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ABSTRACT

Masking tokens uniformly at random constitutes a common flaw in the pretraining
of Masked Language Models (MLMs) such as BERT. We show that such uniform
masking allows an MLM to minimize its training objective by latching onto shal-
low local signals, leading to pretraining inefficiency and suboptimal downstream
performance. To address this flaw, we propose PMI-Masking, a principled mask-
ing strategy based on the concept of Pointwise Mutual Information (PMI), which
jointly masks a token n-gram if it exhibits high collocation over the corpus. PMI-
Masking motivates, unifies, and improves upon prior more heuristic approaches
that attempt to address the drawback of random uniform token masking, such as
whole-word masking, entity/phrase masking, and random-span masking. Specifi-
cally, we show experimentally that PMI-Masking reaches the performance of prior
masking approaches in half the training time, and consistently improves perfor-
mance at the end of training.

1 INTRODUCTION

In the couple of years since BERT was introduced in a seminal paper by Devlin et al. (2019a),
Masked Language Models (MLMs) have rapidly advanced the NLP frontier (Sun et al., 2019; Liu
et al., 2019; Joshi et al., 2020; Raffel et al., 2019). At the heart of the MLM approach is the task of
predicting a masked subset of the text given the remaining, unmasked text. The text itself is broken
up into tokens, each token consisting of a word or part of a word; thus “chair” constitutes a single
token, but out-of-vocabulary words like “e-igen-val-ue” are broken up into several sub-word tokens.
In BERT, 15% of tokens are chosen to be masked uniformly at random. It is the random choice of
single tokens that we address in this paper: we show that this approach is suboptimal and offer a
principled alternative.

To see why Random-Token Masking is suboptimal, consider the special case of sub-word tokens.
Given the masked sentence “To approximate the matrix, we use the eigenvector corresponding to its
largest e-[mask]-val-ue”, an MLM will quickly learn to predict “igen” based only on the context “e-
[mask]-val-ue”, rendering the rest of the sentence redundant. The question is whether the network
will also learn to relate the broader context to the tokens comprising “eigenvalue”. When they
are masked together, the network is forced to do so, but such masking occurs with vanishingly
small probability. One might hypothesize that the network would nonetheless be able to piece such
meaning together from local cues; however, we show that it often struggles to do so.

We establish this via a controlled experiment, in which we reduced the size of the vocabulary,
thereby breaking more words into sub-word tokens. We compared the extent to which such vo-
cabulary reduction degraded regular BERT relative to so-called Whole-Word Masking BERT (WW-
BERT) (Devlin et al., 2019b), a version of BERT that jointly masks all sub-word tokens comprising
an out-of-vocabulary word during training. We show that vanilla BERT’s performance degrades
much more rapidly than that of WWBERT as the vocabulary size shrinks. The intuitive explanation
is that Random-Token Masking is wasteful; it overtrains on easy sub-word tasks (such as predicting
“igen”) and undertrains on harder whole-word tasks (predicting “eigenvalue”).

The advantage of Whole-Word Masking over Random-Token Masking is relatively modest for stan-
dard vocabularies, because out-of-vocabulary words are rare. However, the tokenization of words
is a very special case of a much broader statistical linguistic phenomenon of collocation: the co-
occurrence of series of tokens at levels much greater than would be predicted simply by their in-
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dividual frequencies in the corpus. There are millions of collocated word n-grams — multi-word
expressions, phrases, and other common word combinations — whereas there are only tens of thou-
sands of words in frequent use. So it is reasonable to hypothesize that Random-Token Masking
generates many wastefully easy problems and too few usefully harder problems because of multi-
word collocations, and that this affects performance even more than the rarer case of tokenized
words; we show that this indeed is the case.

Several prior works have considered the idea of masking across spans longer than a single word.
Sun et al. (2019) proposed Knowledge Masking which jointly masks tokens comprising entities and
phrases, as identified by external parsers. While extending the scope of Whole-Word Masking, the
restriction to specific types of correlated n-grams, along with the reliance on imperfect tools for
their identification, has limited the gains achievable by this approach. With a similar motivation in
mind, SpanBERT of Joshi et al. (2020) introduced Random-Span Masking, which masks word spans
of lengths sampled from a geometric distribution at random positions in the text. Random-Span
Masking was shown to consistently outperform Knowledge Masking, is simple to implement, and
inspired prominent MLMs (Raffel et al., 2019). However, while Random-Span Masking increases
the chances of masking collocations, with high probability the selected spans include only part of
a collocation along with unrelated neighboring tokens, potentially wasting resources on spans that
provide little signal.

Figure 1: SQuAD2.0 development set F1 scores of BERTBASE
models trained with different masking schemes, evaluated ev-
ery 200K steps during pretraining.

In this paper we offer a princi-
pled approach to masking spans
that consistently provide high sig-
nal, unifying the intuitions be-
hind the above approaches while
also outperforming them. Our
approach, dubbed PMI-Masking,
uses Pointwise Mutual Informa-
tion (PMI) to identify collocations,
which we then mask jointly. At a
high level, PMI-Masking consists
of two stages. First, given any pre-
training corpus, we identify a set
of n-grams that exhibit high co-
occurrence probability relative to
the individual occurrence probabil-
ities of their components. We for-
malize this notion by proposing an extended definition of Pointwise Mutual Information from bi-
grams to longer n-grams. Second, we treat these collocated n-grams as single units; the masking
strategy selects at random both from these units and from standard tokens that do not participate
in such units. Figure 1, detailed and reinforced by further experiments in section 5, shows that
(1) PMI-Masking dramatically accelerates training, matching the end-of-pretraining performance
of existing approaches in roughly half of the training time; and (2) PMI-Masking improves upon
previous masking approaches at the end of pretraining.

2 MOTIVATION: MLMS ARE SENSITIVE TO TOKENIZATION

In this section we describe a simple experiment that motivates our PMI-Masking approach. We
examined BERT’s ability to learn effective representations for words consisting of multiple sub-
word tokens, treating this setting as an easily controlled analogue for the multi-word collocation
problem that truly interests us. Our experiment sought to assess the performance gain obtained from
always masking whole words as opposed to masking each individual token uniformly at random. We
compared performance across a range of vocabulary sizes, using the same WordPiece Tokenizer1

that produced the original vocabulary of ∼ 30K tokens. As we decreased a 30K-token vocabulary
to 10K and 2K tokens, the average length of a word over the pretraining corpus increased from 1.08
tokens to 1.22 and 2.06 tokens, respectively. Thus, by reducing the vocabulary size, we increased
the frequency of multi-token words by a large factor.

1https://github.com/huggingface/tokenizers
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1.08 tokens per word 1.22 tokens per word 2.06 tokens per word
(30K vocabulary) (10K vocabulary) (2K vocabulary)

Random-Token Masking 79.3 77.8 72.8
Whole-Word Masking 79.7 79.5 77.6

Table 1: SQuAD2.0 development set F1 scores of BERTBASE models trained with Random-Token
and Whole-Word masking schemes and with different vocabulary sizes (30K; 10K; 2K).

Table 1 presents the performance of BERT models trained with these vocabularies, measured as
score on the SQuAD2.0 development set (the experimental setup is described in section 4). The
downstream performance of Random-Token Masking substantially degraded as vocabulary size de-
creased and the number of spans of sub-word tokens increased. One reason for such degradation
might be the model seeing less text as context (512 input tokens cover less text when more words
are broken into multiple tokens). This possibly plays a role; however, for models with the same
vocabularies trained via Whole-Word Masking, this degradation was significantly attenuated. We
therefore conjecture that this degradation occurred primarily because of the random masking strat-
egy, which allows the model to use “shortcuts” for minimizing its loss, thus hindering its ability to
learn the distribution of the entire multi-token word.

If our conjecture is correct, such shortcuts are just as problematic in the case of inter-word colloca-
tions. In fact, for the regular 30K-token vocabulary, divided words are rare, so inter-word colloca-
tions would pose a larger problem than intra-word collocations in the common setting. One possible
mitigation might be to expand the vocabulary to include multi-word collocations. However, there are
millions of these, and such vocabulary sizes are currently infeasible. Even if we could get around
the practical issue of size, this approach may suffer from generalization problems: the frequency
of each multi-word collocation can be lower than the sample complexity for learning a meaningful
representation. An alternative, more practical approach is to leave the vocabulary as is, but jointly
mask co-located words, with the intention of cutting off local statistical “shortcuts” and allowing
the model to improve further by learning from broader context. This is the approach we take in this
paper. In what follows we detail such a masking approach and show its advantages experimentally.

3 MASKING CORRELATED n-GRAMS

3.1 EXISTING MASKING APPROACHES

We now more formally present the MLM setup as well as existing masking approaches, which we
implement as baselines. Given text tokenized into a sequence of tokens, Masked Language Models
are trained to predict a set fraction of “masked” tokens, where this fraction is called the masking
budget and is traditionally set to 15%. The modified input is inserted into the Transformer-based
architecture (Vaswani et al., 2017) of BERT, and the pretraining task is to predict the original identity
of each chosen token. Several alternatives have been proposed for choosing the set of tokens to mask.

Random-Token Masking (Devlin et al., 2019a) The original BERT implementation selects to-
kens for masking independently at random, where 80% of the 15% chosen tokens are replaced with
[MASK], 10% are replaced with a random token, and 10% are kept unchanged.

Whole-Word Masking (Devlin et al., 2019b) The sequence of input tokens is segmented into
units corresponding to whole words. Tokens for masking are then chosen by sampling entire units at
random until the masking budget is met. Following Devlin et al. (2019a), for 80%/10%/10% of the
units, all tokens are replaced with [MASK]tokens/ random tokens/ the original tokens, respectively.

Random-Span Masking (Joshi et al., 2020) Contiguous random spans are selected iteratively
until the 15% masking budget is spent. At each iteration, a span length (in words) is sampled from a
geometric distribution ` ∼ Geo(0.2), and capped at 10 words. Then, the starting point for the span
to be masked is randomly selected. Replacement with [MASK], random, or original tokens is done
as above, where spans constitute the units.

3.2 PMI: FROM BIGRAMS TO n-GRAMS

Our aim is to define a masking strategy that targets correlated sequences of tokens in a principled
way. Of course, modeling such correlations in large corpora was widely studied in computational
linguistics (Zuidema (2006); Ramisch et al. (2012); inter alia). Particularly relevant to our work is
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the notion of Pointwise Mutual Information (Fano, 1961), which quantifies how often two events
occur, compared with what we would expect if they were independent. Define the probability of any
n-gram as the number of its occurrences in the corpus divided by the number of all the n-grams in
the corpus. PMI leverages these probabilities to give a natural measure of collocation of bigrams:
how surprising the bigram w1w2 is, given the unigram probabilities of w1 and w2. Formally, given
two tokens w1 and w2, the PMI of the bigram “w1w2” is

PMI(w1w2) = log
p(w1w2)

p(w1)p(w2)
. (1)

Importantly, PMI is qualitatively different from pure frequency: a relatively frequent bigram may
not have a very high PMI score, and vice versa. For example, the bigram “book is” appears 34772
times in the WIKIPEDIA+BOOKCORPUS dataset but is ranked around position 760K in the PMI
ranking for bi-grams over this corpus, while the bigram “boolean algebra” appears 849 times in the
corpus but is ranked around position 16K in the PMI ranking.

What about contiguous spans of more than two tokens? For a given n-gram, we would again like to
measure how strongly its components indicate one another. We thus require a measure that captures
correlations among more than two variables. A standard and direct extension of the PMI measure to
more than two variables, referred to as ‘specific correlation’ in Van de Cruys (2011), and as ‘Naive-
PMIn’ in this paper, is based on the ratio between the n-gram’s probability and the probabilities of
its component unigrams:

Naive-PMIn(w1 . . . wn) = log
p(w1 . . . wn)∏n

j=1 p(wj)
(2)

As in the bivariate case, this measure compares the actual empirical probability of the n-gram in the
corpus with the probability it would have if its components occurred independently. However, the
above definition suffers from an inherent flaw: an n-gram’s Naive-PMIn will be high if it contains
a segment with high PMI, even if that segment is not particularly correlated with the rest of the
n-gram. Consider for example the case of trigrams:

Naive-PMI3(w1w2w3) = log{ p(w1w2w3)

p(w1)p(w2)p(w3)
· p(w1w2)

p(w1w2)
} = PMI(w1w2) + log

p(w1w2w3)

p(w1w2)p(w3)

Where PMI(w1w2) is defined in eq. 1. When PMI(w1w2) is high, the Naive-PMI3 measure of the
trigram “w1w2w3” will start at this high baseline. The added term of log p(w1w2w3)

p(w1w2)p(w3)
quantifies the

actual added information of “w3” to this correlated bigram, i.e., it quantifies how far p(w1w2w3) is
from being separable w.r.t. the segmentation into “w1w2” and “w3”. For example, since the PMI
of the bigram “Kuala Lumpur” is very high, the Naive-PMIn of the trigram “Kuala Lumpur is” is
misleadingly high, placing it at position 43K out of all trigrams in the WIKIPEDIA+BOOKCORPUS
dataset. It is in fact placed much higher than obvious collocations such as the trigram “editor in
chief ”, which is ranked at position 210K out of all trigrams.

In order to favor n-grams that cannot be easily subdivided into shorter unrelated spans, we propose
a measure of distance from separability with respect to all of an n-gram’s possible segmentations
rather than with respect only to the segmentation into single tokens:

PMIn(w1 . . . wn) = min
σ∈seg(w1...wn)

log
p(w1 . . . wn)∏

s∈σ p(s)
(3)

Here, seg(w1 . . . wn) is the set of all contiguous segmentations of the n-gram “w1 . . . wn” (excluding
the identity segmentation), where any segmentation σ ∈ seg(w1 . . . wn) is composed of sub-spans
which together give “w1 . . . wn”. Intuitively, this measure effectively discards the contribution of
high PMI segments; the minimum in Eq. 3 implies that an n-gram’s collocation score is given by
its weakest link, i.e., by the segmentation that is closest to separability. When ranked by the above
PMIn measure, the trigram “Kuala Lumpur is” is demoted to position 1.6M, since the segmentation
into “Kuala Lumpur” and “is” yields unrelated segments, while the trigram “editor in chief ” is
upgraded to position 33K since its segmentations yield correlated components. As we will see, this
definition is not only conceptually cleaner, but also leads to improved performance.

3.2.1 PMI-MASKING

We implement our strategy of treating highly collocating n-grams as units for masking by assem-
bling a list of n-grams as a masking vocabulary in parallel to the 30K-token vocabulary. Specifically,
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we make use of the entire pretraining corpus for compiling a list of collocations. We consider word
n-grams of lengths 2–5 having over 10 occurrences in the corpus, and include the highest rank-
ing collocations over the corpus, as measured via our proposed PMIn measure (Eq. 3). Noticing
that the PMIn measure is sensitive to the length of the n-gram, we assemble per-length rankings
for each n ∈ {2, 3, 4, 5}, and integrate these rankings to compose the masking vocabulary. After
conducting a preliminary evaluation of how an n-gram’s quality as a collocation degrades with its
PMIn rank (detailed in the appendix), we chose the masking vocabulary size to be 800K, for which
approximately half of pretraining corpus tokens were identified as part of some correlated n-gram.

After composing the masking vocabulary, we treat its entries as units to be masked together. All
input tokens not identified with entries from the masking vocabulary are treated independently as
units for masking according to the Whole-Word Masking scheme. If one masking vocabulary entry
contains another entry in a given input, we treat the larger one as the unit for masking, e.g., if the
masking vocabulary contains the n-grams “the united states”, “air force”, and “the united states air
force”, the latter will be one unit for masking when it appears. In the case of overlapping entries,
we choose one at random as a unit for masking and treat the remaining tokens as independent units,
e.g., if the input text contains “by the way out” and the masking vocabulary contains the n-grams
“by the way” and “the way out”, we can choose either “by the way” and “out” or “by” and “the way
out” as units for masking.

After we segment the sequence of input tokens into units for masking, we then choose tokens for
masking by sampling units uniformly at random until 15% of the tokens (the standard tokens of
the 30K-token vocabulary) in the input are selected. As in the prior methods, replacement with
[MASK](80%), random (10%), or original (10%) tokens is done at the unit level.

4 EXPERIMENTAL SETUP

To evaluate the impact of PMI-Masking, we trained Base-sized BERT models (Devlin et al., 2019a)
with each of the masking schemes presented in Section 3. Rather than relying on existing imple-
mentations for baseline masking schemes, which vary in training specifics, we reimplemented each
scheme within the same framework used to train our PMI-Masked models. For control, we trained
within the same framework models with Naive-PMI-Masking and Frequency-Masking, following
the procedure described above for PMI-Masking, but ranking by the Naive-PMIn measure (Eq. 2)
and by pure-frequency, respectively. In Section 5, we compare our PMI-Masking to all internally-
trained masking schemes (Table 2) as well as with externally released models (Table 3).

4.1 PRETRAINING

We trained uncased models with a 30K-sized vocabulary that we constructed over WIKIPEDIA
+BOOKCORPUS via the WordPiece Tokenizer used in BERT. We omitted the Next Sentence Pre-
diction task, as it was shown to be superfluous (Joshi et al., 2020), and trained only on the Masked
Language Model task during pretraining. We trained with a sequence length of 512 tokens, batch
size of 256, and a varying number of steps detailed in Section 5. For pretraining, after a warmup
of 10, 000 steps we used a linear learning rate decay, therefore models that ran for a different over-
all amount of steps are not precisely comparable after a given amount of steps. We set remaining
parameters to values similar to those used in the original BERT pretraining, detailed in the appendix.

We performed the baseline pretraining over the original corpus used to train BERT: the 16GB
WIKIPEDIA+BOOKCORPUS dataset. We show that PMI-Masking achieved even larger perfor-
mance gains relative to the baselines when training over more data, by adding the 38GB OPEN-
WEBTEXT (Gokaslan & Cohen, 2019) dataset, an open-source recreation of the WebText corpus
described in Radford et al. (2019). As described in section 3, we compose our PMIn-based masking
vocabulary according to the pretraining corpus in use.

4.2 EVALUATION

We evaluate our pretrained models on two question answering benchmarks: the Stanford Question
Answering Dataset (SQuAD) and the ReAding Comprehension from Examinations (RACE), as well
as on the General Language Understanding Evaluation (GLUE) benchmark. Additionally, we report
the Single-Token perplexity of our pretrained models.
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• SQuAD has served as a major question answering benchmark for pretrained models. It provides
a paragraph of context and a question, and the task is to answer the question by extracting the
relevant span from the context. We focus on the latest more challenging variant, SQuAD2.0 (Ra-
jpurkar et al., 2018), in which some questions are not answered in the provided context, and the
task includes identifying such cases.

• RACE is a large-scale reading comprehension dataset collected from English examinations in
China, designed for middle and high school students. Each passage is associated with multiple
questions; for each, the task is to select one correct answer from four options. RACE has signif-
icantly longer context than other popular reading comprehension datasets and the proportion of
questions that requires reasoning is very large.

• GLUE is a collection of 9 datasets for evaluating natural language understanding systems (Wang
et al., 2018). Tasks are framed as either single-sentence classification or sentence-pair classifica-
tion tasks. For full details, please see the appendix.

• Single-Token perplexity We evaluate an MLM’s ability to predict single-tokens by measuring
perplexity over a held out test set of 110K tokens from OPENWEBTEXT. For each test example,
a single token for prediction is masked and the remainder of the input tokens are unmasked.

In Tables 2 and 3, for every downstream task we swept 8 different hyperparameter configurations
(batch sizes ∈ {16, 32} and learning rates ∈ {1, 2, 3, 5} · 10−5). We report the best median devel-
opment set score over five random initializations per hyper-parameter. When applicable, the model
with this score was evaluated on the test set. The development set score of each configuration was
attained by fine-tuning the model over 4 epochs (SQuAD2.0 and RACE) or 3 epochs (all GLUE
tasks except RTE and STS – 10 epochs) and performing early stopping based on each task’s eval-
uation metric on the development set. In the preliminary experiments of Table 1, and in Figures 1
and 2 for which we evaluate many pretraining checkpoints per model, we report the score for only
one random initialization, with batch size 32 and learning rate 3 · 10−5.

5 EXPERIMENTAL RESULTS

We evaluated the different masking strategies in two key ways. First, we measured their effect on
downstream performance throughout pretraining to assess how efficiently they used the pretraining
phase. Second, we more exhaustively evaluated downstream performance of different approaches at
the end of pretraining. We examine how the advantage of PMI-Masking is affected by the size of the
pretraining corpus and by amount of examples seen during pretraining (batch size × training steps).

5.1 EVALUATING DOWNSTREAM PERFORMANCE THROUGHOUT PRETRAINING

By examining the model’s downstream performance after each 200K steps of pretraining, we demon-
strate that PMI-Masking speeds up MLM training. Figure 1 investigates the standard BERT setting
of pretraining on the Wikipedia+BookCorpus dataset for 1M training steps with batch size 256. It
shows that the PMI-Masking method clearly outperformed a variety of prior approaches, as well
as the baseline pure frequency based masking, on the SQuAD2.0 development set for all examined
checkpoints (these patterns are consistent on RACE, see detailed scores in the appendix). PMI-
Masking achieved the score of Random-Span Masking, the best of the existing approaches, after
roughly half as many steps of pretraining.

We ran a second experiment that increased the number of steps from 1M to 2.4M, while main-
taining the batch size and the pretraining corpus; this was the setting used by Joshi et al. (2020)
when proposing Random-Span Masking. We observed that while PMI-masking learned much more
quickly, it eventually reached a plateau, and Random-Span Masking caught up after enough training
steps. Figure 2 (left) details these results.

Finally, we increased the amount of training data by adding the OPENWEBTEXT corpus (∼ 3.5×
more data). Figure 2 (right) demonstrates that the plateau we previously observed in PMI-
Masking’s performance was due to limited training data. When training for 2.4M training steps
on the Wikipedia+BookCorpus+OpenWebText dataset, PMI-masking reached the same score that
Random-Span Masking did at the end of training after roughly half of the pretraining, and continued
to improve. Thus, PMI-Masking definitively outperformed Random-Span masking in a scenario
where data was not a bottleneck, as is ideally the case in MLM pretraining (Raffel et al., 2019).
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Figure 2: Scores on SQuAD2.0 development set of BERTBASE models trained for 2.4M steps, as
done by Joshi et al. (2020) when proposing Random-Span Masking. Left: PMI-Masking efficiently
elicits information from limited data. Right: More data, PMI-Masking continues to improve. See
numerical scores in the appendix, along with the same trends on the RACE benchmark.

BERT Base with SQuAD2.0 RACE GLUE
different maskings EM F1 Acc. Avg

1M training steps on WIKIPEDIA+BOOKCORPUS(16G):
Random-Token Masking 76.4/– 79.6/– 67.8/66.2 83.1/–
Random-Span Masking 77.1/– 80.3/– 68.6/66.9 83/–
Naive-PMI-Masking 78.2/– 81.3/– 69.7/67.8 84.1/–
PMI-Masking 78.5/– 81.4/– 70.1/68.4 84.1/–

2.4M training steps on WIKIPEDIA+BOOKCORPUS(16G)
Random-Span Masking 79.7/80.0 82.7/82.8 71.9/69.5 84.8/79.7
Naive-PMI-Masking 80.3/80.2 83.2/83.2 71.7/69.8 84.5/80.0
PMI-Masking 80.2/80.9 83.3/ 83.6 72.3/70.9 84.7/80.3
2.4M training steps on WIKIPEDIA+BOOKCORPUS+OPENWEBTEXT(54G):

Random-Span Masking 80.1/80.4 83.2/83.3 74.0/72.2 85.1/80.1
Naive-PMI-Masking 80.4/80.0 83.3/83.0 73.9/71.4 85.6/80.3
PMI-Masking 80.9/82.0 83.9/84.9 74.8/73.2 86.0/80.8

Table 2: Dev/Test performance on the SQuAD, RACE, and GLUE benchmarks of BERT Base sized
models pretrained and evaluated according to section 4. We report EM (exact match) and F1 scores
for SQuAD2 and accuracy for RACE. For GLUE we report the average scores on the development
set and the official leaderboard scores on the test set (see the per-task scores in the appendix).

5.2 EVALUATING DOWNSTREAM PERFORMANCE AFTER PRETRAINING

Table 2 shows that after pretraining was complete, PMI-Masking outperformed prior masking ap-
proaches in downstream performance on the SQuAD2.0, RACE, and GLUE benchmarks. In agree-
ment with Figure 2, for longer pretraining (2.4M training steps) the absolute advantage of PMI-
Masking is boosted across all tasks when pretraining over a larger corpus (adding OPENWEBTEXT).
The table also shows that Naive-PMI Masking, based on the straightforward extension in eq. 2 to the
standard bivariate PMI, significantly falls behind our more nuanced definition in eq. 3, and is often
on par with Random-Span Masking.

We also compared our PMI-Masking Base-sized models to published Base-sized models (Table 3),
and again saw PMI-Masking increase both pretraining efficiency and end-of-training downstream
performance. Zhang & Li (2020) trained their ‘AMBERT’ model over a vocabulary of n-grams in
parallel to the regular word/subword level vocabulary, performing the hard task of n-gram predic-
tion in parallel to the easy Random-Token level prediction task during pretraining. This approach
yielded a model with 75% more parameters than the common Base size of our PMI-Masking model.
By using the PMI-masking scheme on a regular BERT architecture and vocabulary, we attained a
significantly higher score on the RACE benchmark, despite training over a corpus 3× smaller and
showing the model 2× fewer examples during pretraining.

Joshi et al. (2020) and Liu et al. (2019) only reported scores for SpanBERT and RoBERTa (respec-
tively) for Large-sized models in their original papers, but did release weights for Base-sized models.
We fine-tuned these models on the RACE development set via the same fine-tuning procedure we
employed for our PMI-Masking models (described in Section 4), and evaluated the best performing
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PMI vs Prior BASE MLMs Corpus size Batch × Steps RACE
= Examples dev/test

PMI vs n-grams in vocabulary
AMBERT (Zhang & Li, 2020) 47G 1024 × 0.5M = 512G 68.9†/66.8†
PMI-Masking 16G 256 × 1M = 256M 70.1/68.4
PMI vs Random-Span Masking
SpanBERTBASE (Joshi et al., 2020) 16G 256 × 2.4M = 614.4M 70.5/68.7
PMI-Masking 16G 256 × 2.4M = 614.4M 72.3/70.9
PMI vs Random-Token Masking with 3X more data and 6X more training examples
RoBERTaBASE (Liu et al., 2019) 160G 8K × 0.5M = 4G 74.9/73
PMI-Masking 54G 256 × 2.4M = 614.4M 74.8/73.2

Table 3: Comparing the RACE scores of our PMI-Masked models with comparable published Base-
sized models. The scores of prior MLMs were attained by finetuning released models in the same
setup of the PMI-Masked models (Section 4), except for those marked in ‘†’, reported in Zhang & Li
(2020). The number of examples reflects the amounts of text examined during training, as all prior
models train over the same sequence length as our PMI-Masked models, namely 512. AMBERT was
trained over WIKIPEDIA+OPENWEBTEXT (47G), SpanBERT over WIKIPEDIA+BOOKCORPUS
(16G), and RoBERTa over WIKIPEDIA+BOOKCORPUS+OPENWEBTEXT+STORIES+CCNEWS
(160G – see details in Liu et al. (2019)).

model on the publicly available RACE test set. A PMI-Masking Base-sized model scored more than
2 points higher than the SpanBERTBASE trained by Random-Span Masking over the same pretrain-
ing corpus when shown the same number of examples. Remarkably, a PMI-Masking Base-sized
model scored slightly higher than RoBERTaBASE trained by Random-Token Masking, even though
RoBERTa was given access to a pretraining corpus 3× larger and shown 6×more training examples.

Single-Token Perplexity
Random-Token Masking 2.96
Random-Span Masking 4.30
Naive-PMI-Masking 7.35
PMI-Masking 21.85

Table 4: The Single-Token per-
plexity of MLMs trained for 1M
steps over WIKI+BOOKCORPUS.

Lastly, we note that the measure of Single-Token perplexity
is not indicative of downstream performance, when reported
for models trained with different masking schemes. Compar-
ing the adjacent table with the downstream evaluation of the
same models in Table 2, it is clear that the ability to predict
single tokens from context is not correlated with performance.
This reinforces our observation that by minimizing their train-
ing objective, standard MLMs, which mask tokens randomly,
train to excel on relatively many easy tasks that do not reflect
the knowledge required for downstream understanding.

6 CONCLUSION

Bidirectional language models hold the potential to unlock greater signal from the training data
than unidirectional models (such as GPT). BERT-based MLMs are historically the first (and still
the most prominent) implementation of inherently bidirectional language models, but they come
at a price. A hint of this price is the fact that Single-Token perplexity, which captures the ability
to predict single tokens and which has a natural probabilistic interpretation in the autoregressive
unidirectional case, ceases to correlate with downstream performance across different MLMs (see
Table 4). This means that the original MLM task, which is focused on single token prediction,
should be reconsidered. This has been the focus of this paper, which points to the inefficiency of
random-token masking, and offers PMI-masking as an alternative with several advantages: (i) It is
a principled approach, based on a nuanced extension of binary PMI to the n-ary case. (ii) It leads
to better downstream performance, for example it surpasses RoBERTa on the challenging reading
comprehension RACE test with 6× less training over a 3× smaller corpus, and it dominates the
more naive, heuristic approach of random span masking at any point during pretraining, matches its
end-of-training performance halfway during its own pretraining, and at the end of training improves
on it by 1-2 points across a variety of downstream tasks. Perhaps due to their conceptual simplicity,
unidirectional models were the first to break the 100B parameter limit with the recent GPT3 (Brown
et al., 2020). Bidirectional models will soon follow, and this paper can accelerate their development
by offering a way to significantly lower their training costs while boosting performance.
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Figure 3: Quality measures of top ranking PMIn n-grams lists increased in increments of 50K. The
masking vocabulary size was chosen such that it includes as many n-grams labeled as collocation
as possible, while not including too many n-grams labeled as not a collocation, in an internally
constructed test set detailed below. r is the percent of all positively labeled examples from the test
set that appear within the given list (recall), c is the percent of all negatively labeled examples from
the test set that do not appear within the given list (complement-recall). We aim for a list size for
which both r and c are high enough, and employ f as a measure for this, finally choosing a list size
of 800K.

A DETERMINING THE MASKING VOCABULARY SIZE

The PMIn measure, defined in eq. 3, provides an n-gram ranking function that is intended to rank
an n-gram higher if its components are more indicative of one another. However, this measure alone
is not enough for composing a masking vocabulary: we need to decide on its size M (the masking
vocabulary will be composed of the top-M ranked n-grams). One could advocate for an ablation
study in which M is varied, and models are pretrained per M and evaluated. This can be done
in future work, and perhaps an even stronger result can be shown for PMI-Masking with masking
vocabulary size chosen by such optimization.

As a proxy, we determined the masking vocabulary size M via a small scale evaluation of an n-
gram’s “collocation quality” as a function of its PMIn rank. Specifically, we created an ad hoc test
set composed of 1000 n-grams that we labeled either as collocation or not a collocation (avail-
able upon request). We did that by choosing at random 10 words with frequency above 10000 in
WIKIPEDIA+BOOKCORPUS, and for each word sampled 25 n-grams per length n ∈ {2, 3, 4, 5}
that contain it. Finally, we manually labeled each collected n-gram, where the textbook defini-
tion of collocation was given to the annotators (the annotator agreement was 80% over 100 shared
examples).

Then, we increased a list size M in steps of 50K, adding n-grams from the top ranking PMIn
downwards. For each M -sized list we computed two different scores on the test set. The first is the
recall of the positive examples in the list, denoted r: the percent of all positively labeled examples
from the test set that appear within the given list. The second is the recall of the negative examples
in the complement of the list, dubbed complement-recall, denoted c: the percent of all negatively
labeled examples from the test set that do not appear within the given list. By these definitions,
the recall r starts low and increases with list size and the complement-recall c follows an opposite
trend, as can be seen in Figure 4. Our desired masking vocabulary size should yield a list with many
n-grams labeled as collocation while containing little n-grams labeled not a collocation. we define
f = 2r·c

r+c as a measure for optimization which balances the two requirements, and Figure 4 shows
that this measure is highest at sizes of around 700-800, so we set the masking vocabulary size to be
800K.
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B PRETRAINING AND MODEL DETAILS

Table 5 shows the pretraining hyper-parameters we used, as well as the architecture specifics, both
follow the standard implementation of BERT.

Number of Layers 12
Hidden Size 768

Sequence Length 512
FFN Inner Hidden Size 3072

Attention Heads 12
Attention Head Size 64

Dropout 0.1
Attention Dropout 0.1

Warmup Steps 10,000
Peak Learning Rate 1e-4

Batch Size 256
Weight Decay 0.01

Initializer Range 0.02
Learning Rate Decay Linear

Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999

Table 5: Hyper-parameters of the architecture and pretraining, complementing the description in
Section 4

.

C EVALUATION OF DIFFERENT CHECKPOINTS DURING PRETRAINING

Tables 6 and 7 respectively present the development set scores on SQuAD2.0 and RACE, attained for
models at different checkpoints during pretraining. The SQuAD2.0 scores are depicted in Figures 1
and 2.

pretraining checkpoint: 200 400 600 800 1000 1200 1600 2000 2400

1M training steps on WIKIPEDIA+BOOKCORPUS
Random-Token Masking 74.4 76.7 77.9 78.9 79.3 – – – –
Whole-Word Masking 74.8 77.9 78.4 79.1 79.6
Frequency-Masking 75.5 78 79.2 79.4 79.7 – – – –
Random-Span Masking 74.8 77.4 78.9 79.6 80.0 – – – –
PMI-Masking 77.0 78.8 80.3 81.1 81.3 – – – –

2.4M training steps on WIKIPEDIA+BOOKCORPUS
Random-Span Masking 75.8 78.4 79.8 80.4 80.9 81.8 82.2 82.9 83.1
PMI-Masking 77.2 79.8 81.0 81.6 81.8 82.4 83.1 83.0 83.3
2.4M training steps on WIKIPEDIA+BOOKCORPUS+OPENWEBTEXT
Random-Span Masking 77.1 78.9 80.9 81.0 81.8 82.3 82.7 83.1 83.2
PMI-Masking 78.4 80.7 82.1 82.4 82.9 83.3 83.8 84.0 84.3

Table 6: The F1 score on the SQuAD2.0 development set of models taken at various checkpoints
along the pretraining of BERT Base sized models trained with different masking schemes. These
scores are depicted in Figures 1 and 2. For each model, finetuning on SQuAD was done for one
random initialization of the task’s head with batch size of 32 and learning rate of 3 · 10−5, and the
score was reported for the model attained after 4 epochs without early stopping.
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pretraining checkpoint: 200 400 600 800 1000 1200 1600 2000 2400

1M training steps on WIKIPEDIA+BOOKCORPUS
Random-Token Masking 61.2 64.3 65.6 66.4 67.1 – – – –
Whole-Word Masking 62.0 64.9 66.0 67.0 67.8
Frequency-Masking 63.7 65.7 67.3 68.5 68.8 – – – –
Random-Span Masking 61.7 64.7 66.8 67.9 68.0 – – – –
PMI-Masking 63.5 66.8 68.4 68.9 69.7 – – – –

2.4M training steps on WIKIPEDIA+BOOKCORPUS
Random-Span Masking 62.3 64.3 65.6 67.8 69.0 68.9 70.3 71.0 71.4
PMI-Masking 63.6 66.7 67.3 68.5 69.2 70.4 70.5 71.2 72.2
2.4M training steps on WIKIPEDIA+BOOKCORPUS+OPENWEBTEXT
Random-Span Masking 64.6 67.0 69.2 69.9 70.5 71.3 72.9 73.5 73.4
PMI-Masking 66.5 68.6 70.7 71.4 72.4 72.5 73.6 74.1 74.5

Table 7: The accuracy score on the RACE development set of models taken at various checkpoints
along the pretraining of BERT Base sized models trained with different masking schemes. For each
model, finetuning on RACE was done for one random initialization of the task’s head with batch
size of 32 and learning rate of 3 · 10−5, and the score was reported for the model attained after 4
epochs without early stopping.

D GLUE TASKS AND DETAILED SCORES

The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019) consists
of 9 sentence-level tasks. Sentence-level classification tasks: CoLA (Warstadt et al., 2018) (evalu-
ating linguistic acceptability) and SST-2 (Socher et al., 2013) (sentiment classification). Sentence-
pair similarity tasks: MRPC (Dolan & Brockett, 2005) (binary paraphrasing classification task),
STS-B (Cer et al., 2017): (graded similarity scoring task), and QQP2 (binary paraphrasing classi-
fication task). Natural language inference tasks: MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007) and WNLI
(Levesque et al., 2011). Table 8 shows the detailed per-task scores of our examined models.

GLUE MNLI QNLI QQP RTE SST MRPC CoLA STS Avg
1M training steps on Wikipedia+BookCorpus; on dev
Random-Span Masking 84.0/- 91.4 90.8 69.0 92.8 88.5 58.5 88.9 83.0
Naive-PMI-Masking 85.1/– 91.9 91.0 74.0 93.3 88.2 60.3 89.3 84.1
PMI-Masking 85.2/– 91.8 91.0 72.2 92.7 89.7 60.6 89.3 84.1
2.4M training steps on WIKIPEDIA+BOOKCORPUS; on test
Random-Span Masking 85.7/84.7 92.9 89.4 69.8 93 85.4 56.5 86.6 79.7
Naive-PMI-Masking 85.5/85.3 92.2 89.2 68.9 93.6 85.4 59.4 87.3 80.0
PMI-Masking 85.3/85.0 92.0 89.2 69.0 94.0 85.6 61.8 86.8 80.3
2.4M training steps on WIKIPEDIA+BOOKCORPUS+OPENWEBTEXT; on test
Random-Span Masking 86.3/85.1 92.2 89.4 71.1 94.6 85.6 56.8 87.2 80.1
Naive-PMI-Masking 86/85.4 91.7 89.4 69.2 95.1 87.8 57.5 87.9 80.3
PMI-Masking 86.6/85.8 93.1 89.5 72.9 94.7 87.7 57.4 87.7 80.8

Table 8: Results on the different tasks of the GLUE benchmark. For all tasks the scores reflect
accuracy, except for STS-B (spearman score) and CoLA (Mathews Correlation). For results reported
on the development set (1M training steps), the average score is simply the average of reported
scores. For results reported on the test sets (2.4M training steps), the average score is the official
GLUE leaderboard score. The official score includes averaging of F1 scores for QQP and MRPC,
as well as the default majority submission score of 65.1 for WNLI.

2https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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