection mechanism. However, the
decision about whether to initiate feature computation (rather than immediately
running the statically determined backup solver) was made by a random forest
classifier, using a subset of cheaply computable features. In the 2012 SAT Com-
petition, this version of SATzilla used a total of 31 SAT solvers and 138 instance
features; it ended up winning first prizes in two of the three main tracks and sec-
ond prize in the remaining track, while also placing first in the sequential portfolio
track. In the application track of this competition, it solved 6.4% more instances
than the single best “interacting multi-engine” solver (which combined multiple
SAT solving engines in a design that allows for richer interaction than found in
a per-instance algorithm selector like SATzilla), 11.8% more instances than the
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best conventional, “single-engine” solver, and only 6.5% fewer instances than the
virtual best solver (a hypothetical, perfect selector).

12.3.2. ISAC, 3S and CSHC

ISAC (Instance-Specific Algorithm Configuration) uses a clustering approach to
perform algorithm selection [KMST10]. Specifically, ISAC clusters the instances
in the given training set based on their features, using the g-means algorithm in
combination with a post-processing scheme that reassigns instances from clusters
whose size falls below a user-defined threshold. For each cluster, the cluster cen-
tre and the best-performing solver (from the given set of component solvers) are
stored; given a new problem instance, ISAC determines the nearest cluster cen-
tre (using a 1-nearest neighbour approach) and runs the solver associated with it.
ISAC was originally designed to combine algorithm configuration and per-instance
selection, by automatically configuring a single, parametric solver for each cluster
(see Section 12.4.1). Initial results for SAT and two other problems (set covering
and mixed integer programming) were promising, but limited in scope; in the
case of SAT, ISAC was applied to a single local-search-based SAT solver, SAPS
[HTH02], on which it showed substantial speedups over the default configuration
on several benchmarks [KMST10]. Later, used as a pure per-instance algorithm
selector in combination with a large number of high-performance SAT solvers,
ISAC was demonstrated to achieve substantial performance improvements com-
pared to the single best solver on a broad set of random SAT instances from
several SAT competitions, and more modest improvements on hand-crafted and
industrial SAT instances; however, in all cases, performance in terms of PAR-10
scores was more than a factor of 9.9 worse than that of the virtual best solver
[CMMO13].

The clustering approach used by ISAC also underlies 3S (semi-static solver
schedules), which combines per-instance algorithm selection with sequential al-
gorithm scheduling [KMS+11]. Like ISAC, 3S uses the g-means algorithm for
clustering problem instances. For a given instance i to be solved, it then uses a
k-nearest neighbour approach to determine a set of similar training instances and
selects the algorithm with the best performance on this instance set. This mech-
anism is enhanced by weighting algorithm performance on a reference instance i′

by the distance of i′ to i, and by adapting the neighbourhood size k based on the
features of i. 3S incorporates the per-instance algorithm selector thus obtained
into a static algorithm schedule, determined using mixed integer programming.
While this approach is conceptually similar to the pre-solver schedules used in
SATzilla from 2007 onwards, it offers considerably more flexibility in the design
of sequential schedules. On random SAT instances, 3S was reported to reduce the
gap between the 2009 version of SATzilla (which then constituted the state of the
art for these types of instances) and the virtual best solver (VBS) (a hypothetical,
perfect per-instance algorithm selector) by 57%. Unlike SATzilla, 3S participated
in the 2011 SAT Competition, where it showed impressive performance, winning
2 gold, 2 silver and 3 bronze medals. In a comparison based on scenarios from
the 2012 SAT Challenge, 3S was reported to obtain PAR-10 scores between 49%
and 81% worse than those reached by the 2012 version of SATzilla [MSSS13].
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Like ISAC and 3S, the CSHC (cost-sensitive hierarchical clustering) algorithm
selection system is based on the idea of feature-based partitioning of problem in-
stance space into clusters [MSSS13]. However, instead of unsupervised clustering,
as used in ISAC and 3S, CSHC creates these clusters using a supervised learning
algorithm. Effectively, it thus constitutes a cost-sensitive approach for construct-
ing decision trees (we note that all decision tree algorithms determine hierarchical
rules for “clustering” the training examples stored in each leaf node). The reader
may recall that more recent versions of SATzilla also relied on (random forests of)
cost-sensitive decision trees; however, the approaches are different. SATzilla uses
decision trees to predict which of two algorithms will be faster, followed by voting
across quadratically many such classifiers to choose a single algorithm; CHSC’s
decision trees directly predict the best algorithm to run. More specifically, start-
ing with all instances in the given training set, CSHC recursively partitions a given
“cluster” of instances into two “sub-clusters”, based on a single feature value, such
that the performance of the best-performing algorithm in each “sub-cluster” is
optimized. When asked to solve a new instance i, CSHC first runs the 3S static
algorithm schedule for a fixed fraction (10%) of the overall time budget. If this
does not solve the instance, it computes features and uses the learned decision
tree to identify a leaf node and thereby the algorithm that performed best on that
“cluster” of instances. CSHC was reported to achieve slightly better performance
than the 2012 version of SATzilla on a number of scenarios based on the 2012
SAT Challenge, although the observed performance differences were reported not
to be statistically significant [MSSS13].

12.3.3. SNNAP

A combination of supervised and unsupervised learning forms the basis for SNNAP
(solver-based nearest neigbour for algorithm portfolios) [CMMO13]. Specifically,
SNNAP uses random forests to predict the running times of individual solvers;
these predictions then provide the basis for identifying instances from the given
training set that are similar to the instance to be solved. Instance similarity is
assessed based on a (small) fixed number of best solvers known or predicted to
perform best on a given instance, using Jaccard distance. The solver to be run is
then selected as the one predicted to perform best on the k nearest instances in
the given training set to the instance to be solved, for a user-defined value of k.
In the experiments reported by Collautti et al., k = 60 and similarity calculations
are based on the three best solvers for any given instance.

SNNAP has been demonstrated to show substantially stronger performance
than ISAC on large collections of instances collected from SAT competitions be-
tween 2006 and 2012 [CMMO13]. A comparison against a 2015 internal develop-
ment version of SATzilla, which is a minor variant of the 2011 version described
previously, revealed that on 5 of 7 scenarios based on the 2011 SAT Competi-
tion and the 2012 SAT Challenge, SNNAP performed significantly worse than
SATzilla, with statistically tied and slightly better performance, respectively, on
the two remaining scenarios [LHHS15].
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12.3.4. AutoFolio

As is evident from the previous sections, when designing an algorithm selection
system, many design choices have to be made. These choices can have substan-
tial impact on performance, and what works best generally depends on the given
use case. Therefore, following the previously outlined programming by optimiza-
tion approach, AutoFolio combines a highly parametric framework for algorithm
selection with a general-purpose algorithm configurator, which is used to instan-
tiate this framework in such a way that performance is optimized for a given use
case (such as a specific set or distribution of SAT instances [LHHS15]). AutoFo-
lio is not restricted to SAT, but can be applied to arbitrary algorithm selection
problems.

The underlying algorithm selection framework, called claspfolio 2, was orig-
inally developed in the context of algorithm selection for answer set program-
ming (ASP) and incorporates techniques and ideas from a broad range of high-
performance per-instance algorithm selection approaches [HLS14]. This frame-
work encompasses strategies from a broad range of algorithm selection systems,
including 3S [KMS+11], ISAC [KMST10], SATzilla [XHHLB08, XHHLB12], and
SNNAP [CMMO13]; for each selection approach, AutoFolio considers subsidiary
design choices and parameter settings. Furthermore, several techniques for pre-
processing the training data from a given algorithm selection scenario and for
constructing pre-solver schedules can be configured independently from the selec-
tion approach. Automated configuration of this flexible framework is performed
using SMAC [HHLB11], in combination with cross-validation on the given train-
ing set to robustly evaluate the performance of candidate configurations.

AutoFolio has been empirically evaluated against other algorithm selection
techniques across a broad range of algorithm selection scenarios, including several
benchmark sets derived from SAT competitions [LHHS15]. In those experiments,
AutoFolio was found to be the only approach that achieved state-of-the-art per-
formance for all benchmarks; notably, for each benchmark scenario, it was statis-
tically tied with or exceeded the performance of the best of SNNAP, ISAC and
SATzilla. However, there remained a considerable gap to the performance bounds
obtained from the virtual best solvers for these algorithm selection scenarios (e.g.,
a factor of 8.8 in PAR-10 score between the AutoFolio selector and the VBS, com-
pared to a factor of 1.8 between the single best solver and the AutoFolio selector
on the SAT12-INDU benchmark), indicating room for further improvements in
automated algorithm selection.

12.3.5. The Sparkle SAT Challenge

Solver competitions, such as the quasi-annual SAT solver competitions and races,
serve several purposes. Aside from providing an objective, neutral performance
assessment of the participating algorithms, they also provide a powerful incentive
for improving the state of the art in solving the problem in question. Unfor-
tunately, as discussed in Section 12.2.4, traditional competition designs assess –
and incentivize improvement of – broad-spectrum performance of fairly mono-
lithic solvers. This becomes an issue for problems such as SAT, where the overall
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state of the art is represented by a set of algorithms, and more precisely for al-
gorithm selectors, since they leverage the performance complementarity in such
a solver set, rather than simply benefiting from the performance of the fastest
single algorithm.

Therefore, just as the Configurable SAT Solver Challenges built the exis-
tence of powerful, general-purpose algorithm configurators into the design of a
competition, the Sparkle SAT Challenge is predicated on the ready availability of
per-instance algorithm selection systems for SAT. The key idea underlying this
competition, which was held as part of the 2018 FLoC Olympic Games, was to
let competitors submit SAT solvers that would be integrated into a per-instance
algorithm selector constructed using AutoFolio [LHHS15]. Participating solvers
would then be evaluated based on the degree to which they contribute to the
overall performance of the selection system thus obtained [LH18]. To make it
easier for participants to optimize the contributions of their solvers, and hence
not only their standing in the competition, but also the overall performance of
the final algorithm selector, daily evaluations (on a set of training instances) were
conducted and published during a leader-board phase.

The Sparkle SAT Challenge was conducted using a newly designed software
platform called Sparkle, which aims to make the construction and evaluation
of algorithm selectors more easily accessible to solver developers and practi-
tioners. It used the well-known feature extractor by Xu et al. [XHHLB12] in
combination with the state-of-the-art AutoFolio selector construction system dis-
cussed in Section 12.3.4. Solver contributions to overall selector performance
were assessed using relative marginal contribution (RMC), a normalised version
of marginal contribution [XHHLB12]. More sophisticated approaches exist, but
would have been computationally too expensive to use in the competition [see,
e.g.,, FKM+16, KFM+18]. While official results were based on RMC to an actual
selector obtained from AutoFolio, RMC to the virtual best solver over the same
set of component algorithms was also reported. It is worth noting that the Sparkle
system used to run the challenge not only fully automates the construction of the
selector, but also the comprehensive evaluation of component solver and selec-
tor performance, which is compiled into a detailed technical report generated by
Sparkle.

The results from the Sparkle SAT Challenge, as presented during the 2018
FLoC Olympic Games [LH18], gave rise to three main findings.

First, as observed consistently in the literature and in other competitions, us-
ing per-instance algorithm selection, performance complementarity between SAT
solvers was leveraged, leading to substantial performance improvements over the
single best solver (SBS). These improvements tended to be much larger than those
between the SBS and the runners-up in terms of stand-alone solver performance.
The difference in stand-alone performance between the SBS and the runner-up
was less than 1% in terms of PAR2 score, while the automatically constructed
selector was more than 7.5% better than the SBS, despite the fact that the test
instances differed substantially from the training instances used as a basis for con-
structing the selector. This highlights the continued importance of per-instance
algorithm selection for achieving state-of-the-art performance in solving SAT.

Second (as previously observed by Xu et al. [XHHLB12]) the stand-alone per-
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formance of SAT solvers tended to be uncorrelated with their contributions to a
state-of-the-art per-instance selector built from them, and likewise uncorrelated
with their contributions to the VBS. This suggests that conventional competitions
may not be the most effective way of improving the state of the art in SAT solv-
ing, since they motivate solver developers to optimize stand-alone performance.
In the Sparkle SAT Challenge, the solver ranked third in terms of stand-alone
performance had a relative marginal contribution to selector performance that
was over five times lower than that of the solver ranked last.

Third, when given the opportunity to repeatedly evaluate the contributions
of their solvers to overall selector performance, solver developers appear to have
succeeded in maximizing those contributions and, as a result, also overall selec-
tor performance. We attribute this partly to the easy and frictionless access to
cutting-edge selector construction methods offered by the Sparkle platform. In
particular, selector performance on training data accessible to participants in the
challenge improved by a factor of more than 2 in terms of PAR2 score.

12.4. Related approaches

Automated algorithm configuration and per-instance algorithm selection, although
very widely studied in the literature, are not the only meta-algorithmic design
techniques. In this section, we briefly outline additional techniques, many of
which have been applied to SAT.

12.4.1. Combining algorithm configuration and algorithm selection

Algorithm configuration and algorithm selection have different strengths. Al-
gorithm configuration is good at searching enormous parameter spaces to find
settings that yield peak average performance, at a cost of hours or days of off-
line compute time. Algorithm selection is good at exploiting variability in the
running times of different solvers (or different configurations) within instance dis-
tributions of interest, and can select the best of a small, fixed set of solvers quickly
enough to be used online. In many practical applications, the algorithm configu-
ration setting is closer to the needs of a typical practitioner than the algorithm
selection setting: notably, it can be much easier to maintain a single algorithm
codebase with parameterized components than different codebases for multiple
solvers. However, sometimes different codebases arise separately (as in the SAT
competition setting), and sometimes practitioners face heterogeneous sets of prob-
lem instances, on which no single configuration yields sufficiently strong average
performance. In order to get the best of both worlds, we can use algorithm con-
figuration to obtain a set of complementary configurations that can be fruitfully
combined using algorithm selection.

One simple approach to combining algorithm configuration and algorithm
selection is to cluster a heterogeneous set of problem instances into a set of homo-
geneous subsets, to run configuration on each of these subsets to obtain specialized
configurations, and then to treat these specialized configurations as the solvers to
be combined with a per-instance algorithm selector. This is the approach followed
by instance-specific algorithm configuration (ISAC [KMST10]).
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A more sophisticated way to combine configuration and selection is to use
configuration to iteratively identify configurations that are maximally comple-
mentary to an existing set. Hydra [XHLB10] follows this idea, building on an
approach first proposed by Leyton-Brown et al. [LBNA+03]. Hydra starts from
an empty portfolio and then iteratively adds a new configuration that maximally
improves the oracle performance of the configurations in the portfolio. Because
the oracle performance of an algorithm portfolio is a submodular function, this
approach is guaranteed to yield portfolios whose oracle performance is within a
factor of 1− 1/e from optimal.

12.4.2. Algorithm schedules

While per-instance algorithm selection often works very well, it depends on the
availability of cheaply computable instance features that jointly correlate well
with algorithm running time. An alternative strategy that does not depend on
the existence of such features is building an algorithm schedule that runs several
algorithms in a fixed or adaptive sequence. Algorithm schedules work when many
solvers have high variance in their running time distributions across instances (i.e.,
solve some instances very quickly and others very slowly) and when different
instances are easy for different solvers.

Indeed, algorithm schedules can also be useful even when informative in-
stance features do exist, because they offer a way to solve easy instances without
computing features. This matters particularly when performance is measured
by making a multiplicative rather than additive comparison to optimal, because
feature computation can dominate running time on easy instances. It is for this
reason that several per-instance algorithm selection systems use pre-solver sched-
ules, as described in Section 12.3.

Algorithm schedules can be constructed using various techniques. They
can be defined by hand, built by local search in the joint space of algorithms
and running times (as done for determining the pre-solving schedules used by
SATzilla [XHHLB08]), or by means of mixed integer programming [KMS+11] or
answer set programming [HKLS15]. It is also possible to start with an empty
schedule and use a Hydra-like approach to greedily append one configuration at
a time to the current schedule, along with a time budget for which it should be
allowed to run [SSHH15]. (In contrast to Hydra, the objective function optimized
by algorithm configuration in this case is performance gain of the schedule per
additional time spent, but otherwise the approach is similar.)

12.4.3. Parallel portfolios

So far, this chapter has focused on approaches that require only a single pro-
cessor core. Of course, modern computing is increasingly parallel, particularly
as cloud resources become available. Parallel portfolios are based on the idea of
running multiple sequential solvers in parallel on a given problem instance to be
solved; if these component solvers have complementary strength, this can lead to
an improvement in performance in terms of wall-clock time and, in some cases,
even in terms of overall CPU time, when solving decision problems such as SAT.
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Parallel portfolios can thus be used to construct solvers that effectively exploit
parallel computing resources without the well-known difficulties associated with
developing intrinsically parallel solvers.

Even simple parallel portfolios can be very powerful. To give one notable ex-
ample, in the 2011 SAT Competition, the solver ppfolio [Rou11] won 11 medals in
the parallel track and 5 medals in the sequential track (where its parallelism was
realised by task switching) by following an incredibly straightforward strategy:
running the best solvers from several categories of the 2009 SAT Competition
in parallel. This approach was effective, because the solvers forming the parallel
portfolio performed well individually and complemented each other well. Roughly
speaking, automated methods for constructing parallel portfolios also aim to iden-
tify an optimal compromise between complementarity and individual strength.

Algorithm configuration and per-instance selection can both be extended to
the parallel case. Algorithm configuration can be used to create strong parallel
solvers based only on the parametric code of a sequential solver [LHLBS17]. Once
more, Hydra’s greedy approach is effective: starting with an empty portfolio (on
zero processor cores), greedily add the configuration to run on the next processor
core that most improves performance when run alongside the existing portfolio.
Algorithm selection can also be generalized to produce a parallel portfolio of
solvers rather than a single solver [LHH15]. In particular, a rather broadly
applicable approach for parallelizing an existing algorithm selection approach is
to adapt its underlying machine learning model to rank the solvers, and then
simply to select the top-ranked K solvers to concurrently run on K processor
cores.

12.4.4. Parameter control

Just as different solvers and solver configurations exhibit strong performance
on different problem instances, so it is the case that different strategies work
best during different phases of solving a single instance. For example, local
search algorithms need to effectively switch between exploration and exploita-
tion phases, and tree search algorithms may benefit from using different heuris-
tics at different depths of the search tree or as a function of the number of
clauses already learned. This observation gives rise to the meta-problem of
adapting the parameters of a given algorithm online as a function of the cur-
rent search state. While algorithm configuration can be formulated as a black-
box optimization problem and algorithm selection as a supervised learning prob-
lem, parameter control is a more complex problem akin to reinforcement learn-
ing [LL00, LL01, EFW+02, BC12, AN16, BBHL19].

12.4.5. Parameter importance analysis

It is important to complement the automated methods for constructing strong
solvers discussed up to this point with analysis techniques that can yield insights
about what components were responsible for observed performance improvements.
For algorithm configuration, it is possible to use model-based approaches to de-
tect which parameters have an important influence on performance. Techniques
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can be based on forward selection [LBNS09, HHLB13]; based on a decomposi-
tion of the variance of predicted performance into components attributable to
each single parameter and combination of (two or more) parameters [HHLB14];
or based on local effects around the best found configuration [BMLH18]. Al-
ternatively, ablation analysis can be used to assess the relative contributions of
individual parameters to observed performance differences between algorithm con-
figurations [FH16]. It is also possible to perform a model-based variant of such
an ablation analysis, which means that the analysis can be performed without
executing additional runs of the algorithm under study [BLE+17].

12.4.6. Using algorithm configuration to find bugs in solvers

As mentioned at the beginning of this chapter, algorithm configuration has uses
beyond performance optimization; one of these is the identification of parameter
configurations that lead to errors, and especially those that do so quickly. Algo-
rithm configuration optimizes a user-defined performance metric; in SAT solving,
common choices are minimizing the number of timeouts for a given cutoff time
and minimizing (penalized) average running time. A subtlety is how one should
count runs that terminate quickly but either with no result (e.g., due to a segmen-
tation fault) or with an incorrect result (e.g., UNSAT for a satisfiable instance).
When seeking to produce good average performance, such runs are typically given
a terrible score (e.g., the timeout multiplied by a large constant) in order to drive
the configurator towards areas of the configuration space that do not cause erro-
neous behaviour. In contrast, blindly minimizing average measured running time
actually causes the configurator to find configurations that terminate as quickly
as possible; often this yields buggy configurations that break quickly [ELH19].
This can be viewed as a tool for automatically finding whitebox tests that expose
problems quickly [HHLB10, ML16].

12.5. Conclusions and open challenges

The meta-algorithmic techniques described here have already improved the state
of the art in SAT solving for various types of applications [see, e.g.,, HBHH07,
NFLB17], but there still remain several open challenges in terms of methods,
tools and applications.

Regarding methods, one of the biggest challenges is to develop an approach
that works robustly, even for SAT instances that do not resemble the instances
seen at training time. It would be highly desirable to have available an effective
configuration method for highly heterogeneous instances, which could be used to
identify better default configurations. However, in many cases, there simply does
not exist a single configuration that performs well across instances. Instead, we
believe that it might be more promising to develop a robust approach for selecting
the best out of a small number of automatically-determined default configurations.
An interesting research challenge consists of identifying such robust defaults based
on a limited number of training instances. Ways to effectively integrate domain
knowledge from solver developers would be extremely helpful towards this goal.
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In terms of tools, it would be helpful to make it easier for developers and users
of SAT solvers to take advantage of meta-algorithmic tools and the performance
improvements they afford. Currently, considerable expertise is required to de-
termine, e.g., which parameters should be configured for which kinds of instance
sets, and to automatically build robust solvers for application to new instances,
using approaches such as Hydra. This high barrier to entry could be lowered, at
least in part, by designing a highly parametric CDCL solver, with a rich config-
uration space that covers most of the techniques used in modern CDCL-based
SAT solvers, similar to the way that SATenstein [KXHLB09, KXHLB16] covers a
substantial part of the space of stochastic local search solvers. Furthermore, there
remains a need for making automatic algorithm configuration and per-instance
selection methods easier to use for practitioners.

We see significant room for further innovation in solver competitions, which
have historically been a significant driver of new work in the field. We see substan-
tial value in competitions that deeply integrate both automated algorithm con-
figuration (as done in the Configurable SAT Solver Challenges) and per-instance
algorithm selection (as done in the Sparkle SAT Challenge). We are also excited
about recent work that has shown how ideas from coalitional game theory can be
used to derive new evaluation metrics for such competitions [FKM+16, KFM+18].
We hope that these metrics can used in future competitions (perhaps alongside
existing alternatives) to further improve the way in which innovative ideas in
solver design are recognized.

Finally, as is evident both from the literature and from competitions, algo-
rithm configuration and algorithm selection have the potential to produce per-
formance gains in solving virtually any application problem. Specifically, we see
significant opportunities in applying meta-algorithmic technologies to improve
SMT solvers, which play a key role in some of the most important applications
of SAT-related techniques in the areas of hardware and software verification.
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