
ImpatientCapsAndRuns: Approximately Optimal
Algorithm Configuration from an Infinite Pool

Anonymous Author(s)
Affiliation
Address
email

Abstract

Algorithm configuration procedures optimize parameters of a given algorithm to1

perform well over a distribution of inputs. Recent theoretical work focused on the2

case of selecting between a small number of alternatives. In practice, parameter3

spaces are often very large or infinite, and so successful heuristic procedures4

discard parameters “impatiently”, based on very few observations. Inspired by5

this idea, we introduce IMPATIENTCAPSANDRUNS, which quickly discards less6

promising configurations, significantly speeding up the search procedure compared7

to previous algorithms with theoretical guarantees, while still achieving optimal8

runtime up to logarithmic factors under mild assumptions. Experimental results9

demonstrate a practical improvement.10

1 Introduction11

Solvers for computationally hard problems (e.g., SAT, MIP) often expose many parameters that only12

affect runtime rather than solution quality. Choosing values for these parameters is seldom easy or13

intuitive, and different settings can lead to drastically different runtimes—days versus seconds—for14

a given input instance. Such parameters are exposed in the first place because they do not have15

known, globally optimal settings, instead typically expressing tradeoffs between different heuristic16

mechanisms or implicit assumptions about problem structure. In practice, solver end-users typically17

need to repeatedly solve similar problems: e.g., integer programs modeling airline crew scheduling18

problems; or SAT formulae used to formally verify a sequence of related hardware or software designs.19

This gives rise to the problem of algorithm configuration: finding a joint setting of parameters for20

a given algorithm so that it performs well on input instances drawn from a given distribution. We21

make no restrictions on the space of possible parameters or its structure: they may be continuous,22

categorical, subject to arbitrary constraints, and may contain jump discontinuities. We refer to a23

joint setting of all the algorithm’s parameters as a configuration to stress this generality. A common24

metric of performance for a configuration, and the one we consider in this work, is mean runtime: we25

prefer configurations that are faster, on average, on the problems we care about solving. An algorithm26

configuration method can sample instances from the distribution underlying an application and can27

run any configuration (possibly also sampled from the set possible configurations) on any sampled28

instance until a timeout of its choice, and the goal is to find a configuration with nearly optimal mean29

runtime while using the least amount of time during the search.130

Heuristic methods for algorithm configuration such as ParamILS [17, 18], GGA [2, 3], irace [11, 28]31

and SMAC [20, 21] have been used with great success for more than a decade, but they do not32

come with any rigorous performance guarantees. More recently, algorithm configuration has also33

1As usual, we treat the cumulative runtime of all the configurations tried as the total search time. One could
also consider including the overhead imposed by the configuration algorithm itself. However, beyond being
difficult to model, this cost is typically negligible compared to the runtime of the configurations.

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

been considered from a theoretical perspective. Kleinberg et al. [23] introduced a framework to34

analyze algorithm configuration methods theoretically, and presented the first configuration procedure,35

STRUCTURED PROCRASTINATION (SP), which is guaranteed to find an approximately optimal36

solution with a non-trivial worst-case runtime bound. Since then algorithms with better theoretical37

guarantees have been developed [34, 35, 24]. Overall, these theoretically-motivated configuration38

procedures have nice properties, such as achieving near-optimal asymptotic worst-case running times.39

However, none of them yet achieves competitive performance on practical problem benchmarks,40

for two key reasons: (i) heuristic methods usually iteratively select candidate configurations that41

appear likely to perform well given previous samples from the configuration space (e.g., leveraging42

structure in the parameter space, such as smoothness or low pseudodimension [19, 29]), whereas the43

theoretical algorithms select configurations randomly; and (ii) heuristic methods often impatiently44

discard less promising configurations based on just a few runtime observations, while the theoretical45

algorithms are more conservative and continue evaluating them until they demonstrate, with high46

probability, that another configuration is better. Such early discard strategies are particularly effective47

when the configuration space contains one or a few configurations that drastically outperform all48

others. This “needle-in-a-haystack” scenario is common in practice, perhaps in part explaining the49

success of these heuristic methods.50

In this paper we take a significant step towards theoretically grounded and practical algorithm con-51

figuration by addressing the second problem. We build on CAPSANDRUNS (CAR) [35], a simple52

and intuitive algorithm that continuously discards configurations that perform poorly relative to a53

global upper bound on the best achievable mean runtime. Here we introduce IMPATIENTCAPSAN-54

DRUNS (ICAR), which equips CAR with the ability to quickly discard less-promising configurations55

by applying an initial “precheck” mechanism that allows poorly performing configurations to be56

discarded quickly. Additionally, via a more careful analysis we are able speed up a key subroutine57

from CAR. While ICAR retains the favorable optimality and runtime guarantees of CAR under mild58

assumptions, it is also provably faster in needle-in-a-haystack scenarios where most configurations59

are considerably weaker than the best ones (these are the cases where good algorithm configuration60

procedures are the most useful, because identifying a good configuration is the most consequential.)61

Because of its precheck procedure, ICAR is able to examine more configurations than CAR, and62

hence finds configurations with better mean runtime. Furthermore, not wasting time on examining63

bad configurations, the total runtime of ICAR is significantly smaller than that of CAR and any other64

existing procedure with theoretical guarantees, making a step towards closing the performance gap65

relative to heuristic procedures.66

Finally, we briefly survey some less closely related work. Gupta & Roughgarden [13] initiated the67

study of algorithm configuration from a learning-theoretic perspective. Rather than seek general68

purpose configuration procedures, as we do in this work, this and subsequent approaches seek to69

bound the number of training samples required to guarantee good generalization for specific classes70

of problems. Examples include combinatorial partitioning problems such as max-cut and clustering71

[6], branching strategies in tree search algorithms [7], and general algorithm configuration when the72

runtime is piecewise-constant over its parameter space [8]. Hyperparameter-search methods based on73

multi-armed bandit algorithms are also related. The main difference is that this literature focuses on74

settings where every configuration run costs the same amount or where there is a tradeoff between75

how long each configuration is run and the accuracy with which its performance is estimated [5, 27];76

thus, these methods do not face questions like how many instances to consider and how to cap runs.77

The rest of the paper is organized as follows. The formal model of algorithm configuration is given78

in Section 2. The ICAR algorithm is presented and analyzed in Section 3. Experiments on some79

algorithm configuration benchmarks are given in Section 4. Proofs and additional experimental80

results are deferred to the appendix.81

2 The Model82

Following Kleinberg et al. [23], the algorithm configuration problem is defined by a triplet (Π,Γ, R),83

where Π is a distribution over possible configurations, Γ is a distribution over input instances, and84

R(i, j) is the runtime of a configuration i on a problem instance j. For example Π and Γ may simply85

be uniform distributions, respectively over the space of hyperparameters and the set of past problem86

instances seen. The mean runtime of a configuration i is defined as R(i) = Ej∼Γ[R(i, j)], and the87

ultimate goal of an algorithm configuration method is to find a configuration i minimizing R(i).88

2

During this search the configuration method needs to explore new configurations, which can be89

sampled from Π.2 The configuration method can also sample problem instances from Γ and run a90

configuration i on an instance j until it finishes, or the execution time exceeds a specified timeout91

τ ≥ 0. The use of such a timeout allows for a tradeoff between learning more about the runtime of a92

single configuration–instance pair and considering a larger number of such pairs.93

To this end, for any configuration i we consider the τ -capped expected runtime Rτ (i) =94

Ej∼Γ[min{R(i, j), τ}]. Furthermore, for any δ ∈ (0, 1), let tδ(i) = inft{t : Prj∼Γ(R(i, j) >95

t) ≤ δ} denote the δ-quantile of i’s runtime, and define Rδ(i) = Rtδ(i)(i) the δ-capped expected96

runtime of i.3 That is, Rδ(i) is the mean runtime of i if we cap the slowest δ-fraction of its runtimes.97

Since a globally optimal configuration may be arbitrarily hard to find, we instead seek a solution98

that is competitive with the performance of the top γ-fraction of the configurations for a γ ∈ (0, 1).99

That is, instead of finding a configuration close to OPT = mini{R(i)}, we search for one close to100

OPTγ = infx∈R+{x : Pri∼Π(R(i) ≤ x) ≥ γ}. Additionally, since the average runtime of any101

configuration, including the optimal one, could be totally dominated by a few incredibly unlikely but102

arbitrarily large runtime values, we seek solutions whose expected δ-capped runtime is close to the103

δ-capped optimum. However, it turns out that this relaxed property is still impossible to verify [34].104

Following Weisz et al. [34], we address this by adding a small amount of slack to the benchmark,105

comparing to the (δ/2)-capped optimum rather than the δ-capped optimum. Putting this together,106

we seek solutions whose expected δ-capped runtime is close to the (δ/2)-capped optimum, after107

excluding the best γ-fraction of configurations: OPTγδ/2 = infx∈R+

{
x : Pri∼Π[R

δ
2 (i) ≤ x] ≥ γ

}
.108

Definition 1 ((ε, δ, γ)-optimality). A configuration i is (ε, δ, γ)-optimal if Rδ(i) ≤ (1 + ε)OPTγδ/2.109

This definition generalizes the notion of (ε, δ)-optimality of Weisz et al. [35] for a finite set of110

configurations, where instead of the top-γ portion, we aim to achieve the performance of the best111

configuration (up to ε): for a finite set of N configurations, configuration i is (ε, δ)-optimal if it is112

(ε, δ, 1/N)-optimal when Π is the uniform distribution over the N configurations.113

3 The Algorithm114

Recent theoretically-sound algorithm configuration procedures make several runtime measurements115

for every configuration in a finite poolN , and stop when they can confirm, with high probability, that116

one configuration is close enough to the best one. The main challenge is to avoid wasting time on117

(a) hard input instances with large runtimes; and (b) bad configurations that will be eliminated later.118

To this end, STRUCTURED PROCRASTINATION (SP) [23] and its improved version STRUCTURED119

PROCRASTINATION WITH CONFIDENCE (SPC) [24] gradually increase the runtime cap for every120

configuration-instance pair, while carefully determining an order to evaluate these pairs, depending121

on the configurations’ empirical average runtime (SP) or empirical confidence bounds on the mean122

runtimes (SPC). LEAPSANDBOUNDS (LAB) [34], which introduced empirical confidence bounds to123

the algorithm configuration problem, works with a much simpler schedule, and tests all configurations124

for a given time budget, which is increased gradually.125

On the other hand, CAPSANDRUNS (CAR) [35] first measures the runtime cap for each configuration126

guaranteeing that at least a (1− δ)-portion of the instances can be solved within that cap, then runs a127

racing algorithm (based on continuously recomputing confidence bounds on the mean runtimes) to128

select which capped configuration is the best. During the race, all configurations are run in parallel129

on more and more problem instances, and their mean runtime is continuously estimated. This makes130

it possible to maintain a high-probability upper bound T on the optimal capped runtime, and any131

configuration with a runtime lower bound above T can be eliminated. The algorithm stops when it132

can prove that a configuration is (ε, δ)-optimal.133

To apply any of the above methods to an infinite pool of configurations, one can simply select a134

pool of
⌈

log(ζ)
log(1−γ)

⌉
configurations randomly from Π to ensure that with probability at least 1− ζ it135

contains a configuration that belongs to the top γ-fraction of all the configurations. Thus the above136

2We can see Π as reflecting beliefs about the distribution of good configurations in the parameter space. This
implicitly neglects any search procedure that leverages structural assumptions about the parameter space.

3With a slight abuse of terminology, throughout we use the same expression for capping with timeouts (τ)
and quantiles (δ), when the interpretation is clear from the context; we specify the type of capping otherwise.

3

methods can select (ε, δ, γ)-optimal configurations from an infinite pool, with attractive theoretical137

guarantees. Our focus in this paper is on extending CAR, due to its conceptual simplicity and good138

practical performance. However, in contrast to LAB and SPC, which try to assign little runtime to139

bad configurations from the very beginning, at the start CAR spends the same amount of time testing140

all configurations. This is because the estimation of the runtime caps is done in parallel, so every141

configuration is run for an equally long time until the first cap is found for any configuration (only142

after this can the algorithm start eliminating configurations with large mean runtimes). As a result,143

CAR spends more time testing the worst configurations than LAB or SPC.144

IMPATIENTCAPSANDRUNS (ICAR) addresses this problem, introducing a “precheck” mechanism145

to ensure that bad configurations are eliminated early. The PRECHECK function estimates the mean146

capped runtime (up to a constant multiplicative factor) needed by a configuration to solve at least147

a constant fraction of the problem instances (less than 1 − δ/2). If this capped runtime is large148

compared to the upper bound T on the (ε, δ, γ)-optimal runtime (maintained similarly as in CAR),149

the configuration is rejected and eliminated from further analysis. This procedure is very similar150

to the CAR algorithm (with some fixed, constant ε and δ); only the specific rejection conditions151

differ mildly. Note that the runtime estimated by PRECHECK is a lower bound to the δ/2-capped152

runtime, ensuring that good configurations are unlikely to be rejected. The efficiency of PRECHECK153

crucially depends on the quality of the bound T on the optimal runtime. Therefore, similarly to154

SPC, ICAR gradually introduces more and more configurations in batches Nk, k = K − 1, . . . , 0:155

if a configuration passes PRECHECK, a (rough) estimate of its capped runtime is calculated (up to156

a multiplicative constant, for a cap slightly larger than the δ quantile), again by first measuring the157

runtime cap, then estimating the mean runtime using the measured cap. This runtime estimate is then158

used to reduce the bound T , which improves the performance of PRECHECK for the next batch of159

configurations, Nk−1. The size of batch Nk is of order 1/γk with γk = 2kγ, ensuring that with high160

probability it contains an (ε, δ, γk)-optimal configuration (whose mean runtime is then bounded by161

OPTγkδ/2). As a consequence, after batch Nk, T is at most 2OPTγkδ/2, gradually reducing towards162

2OPTγδ/2. Finally, the racing part of CAR is run over all surviving configurations, further reducing163

T towards OPTγδ/2, and stopping when an (ε, δ, γ)-optimal configuration is found.164

Now we are ready to present the main theoretical result of the paper, a performance guarantee for165

ICAR. The components of the algorithm are presented in Algorithms 1–5. We then discuss each and166

present a proof sketch for the theorem (the detailed proof is given in Appendix A).167

Theorem 1. For input parameters ε ∈ (0, 1/3), δ ∈ (0, 0.2), γ ∈ (0, 1), integer K ≥ 1, and failure168

parameter ζ ∈ (0, 1/12), with probability at least 1 − 12ζ, IMPATIENTCAPSANDRUNS finds an169

(ε, δ, γ)-optimal configuration with total work4 bounded by5170

Õ

(
OPTγδ/2

ε2δγ
· F (38OPTγδ/2) +

K−2∑
k=0

OPTγkδ/2

γk

(
1 +

F (38OPT
γk+1

δ/2)

δ

)
+

OPT
γK−1

δ/2

δγK−1

)
, (1)

where γk = 2kγ, and F (x) = Pri∼Π(R0.35(i) ≤ x) + 4ζ/K.171

Discussion. (i) To illustrate the advantages captured by the theorem, consider a situation where172

configuration runtimes are distributed exponentially, with their mean distributed uniformly over an173

interval [A,A + B]. When the number of near-optimal configurations is small (i.e., B/A is large174

enough), the bound on the fraction of configurations surviving PRECHECK, F (38OPTγδ/2), roughly175

scales with γ, resulting in a runtime OPTγδ/2/(ε
2δ), providing a γ-factor speedup over typical bounds176

in other work (which scale with OPTγδ/2/(ε
2δγ)). (Details are given in Appendix B.)177

(ii) The first term in the bound corresponds to the work done in the final racing part of ICAR. The178

other terms correspond to the work done for each batch Nk (except that the cost of the last precheck179

is included in the k = 0 term).180

(iii) Kleinberg et al. [23] showed that to find an (ε, δ)-optimal configuration out of a pool of size n,181

the worst-case minimum total runtime is Ω̃(nOPT
ε2δ).6 Since we need to test Ω(1/γ) configurations, in182

4We use “total work” and “total runtime” interchangeably; both sum over all parallel threads.
5We use the standard O and Õ notation, where the latter hides poly-logarithmic factors.
6Essentially this holds since we need Ω̃(1

ε2δ
) sample runs to estimate the δ-capped runtime of a configuration

with accuracy ε, as the maximum runtime for configuration i on some instance can be as large as Rδ(i)/δ.

4

Global variables
1: Instance distribution Γ
2: Phase I measurements count b
3: T ←∞ . Upper bound on OPTγδ/2, updated

continuously by all parallel processes
4: Set N of algorithm configurations

Algorithm 1 IMPATIENTCAPSANDRUNS

1: Inputs: Precision parameter ε ∈ (0, 1
3), Quan-

tile parameter δ ∈ (0, 1
7), Optimality quantile

target parameter γ, Failure probability parameter
ζ ∈ (0, 1

12), Number of iterations K, Instance
distribution Γ, Configuration distribution Π

2: Nk ← Sample
⌈

log(ζ/K)
log(1−γk)

⌉
−
⌈

log(ζ/K)
log(1−γk+1)

⌉
many configurations from Π for k ∈ [0,K − 1]

3: b←
⌈

26
δ log

(
2n
ζ

)⌉
4: Reset T ←∞
5: N ←

⋃K−1
k=0 Nk

6: for k = K − 1 downto 0 do
7: N k ← PRECHECK (Nk, ζ/K)
8: for configurations i ∈ N k in parallela do
9: Pi ← CAPSANDRUNS (i, ε, δ, ζ) thread

10: Start running Pi
11: Pause Pi when b runs of RUNTIMEEST

finished
12: end for
13: end for
14: N ← PRECHECK (N , ζ/K)
15: Continue runing Pi for i ∈ N
16: // CAPSANDRUNS eliminates the threads
17: Wait until all threads finish, abort if |N | = 1
18: return i∗ = argmini∈N Ȳ (i) and τi∗

Algorithm 2 CAPSANDRUNS thread

1: Inputs: Configuration i, precision ε, quantile
parameter δ, failure probability parameter ζ

2: // Phase I:
3: Run τi ←QUANTILEEST (i, δ)
4: // Phase II:
5: if QUANTILEEST (i, δ) aborted then
6: Remove i from N
7: else
8: Ȳ (i)← RUNTIMEEST(i, τi, ε, δ, ζ)
9: if RUNTIMEEST rejected i then

10: Remove i from N
11: end if
12: end if

Algorithm 3 QUANTILEEST

1: Inputs: i, δ
2: Initialize: m←

⌈
(1− 3

4δ)b
⌉

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort and return
abort if total work ≥ 1.5Tb.

4: τ ← runtime of mth completed instance
5: return τ

aWhen running CAPSANDRUNS threads in parallel, we
allocate the same amount of time for every running thread,
regardless of the number of parallel tasks they themselves
may be performing.

Algorithm 4 PRECHECK

1: Inputs: ConfigurationsM, error parameter ζ/K
2: M′ ← {} . empty set
3: b′ ←

⌈
32.1 log

(
2K
ζ

)⌉
4: if T =∞ then
5: returnM
6: end if
7: for i ∈M do
8: if T last set when evaluating i then
9: append i toM′ . Add automatically

10: Continue
11: end if
12: // Phase I:
13: Run i on b′ instances in parallel until d0.8b′e

complete. Abort if total work ≥ 1.9Tb′.
14: if not aborted then
15: τ ′ ← runtime of d0.8b′eth completed instance
16: // Phase II:
17: for l = 1, l ≤ b′ do
18: Yl ← runtime of configuration i on

instance j ∼ Γ, with timeout τ ′

19: if
∑l
m=1 Ym > 2.99Tb′ then

20: // Stop measuring if total work too large
21: Break
22: end if
23: end for
24: Sample mean Ȳ ← 1

|Y |
∑
y∈Y y

25: Sample variance σ̄2 ← 1
|Y |
∑
y∈Y (y − Ȳ)2

26: Confidence C ← σ̄

√
2 log(3K

ζ)

l +
3τ ′ log(3K

ζ)

l

27: if Ȳ − C ≤ T then
28: append i toM′
29: end if
30: end if
31: end for
32: returnM′

Algorithm 5 RUNTIMEEST

1: Inputs: i, τi, ε, δ, ζ
2: Initialize: j ← 0
3: while True do
4: Sample jth instance J from Γ
5: Yi,j ← runtime of configuration i on instance J ,

with timeout τi
6: Sample mean Ȳ (i)← 1

j

∑j
j′=1 Yi,j′

7: Sample variance σ̄2
i ← 1

j

∑j
j′=1(Yi,j′ − Ȳ (i))2

8: // Calculate confidence:

9: Ci ← σ̄i

√
2 log(

3nj(j+1)
ζ)

j +
3τi log(

3nj(j+1)
ζ)

j

10: if Ȳ (i)− Ci > T then
11: return reject i
12: end if
13: if j=b then
14: T ← min{T, 2Ȳ (i)}.
15: end if
16: T ← min{T, Ȳ (i) + Ci} . upper confidence
17: if Ci ≤ ε

3 (2Ȳ (i)− Ci) then
18: return accept i with runtime estimate Ȳ (i).
19: end if
20: j ← j + 1
21: end while

5

the worst case the total runtime needed to find an (ε, δ, γ)-optimal configuration is about
OPTγ

δ/2

ε2δγ . The183

first term in our bound matches this, except that it is multiplied by (an upper bound on) the fraction184

of configurations surviving PRECHECK, F (38OPTγδ/2). Under typical parameter settings, this is the185

main term of the bound—the only one scaling with 1/(ε2δγ)—and the performance improvement of186

ICAR over CAR comes from this additional factor of F (38OPTγδ/2). Note that this term, and all the187

others, scale with a bound on the optimal runtime for the set of configurations they correspond to188

(e.g., for batch Nk they scale with OPTγkδ/2).189

(iv) F (38OPT
γk+1

δ/2) is an upper bound on the number of configurations surviving PRECHECK from190

Nk. Due to the a worst-case nature of our analysis, the bound is conservative, and in practice the191

number of surviving configurations is much smaller. In essence, this term measures how many192

configurations are competitive with a very good (OPT
γk+1

δ/2 -optimal) configuration. In other words, it193

measures the “needle-in-a-haystack” property of the configuration task.194

(v) The first term can be replaced with the problem-dependent bound of Weisz et al. [35, Equation 1]195

for n = F (38OPTγδ/2) 1
γ configurations. This bound depends on the characteristics of the runtime196

distributions of the configurations, and show that the algorithm can run much faster if the problem is197

easy, e.g., adapting to the relative variance of the runtime distributions. However, for simplicity, we198

only present the worst-case form here.199

(vi) The rest of the terms represent the cost of iteratively selecting only the best configurations to200

evaluate. None of these terms depends on 1/ε2. Note 1/γk is roughly the number of configurations201

in batch Nk, and each configuration is run essentially as long as the best configuration in that batch202

(OPTγkδ/2). Each of these configurations is run on constantly many instances in PRECHECK, and203

the surviving fraction of F (38OPT
γk+1

δ/2) configurations is also run on 1/δ instances to measure an204

accurate cap and set the bound T . These terms scale with OPTγkδ/2/γk = 2−kOPTγkδ/2/γ. Thus, the205

bound is only meaningful when 2−kOPTγkδ/2 is not too large. While in principle they can be infinite,206

in realistic scenarios this is not the case. Nevertheless, this requires the practitioner to choose γK−1207

such that it guarantees a small-enough optimal runtime OPT
γK−1

δ/2 , which is essentially the same208

task as choosing a proper γ. The terms also scale with 1/δ, but the effect of this is mitigated by the209

success of PRECHECK: for k 6= K − 1, each term is multiplied by the upper bound F (38OPTγkδ/2)210

on the fraction of configurations surviving PRECHECK.211

(vii) Our analysis shows that CAR can be sped up significantly without sacrificing any of its guarantees212

from Weisz et al. [35], by measuring the runtime caps on fewer samples (i.e., replacing the original213

value of b from Weisz et al. [35] with the one in Line 3 of Algorithm 1). We call this improved214

algorithm CAR ++. This effect is also partly responsible for the improved performance of ICAR.215

Insights into the algorithm and proof sketch We start with a brief description of the CAR216

algorithm, which runs parallel threads of Algorithm 2 for all configurations it considers. As described217

before, one thread, working on configuration i, has two phases: In the first phase, implemented218

in QUANTILEEST (Algorithm 3), a runtime cap τi is determined such that i is guaranteed, with219

high probability, to solve a random instance with probability between 1 − δ and 1 − δ/2 (i.e.220

tδ(i) ≤ τi < tδ/2(i)).7 This is achieved by solving sufficiently many instances in parallel, and τi221

is selected to be the time when a (1− 3δ/4)-fraction of the instances are solved. If measuring this222

cap takes too long, then QUANTILEEST stops measuring and eliminates configuration i. Unless this223

happens, in the second phase, the method RUNTIMEEST (Algorithm 3) is used to estimate the mean224

τi-capped runtime Rτi(i) of i, by solving successively selected random instances and computing225

the average runtime Ȳ (i). Then the empirical Bernstein inequality [4] is used to guarantee that226

Rτi(i) ∈ [Ȳ (i)−Ci, Ȳ (i) +Ci] for Ci calculated in Line 9 of Algorithm 5. This confidence interval227

is used continuously in multiple ways: (i) to reduce a global upper bound T on the best possible228

runtime of all the configurations (Line 16); (ii) to eliminate a configuration if it shows thatRτi(i) > T229

(Line 10); and (iii) to check if Rτi(i) is estimated accurately enough (Line 17). The procedure (which230

is an instance of a so-called Bernstein race [30]) continues until each configuration is either measured231

accurately or eliminated. The continuous elimination (also in QUANTILEEST) and parallel execution232

7Almost all guarantees provided in this paper are based on random sampling and hence hold with high
probability. For brevity, when it is clear from the context, we often omit the ‘high-probability’ qualifier.

6

guarantees that when the procedure stops, every configuration is run for at most Õ(OPT/(ε2δ))233

time, and eventually an (ε, δ)-optimal configuration is found, where OPT is the minimum mean234

δ/2-quantile capped runtime of the configurations.235

As explained before, ICAR (Algorithm 1) starts to examine new configurations in batches. For236

any batch Nk, first each configuration is quickly tested to see if it can be excluded from the set of237

potentially optimal configurations. This is done by the PRECHECK function, given in Algorithm 4.238

PRECHECK is very similar to CAR, but works with constant accuracy and quantile parameters239

instead of ε and δ, ensuring that it runs quickly, in time independent of these parameters. Also,240

the conditions to reject configurations are slightly different. For a configuration i, PRECHECK first241

estimates a cap τ ′ that guarantees solving random instances with constant probability pi ∈ [0.1, 0.35];242

then the mean τ ′-capped runtime is estimated roughly up to a constant multiplicative error. Since243

δ/2 ≤ 0.1 (the lower bound on pi), PRECHECK can compute multiplicative lower bounds on the244

runtime Rδ/2(i). These are then used to set the rejection conditions such that at least one of the245

best configurations from this batch i with Rδ/2(i) ≤ T is not rejected. Combining with the fact246

that
⋃K−1
j=k Nj contains a top-γk configuration, such a configuration survives PRECHECK and the247

corresponding CAPSANDRUNS-thread in ICAR (Algorithm 1) ensures that T is set to at most248

2OPTγkδ/2 in Line 11 of Algorithm 1, that is, T is continuously refined as new batches are evaluated.249

The number of configurations surviving PRECHECK can be bounded by looking at mean runtimes250

capped at the 0.35-quantile (upper bound on pi). Together with the setting of T , this implies that251

at most a Õ(F (38OPT
γk+1

δ/2) fraction of the |Nk| = Õ(1/γk) configurations survive PRECHECK.252

Considering that the number of runs carried out for each configuration is constant in PRECHECK,253

Õ(1/δ) in the loop of Algorithm 1, and Õ(1/(ε2δ)) in the last full CAR procedure, since the average254

runtime per configuration for Nk is OPTγkδ/2 (by the analysis of CAR), the runtime bound of the255

theorem follows. Correctness (i.e., the fact that the procedure finds an (ε, δ, γ)-optimal configuration)256

follows from that of CAR and because PRECHECK retains good configurations, as just shown.257

4 Experiments258

The basic setup and main results of our experimental analysis of ICAR are given below, while details259

are presented in Appendix C, along with a synthetic experiment examining ICAR’s speedup as good260

configurations become increasingly rare. We compared against the best available configurators that261

come with theoretical guarantees. We used the improved version of CAR (CAR++), derived in262

this paper, which uses a smaller b-value than the original version, thanks to our improved analysis263

(see Section 3 and Appendix A for details). Including CAR++ in the experiments allowed us to264

separately examine the effects of two improvements we introduced: (i) the smaller number of samples265

b needed in CAR, and (ii) the main conceptual innovation of this paper, the impatient discarding of266

configurations using PRECHECK. We attempted to compare against SPC [24] as well. However, in267

the experiments presented in Table 1, although SPC identified good configurations, it usually was268

not able to provide the required guarantees on ε and δ even after running for twice as long as the269

slowest alternative considered (CAR): SPC did not provide guarantees for 7 out of the 9 scenarios270

while also being the slowest in the other two cases (1.56 and 1.91 times slower than CAR). Therefore,271

we decided not to include SPC in our further comparisons.272

Datasets. We looked at two datasets from MIP and one from SAT. We considered true runtime273

data from the minisat SAT solver on instances generated by CNFuzzDD (http://fmv.jku.at/274

cnfuzzdd), which was examined in past work [34, 35, 24]. For the MIP scenarios, we looked at the275

CPLEX integer program solver on combinatorial auction instances (Regions200 [26]) and problems276

from wildlife conservation (RCW [1]). To generate sufficient MIP runtime data, following Hutter277

et al. [22], we used an Empirical Performance Model (EPM)—a random forest model trained on278

existing runtime data—to predict the runtime of new configurations on new instances. EPMs can279

do surprisingly well at predicting individual runtimes, particularly on the MIP datasets we consider.280

More importantly for our purposes, Eggensperger et al. [12] showed that such EPMs are effective281

surrogates for algorithm configuration, capturing key properties of runtime distributions such as the282

relative quality of configurations. We note that similar surrogates have also been used to guide search283

procedures [19, 9, 33, 37], to build algorithm portfolios [31, 36], to impute missing data [10], and to284

optimize hyperparameters from limited observations [32].285

Main Results. Table 1 shows the total CPU time needed to find a (0.05, 0.1, γ)-optimal configura-286

tion on each dataset with the same total failure probability (0.05) and with different values of γ. The287

7

http://fmv.jku.at/cnfuzzdd
http://fmv.jku.at/cnfuzzdd
http://fmv.jku.at/cnfuzzdd

Total CPU Time (days) Number of Conf. Before/After PRECHECK Rδ of returned conf. (secs)

γ = 0.05 γ = 0.02 γ = 0.01 γ = 0.05 γ = 0.02 γ = 0.01 γ = 0.05 γ = 0.02 γ = 0.01

Minisat
CNFuzzDD

ICAR 101 (13) 243 (15) 467 (25) 134 / 74 351 / 197 724 / 395 5.0 (0.1) 4.9 (0.1) 4.9 (0.1)
CAR++ 92 (5) 224 (16) 452 (18) 97 245 492 5.2 (0.1) 4.9 (0.1) 4.9 (0.1)

CAR 158 (18) 368 (7) 771 (22) 97 245 492 5.2 (0.1) 4.9 (0.1) 4.9 (0.1)

CPLEX
Regions200

ICAR 164 (91) 275 (101) 420 (103) 134 / 10 351 / 15 724 / 26 34.8 (4.3) 29.8 (2.2) 28.5 (1.8)
CAR++ 229 (20) 567 (28) 1098 (88) 97 245 492 35.3 (4.3) 32.0 (2.2) 29.8 (1.8)

CAR 524 (53) 1295 (64) 2549 (199) 97 245 492 35.3 (4.5) 31.9 (1.6) 29.8 (2.2)

CPLEX
RCW

ICAR 1284 (391) 2030 (302) 4072 (239) 134 / 18 351 / 44 724 / 97 156.1 (11.9) 146.5 (4.1) 143.3 (4.9)
CAR++ 1728 (375) 3644 (185) 7526 (131) 97 245 492 162.1 (11.9) 149.1 (4.1) 143.3 (4.9)

CAR 3306 (502) 7591 (192) 15658 (258) 97 245 492 160.1 (13.3) 149.1 (4.7) 143.3 (4.9)

Table 1: Total CPU time in days to find a (0.05, 0.1, γ)-optimal configuration, the number of configurations before and after PRECHECK,
and the quality of the returned configurations, as measured by δ-capped mean runtime with δ = 0.1. For CAR and CAR++, the number of
configurations sampled is reported. Error terms (in parentheses) are standard deviations over five runs.

Figure 1: CPU time spent on each configuration while searching for a (0.05, 0.1, 0.05)-optimal one (note the log scale on the y-axis).
CAR and CAR++ allocated a significant amount of time to evaluating bad configurations, while ICAR discarded many of these with near
minimal work via its PRECHECK routine. The large spikes in the ICAR curve are those configurations that fail to be rejected by the first call
to PRECHECK. Smaller spikes are configurations that were also rejected by PRECHECK, but the decision took more time (e.g., T was larger in
PRECHECK or the configuration was rejected in the second phase of PRECHECK).

parameters were not specifically chosen; results for varying ε and δ are reported in Appendix C. ICAR288

consistently outperformed CAR in all cases; ICAR outperformed CAR++ on the MIP datasets and289

was competitive on the SAT one. The performance improvement was largest when the PRECHECK290

mechanism managed to discard the most configurations; the MIP datasets have relatively more weak291

configurations, enabling PRECHECK to filter out more configurations quickly (see Fig. 2 in the292

Appendix for the distribution of configuration means). When γ is relatively small, ICAR was more293

likely to sample a really good configuration, making it easier to discard weak ones. In this case its294

runtime was as little as half that of CAR++, a significant improvement. Despite taking less total CPU295

time, ICAR actually sampled more configurations than CAR did. To understand this phenomenon296

better, Fig. 1 shows the time spent running each configuration. For all datasets the plots nearly overlap297

for the very best few configurations, indicating that ICAR treated these good configurations in much298

the same way as CAR or CAR++. However, the effect of the PRECHECK mechanism is clear, as299

ICAR ran many bad configurations for near-zero time, discarding them quickly. In cases where a300

bad configuration made it past PRECHECK (largest spikes in the blue curve), ICAR ran it for an301

amount of time similar to CAR++. Finally, the empirical mean δ-capped runtime (Rδ) of the returned302

configuration is reported in Table 1. All configurators returned solutions with similar quality, but303

thanks to its ability to examine more configurations, ICAR often did slightly better.304

5 Conclusions305

This paper presented a novel algorithm configuration method, ICAR, that selects configurations306

from an infinite pool with optimal theoretical guarantees up to logarithmic factors under mild307

conditions. While earlier theoretically grounded methods thoroughly test all configurations, ICAR—308

like successful heuristic approaches—quickly discards less promising ones. As a result, ICAR309

achieves significant speedups, particularly in needle-in-a-haystack scenarios. It thus constitutes an310

important step towards closing the gap between theoretical and heuristic procedures.311

A key limitation is that our work focuses simply on evaluating randomly sampled configurations.312

We do note that state-of-the-art heuristic methods also evaluate many random configurations to313

avoid getting stuck in local optima, so analyzing such procedures is of obvious practical importance.314

Furthermore, ICAR can be understood as a way of weighing different candidate configurations against315

8

each other, which could be proposed by model- or gradient-based methods as well as by random316

sampling (see, e.g., an argument to this effect in [23, Theorem 7.1]).317

Broader Impact318

We expect that our theorems will guide the design of future algorithm configuration procedures.319

We note that speeding up computationally expensive algorithms saves time, money, and electricity,320

arguably reducing carbon emissions and yielding social benefit. The algorithms we study can be321

be applied to a limitless range of problems and so could yield both positive and negative impacts;322

however, we do not foresee our work particularly amplifying such impacts beyond the computational323

speedups already discussed.324

References325

[1] Ahmadizadeh, K., Dilkina, B., Gomes, C. P., and Sabharwal, A. An empirical study of326

optimization for maximizing diffusion in networks. In International Conference on Principles327

and Practice of Constraint Programming, pp. 514–521. Springer, 2010. http://www.cs.328

cornell.edu/~kiyan/rcw/generator.htm.329

[2] Ansótegui, C., Sellmann, M., and Tierney, K. A gender-based genetic algorithm for automatic330

configuration of algorithms. In Principles and Practice of Constraint Programming (CP), pp.331

142–157, 2009.332

[3] Ansótegui, C., Malitsky, Y., Sellmann, M., and Tierney, K. Model-based genetic algorithms for333

algorithm configuration. In International Joint Conference on Artificial Intelligence (IJCAI), pp.334

733–739, 2015.335

[4] Audibert, J.-Y., Munos, R., and Szepesvári, C. Tuning bandit algorithms in stochastic environ-336

ments. In ALT, volume 4754, pp. 150–165. Springer, 2007.337

[5] Audibert, J.-Y., Munos, R., and Szepesvári, C. Exploration-exploitation tradeoff using variance338

estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876–1902, 2009.339

[6] Balcan, M.-F., Nagarajan, V., Vitercik, E., and White, C. Learning-theoretic foundations of340

algorithm configuration for combinatorial partitioning problems. In Conference on Learning341

Theory, pp. 213–274, 2017.342

[7] Balcan, M.-F., Dick, T., Sandholm, T., and Vitercik, E. Learning to branch. International343

Conference on Machine Learning, 2018.344

[8] Balcan, M.-F., DeBlasio, D., Dick, T., Kingsford, C., Sandholm, T., and Vitercik, E. How much345

data is sufficient to learn high-performing algorithms? arXiv preprint arXiv:1908.02894, 2019.346

[9] Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. Collaborative hyperparameter tuning. In347

International conference on machine learning, pp. 199–207, 2013.348

[10] Biedenkapp, A., Marben, J., Lindauer, M., and Hutter, F. Cave: Configuration assessment, visu-349

alization and evaluation. In International Conference on Learning and Intelligent Optimization,350

pp. 115–130. Springer, 2018.351

[11] Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. A racing algorithm for configuring352

metaheuristics. In Genetic and Evolutionary Computation Conference (GECCO), pp. 11–18,353

2002.354

[12] Eggensperger, K., Lindauer, M., Hoos, H. H., Hutter, F., and Leyton-Brown, K. Efficient355

benchmarking of algorithm configurators via model-based surrogates. Machine Learning, 107356

(1):15–41, 2018.357

[13] Gupta, R. and Roughgarden, T. A PAC approach to application-specific algorithm selection.358

SIAM Journal on Computing, 46(3):992–1017, 2017.359

[14] Hoos, H. H. Stochastic local search-methods, models, applications. IOS Press, 1998.360

9

http://www.cs.cornell.edu/~kiyan/rcw/generator.htm
http://www.cs.cornell.edu/~kiyan/rcw/generator.htm
http://www.cs.cornell.edu/~kiyan/rcw/generator.htm

[15] Hoos, H. H. A mixture-model for the behaviour of SLS algorithms for SAT. In AAAI/IAAI, pp.361

661–667, 2002.362

[16] Hoos, H. H. and Stützle, T. Towards a characterisation of the behaviour of stochastic local363

search algorithms for SAT. Artificial Intelligence, 112(1-2):213–232, 1999.364

[17] Hutter, F., Hoos, H., and Stützle, T. Automatic algorithm configuration based on local search.365

In AAAI Conference on Artificial Intelligence, pp. 1152–1157, 2007.366

[18] Hutter, F., Hoos, H., Leyton-Brown, K., and Stützle, T. ParamILS: An automatic algorithm367

configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.368

[19] Hutter, F., H. Hoos, H., and Leyton-Brown, K. Sequential model-based optimization for general369

algorithm configuration. In International Conference on Learning and Intelligent Optimization,370

pp. 507–523. Springer, 2011.371

[20] Hutter, F., Hoos, H., and Leyton-Brown, K. Bayesian optimization with censored response data.372

In NIPS workshop on Bayesian Optimization, Sequential Experimental Design, and Bandits373

(BayesOpt’11), 2011.374

[21] Hutter, F., Hoos, H., and Leyton-Brown, K. Sequential model-based optimization for general375

algorithm configuration. In Conference on Learning and Intelligent Optimization (LION), pp.376

507–523, 2011.377

[22] Hutter, F., Xu, L., Hoos, H., and Leyton-Brown, K. Algorithm runtime prediction: Methods and378

evaluation. AIJ, 206:79–111, 2014.379

[23] Kleinberg, R., Leyton-Brown, K., and Lucier, B. Efficiency through procrastination: Ap-380

proximately optimal algorithm configuration with runtime guarantees. In Proceedings of the381

International Joint Conference on Artificial Intelligence (IJCAI), 2017.382

[24] Kleinberg, R., Leyton-Brown, K., Lucier, B., and Graham, D. Procrastinating with confidence:383

Near-optimal, anytime, adaptive algorithm configuration. Conference on Neural Information384

Processing Systems (NeurIPS), 2019.385

[25] Kroc, L., Sabharwal, A., and Selman, B. An empirical study of optimal noise and runtime386

distributions in local search. In International Conference on Theory and Applications of387

Satisfiability Testing, pp. 346–351. Springer, 2010.388

[26] Leyton-Brown, K., Pearson, M., and Shoham, Y. Towards a universal test suite for combinatorial389

auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce, pp.390

66–76, 2000. https://www.cs.ubc.ca/~kevinlb/CATS.391

[27] Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyperband: A novel392

bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18:185:1–185:52,393

2017.394

[28] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. The irace package, iterated395

race for automatic algorithm configuration. Technical report, IRIDIA, Université Libre de Brux-396

elles, 2011. http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf.397

[29] Maclaurin, D., Duvenaud, D., and Adams, R. P. Gradient-based hyperparameter optimization398

through reversible learning. In International Conference on Machine Learning, pp. 2113–2122,399

2015.400

[30] Mnih, V., Szepesvári, C., and Audibert, J.-Y. Empirical Bernstein stopping. In Proceedings of401

the 25th international conference on Machine learning, pp. 672–679. ACM, 2008.402

[31] Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes, C., McFadden, J., Selman, B., and403

Shoham, Y. Satzilla 0.9. Solver description, International SAT Competition, 2003.404

[32] Probst, P., Bischl, B., and Boulesteix, A.-L. Tunability: Importance of hyperparameters of405

machine learning algorithms. arXiv preprint arXiv:1802.09596, 2018.406

10

https://www.cs.ubc.ca/~kevinlb/CATS
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

[33] Swersky, K., Snoek, J., and Adams, R. P. Multi-task Bayesian optimization. In Advances in407

neural information processing systems, pp. 2004–2012, 2013.408

[34] Weisz, G., György, A., and Szepesvári, C. LeapsAndBounds: A method for approximately409

optimal algorithm configuration. In Proceedings of the International Conference on Machine410

Learning (ICML), 2018.411

[35] Weisz, G., György, A., and Szepesvári, C. CapsAndRuns: An improved method for approxi-412

mately optimal algorithm configuration. In International Conference on Machine Learning, pp.413

6707–6715, 2019.414

[36] Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. SATzilla: Portfolio-based algorithm415

selection for SAT. Journal of Artificial Intelligence Research (JAIR), 32:565–606, 2008.416

[37] Yogatama, D. and Mann, G. Efficient transfer learning method for automatic hyperparameter417

tuning. In Artificial intelligence and statistics, pp. 1077–1085, 2014.418

11

A Proof of Theorem 1419

The first step of the proof improves the analysis of CAPSANDRUNS given in [35]. In [35], the420

value of b was
⌈

48
δ log

(
3n
ζ

)⌉
, which we replace here with

⌈
26
δ log

(
2n
ζ

)⌉
. This value is used in421

the original analysis of CAPSANDRUNS twice, in Lemma 2 and Lemma 3 of [35]. The analysis of422

Lemma 2 still holds with the new value without any change, while we give a new proof for Lemma 3423

of [35]: the difference is that in the new proof we use the Bernstein inequality rather than its empirical424

version. . The new version of the lemma, Lemma 2, is slightly stronger, which means we can replace425

2Tb with 1.5Tb in Line 3 of the sub-routine QUANTILEEST. Note that this change of the value of b426

itself improves the runtime of CAR, and we call the resulting algorithm CAR++, which will also be427

examined in the experiment section.428

To prove Theorem 1, we need to (i) prove the correctness of IMPATIENTCAPSANDRUNS, that is,429

the (ε, δ, γ)-optimality of the configuration returned by the algorithm; and (ii) give a bound on the430

total runtime. Starting with the correctness, we note that the algorithm proceeds in iterations from431

K − 1 to 0 in decreasing order, sampling bigger and bigger sets of configurations Nk. Each new432

set Nk, together with those configurations sampled before for k′ > k, contains an OPTγkδ/2-optimal433

configuration with high probability (Lemma 4), in other words, a configuration from an exponentially434

decreasingly small quantile of the best configurations. The size of Nk, for all k ∈ [0,K − 1] is435

roughly log(K/ζ)/γk (Lemma 6). Next, we prove in Lemma 8 that PRECHECK does not reject a436

good configuration, and does reject a truly bad configuration. Unlike other parts of the proof, we437

do not guarantee this to hold with high probability for all configurations, instead we guarantee it to438

hold with high probability for any one configuration per each iteration k; this will be chosen later439

to be one of the OPTγkδ/2-optimal configurations. Then, Lemma 10 shows that there remains an440

OPTγkδ/2-optimal configuration after each iteration k (Line 11 of Algorithm 1) that is not rejected441

by QUANTILEEST or RUNTIMEEST. This is because even if our designated configuration was442

rejected by PRECHECK, that means that there was an even better configuration, which from the443

proof of CAPSANDRUNS, by Lemma 9, will not be rejected by QUANTILEEST or RUNTIMEEST.444

Several corollaries follow from this. Corollary 11 shows that with high probability, the configuration445

IMPATIENTCAPSANDRUNS returns in the end is (ε, δ, γ)-optimal, showing the correctness of the446

algorithm To prove the runtime bound, we start by showing that in every iteration k, T is set to at447

most 2OPTγkδ/2, after evaluating a configuration for no more than 4bOPTγkδ/2 time (Corollary 12).448

From this, Corollary 13 deduces a runtime bound for CAR in each iteration, which depends on449

the number of configurations surviving PRECHECK. Using the correctness analysis of PRECHECK450

(Lemma 8), Lemma 14 gives an upper bound on this number, essentially saying that roughly only451

F (38OPT
γk+1

δ/2) fraction of the Nk configurations survive PRECHECK in round k, where F (x) is452

roughly the probability of a random configuration sampled from Π having a larger 0.35th quantile-453

capped8 runtime than x. That is, essentially only those configurations survive which can solve at least454

65% of the problem instances reasonably fast.455

This is complemented by Lemma 15, which gives a runtime bound for PRECHECK, relying on Lines456

13 and 21 of PRECHECK (Algorithm 4) stopping lengthy evaluations. To finish the proof, we combine457

the runtime bounds for all the components of ICAR discussed above. The lemmas above introduce458

various high-probability events under which their statements hold (by guaranteeing mostly that our459

bounds on the runtime caps and on the average runtimes hold), and a union bound over them proves460

that all those events hold simultaneously with probability at least 1− 12ζ, proving Theorem 1.461

Lemma 2 (Improved version of Lemma 3 of [35]). Let τ be a constant satisfying 0 ≤ τ ≤ tδ/2(i),462

and let Zτ (i, j), j ∈ [1, b], be b runtime measurements of configuration i with timeout τ . Let Z̄τ (i)463

be their average and Rτ (i) their expectation. Then for c > 0, Pr
(
|Z̄τ (i)−Rτ (i)| ≥ cRτ (i)

)
≤464

2 exp
(

bδc2

4(1+c/3)

)
. In particular, for Si = { 1

2Rτ (i) ≤ Z̄τ (i) ≤ 1.5Rτ (i)} and b =
⌈

26
δ log

(
2n
ζ

)⌉
,465

we have Pr(Sci) ≤
ζ
n (by substituting c = 1

2).466

8This constant 0.35 can be set arbitrarily, and it only affects other constants in the algorithm. It was set to
0.35 so that these constant do not increase beyond how large they have to be to guarantee other statements with
high probability.

12

Proof. Since Zτ (i, j) ≤ τ , Var(Zτ (i)) = Varj∼Γ[Zτ (i, j)] ≤ Ej∼ΓZ
2
τ (i, j) ≤ τRτ (i). As at least467

δ/2 fraction of instances run longer than τ , we have that Rτ (i) ≥ δ
2τ , so Var(Zτ (i)) ≤ 2

δR
2
τ (i).468

Using the Bernstein inequality,469

Pr
(
|Z̄τ (i)−Rτ (i)| ≥ cRτ (i)

)
≤ 2 exp

(
− bc2R2

τ (i)/2
1
3τcRτ (i) + Var(Zτ (i))

)
≤ 2 exp

(
− bc2R2

τ (i)/2
2
3δ cR

2
τ (i) + 2

δR
2
τ (i)

)
= 2 exp

(
bδc2

4(1 + c/3)

)
.

470

Remark 3. From Lemma 6 of [35], there is an event E1 (with the notation of [35],this event is471

E1∩E2∩E3) with Pr(E1) ≥ 1−6ζ , under which all the high-probability statements in the analysis472

of CAPSANDRUNS hold for the algorithm with the constants improved as above. In particular,473

E1 guarantees that the average runtime estimates of CAR are close to their expectations, and that474

QUANTILEEST measures an accurate cap for each configuration such that tδ(i) ≤ τi ≤ tδ/2(i).475

Lemma 4. There is an event E2 with Pr(E2) ≥ 1 − ζ such that under E2, for all integers476

k ∈ [0,K − 1], there is a configuration i ∈
⋃K−1
j=k Nj with R

δ
2 (i) ≤ OPTγkδ/2 after Line 2 of477

IMPATIENTCAPSANDRUNS (Algorithm 1).478

Proof. For any i chosen randomly from the distribution Π, R
δ
2 (i) ≤ OPTγkδ/2 with probability479

at least γk. As the configurations are sampled independently, the probability that none of the480

sampled configurations are optimal for γk is at most (1 − γk)|
⋃K−1
j=k Nj| = (1 − γk)

⌈
log(ζ/K)
log(1−γk)

⌉
≤481

ζ/K. Applying the union bound over k ∈ [0,K − 1], with probability at least 1 − ζ, for all482

k ∈ [0,K − 1], there is a configuration i with R
δ
2 (i) ≤ OPTγkδ/2 sampled into

⋃K−1
j=k Nj at Line 2 of483

IMPATIENTCAPSANDRUNS.484

Remark 5. Noting that γ0 = γ, and
⋃K−1
k=0 Nk = N , the previous lemma with k = 0 states that485

under E2, a configuration i with R
δ
2 (i) ≤ OPTγδ/2 is sampled into N .486

In the following we refer to the last part of Algorithm 1 (Lines 14 to 18) iteration −1, denote it with487

k = −1, and accordingly define N−1 = N and N−1 = N .488

Lemma 6. After Line 2 of Algorithm 1, for all k ∈ [−1,K − 1], |Nk| ≤ log(K/ζ)/γk + 1.489

Proof. Using that for any x ∈ (0, 1), x ≤ − log(1− x), we have for any k ∈ [−1,K − 1] that490

|Nk| ≤
⌈

log(ζ/K)

log(1− γk)

⌉
≤ log(K/ζ)

− log(1− γk)
+ 1 ≤ log(K/ζ)/γk + 1.

491

By [35, Lemma 2], under E1, and noting that T can only be set by RUNTIMEEST evaluating a492

configuration after the cap τ for that configuration has already been measured by QUANTILEEST:493

Lemma 7. If a configuration i sets T , then tδ(i) ≤ τi ≤ tδ/2(i).494

Lemma 8. Suppose δ ≤ 0.2 and assume that we are in the PRECHECK call in iteration −1 ≤495

k < K − 1 of Algorithm 1 (recall that iteration -1 refers to the last part of the algorithm after496

the iteration loop is finished). Let Prk denote the conditional probability conditioned on all the497

random events before the call to PRECHECK. Let i′ be the configuration that was last evaluated498

to set T by RUNTIMEEST (in an iteration k′ > k). For any i ∈ M, there is an event E3,k,i with499

Prk(E3,k,i) ≥ 1− 4ζ/K such that under E1 and E3,i, (1) if R
δ
2 (i) ≤ Rτi′ (i

′), i won’t be rejected500

by PRECHECK, and (2) if R0.35(i) ≥ 19T , then i will be rejected by PRECHECK.501

13

Proof. Consider the evaluation of configuration i in PRECHECK. Let Il be the indicator that the lth502

instance in Phase I of PRECHECK takes at least t1/10(i) time to complete (without capping). The Il503

are independent and identically distributed Bernoulli random variables with Prk(Il = 1) = 1/10.504

We use the Chernoff bound to get that Prk

(∑b′

l=0 Il > 0.2b′
)

= Prk

(∑b′

l=0 Il >
1
10b
′(1 + 1)

)
≤505

exp
(
− 1

30b
′) ≤ ζ/(2K). Let E3,k,i,1 be the event that

∑b′

l=0 Il ≤ 0.2b′. Similarly, defining506

Jl to be the indicator that the lth instance in Phase I of PRECHECK takes at least t0.35 time to507

complete (without capping), noting that Prk(Jl = 1) = 0.35, the Chernoff bound implies that508

Prk

(∑b′

l=0 Jl < 0.2b′
)

= Prk

(∑b′

l=0 Jl > 0.35b′(1− 0.35−0.2
0.35)

)
≤ ζ/(2K). Let E3,k,i,2 be the509

event that
∑b′

l=0 Jl ≥ 0.2b′.510

So for any configuration i ∈M, under E3,k,i,1, the number of samples from the 1/10-tail will be at511

most b0.2b′c, and under E3,k,i,2, the number of samples from the 0.35-tail will be at least d0.2b′e, so512

picking the d0.8b′eth finished run and denoting it by τ ′ (in Line 15 of Algorithm 4) ensures under513

and E3,k,i,1 and E3,k,i,2 that t0.35(i) ≤ τ ′ ≤ t1/10(i). For δ ≤ 0.2 (which we have by assumption),514

this implies that τ ′ ≤ tδ/2(i).515

By [35, Lemma 7], under E1, Rτi′ (i
′) ≤ T . Assuming that R

δ
2 (i) ≤ Rτi′ (i

′) for (1), we have516

R
δ
2 (i) ≤ T . Then under E3,k,i,1, Rτ ′(i) ≤ R1/10(i) ≤ T (as by assumption δ ≤ 0.2 and517

τ ′ ≤ t1/10(i), so Rτ ′(i) ≤ R1/10(i) ≤ R
δ
2 (i) ≤ Rτi′ (i

′) ≤ T). There are two cases in which we518

reject configuration i. First, if avg(Y)− C ≥ T . By the empirical Bernstein bound [4], there is an519

eventE3,k,i,3 such that Prk(E3,k,i,3) ≥ 1−ζ/K, and underE3,k,i,3, | avg(Y)−Ek[avg(Y)|τ ′]| ≤ C.520

As Ek[avg(Y)|τ ′] = Rτ ′(i) ≤ T , we have that under E1, E3,k,i,1 and E3,k,i,3, configuration i in521

iteration k will not be rejected in Line 27 of PRECHECK if (1) holds.522

The second type of rejection happens in Line 13 of PRECHECK when Phase I of PRECHECK runs523

for at least 1.9Tb′ time. For each run l that is performed in Phase I, denote by Xl the hypothetical524

runtime of that instance if the cap were t1/10(i), and by Yl the run if the runtime cap were t0.35(i).525

From the above, under E3,k,i,1 τ
′ ≤ t1/10(i), and if we had to abort then that means we haven’t run526

any instance for τ ′ time yet, so by denoting measurements performed so far by Phase I of PRECHECK527

by X̄l, we have X̄l ≤ Xl, so when we abort we have that avg(X) ≥ 1.9T .528

Applying Lemma 2 with c = 0.9, b = b′ =
⌈
32.1 log

(
2K
ζ

)⌉
, δ = 0.2, and τ = t1/10(i), we get that529

Prk
(
| avg(X)−R1/10(i)| ≥ 0.9R1/10(i)

)
≤ 2 exp

(
b′ 81

5·520

)
≤ ζ

K . Denote by E3,k,i,4 the event530

that avg(X) ≤ 1.9T . Then, for (1), under E1 and E3,k,i,1, by the above R1/10(i) ≤ T , we have531

Prk(avg(X) ≥ 1.9T) ≤ Prk(avg(X)−R1/10(i) > 0.9R1/10(i)) ≤ ζ
K , so Prk(E3,k,i,4) ≥ 1− ζ

K ,532

and under E1 and E3,k,i,4, this configuration won’t be rejected in Line 13 of PRECHECK if it satisfies533

(1).534

For (2), let E3,k,i,5 the event that avg(Y) ≥ 0.1R0.35(i)). Apply Lemma 2 with the same param-535

eters except τ = t0.35(i), to get that Prk(avg(Y) ≤ 0.1R0.35(i)) = Prk(R0.35(i) − avg(Y) ≥536

0.9R0.35(i)) ≤ Prk(| avg(Y)−R0.35(i)| ≥ 0.9R0.35(i)) ≤ 2 exp
(
b′ 81

5·520

)
≤ ζ

K . For PRECHECK537

to not reject a configuration i, it measures a cap τ ′ ≥ t0.35(i) (under E3,k,i,2), and so the mea-538

surements Ȳl satisfy Ȳl ≥ Yl, so we spend b′ avg(Ȳl) ≥ b′ avg(Yl) ≥ 0.1R0.35(i) time for539

configuration i under E3,k,i,5. Thus, with probability at least Prk(E3,k,i,4) ≥ 1 − ζ/K, a con-540

figuration where R0.35(i) ≥ 19T is rejected in Line 13. Taking a union bound and letting541

E3,k,i = E3,k,i,1 ∩ E3,k,2 ∩ E3,k,i,3 ∩ E3,k,i,4 ∩ E3,k,i,5 (the event that all the high-probability542

statements above hold for configuration i and iteration k), we have that Prk(E3,k,i) ≥ 1−4ζ/K.543

From the proof of [35, Theorem 1] we can extract the following result:544

Lemma 9. LetN be the set of configurations CAPSANDRUNS is called with, andN ′ the ones among545

these that are not rejected in QUANTILEEST. Let i∗ = mini∈N ′ Rτi(i). Under E1, i∗ is not rejected546

in RUNTIMEEST and CAPSANDRUNS returns a configuration I for whichRτI (I) ≤ (1+ε)Rτi∗ (i∗).547

To proceed, we instantiate the events E3,k,i of Lemma 8 for one of the best configurations i in Nk.548

By Lemma 4 and Remark 5, under E2, for every iteration k of IMPATIENTCAPSANDRUNS, there549

is a configuration ı̂∗k ∈
⋃K−1
j=k Nj such that R

δ
2 (̂ı∗k) ≤ OPTγkδ/2. Furthermore, this guarantees that550

14

ı̂∗0 ∈ N satisfies R
δ
2 (̂ı∗0) ≤ OPTγδ/2, which also implies, through the first part of Lemma 9, that551

under E1, there is a configuration ı̂∗−1 satisfying R
δ
2 (̂ı∗−1) ≤ OPTγδ/2. Now we define the following552

event E4 ⊂ E1 ∩ E2 as E4 = ∩K−2
k=−1E3,k,̂ı∗k

∩ E1 ∩ E2.553

Lemma 10. Under E4, for all integer 0 ≤ k ≤ K − 1, there is a configuration i∗k remaining in554 ⋃K−1
j=k N j at the end of the kth iteration (after Line 11 in Algorithm 1), that is not rejected by555

QUANTILEEST or RUNTIMEEST, for which Rτi∗
k
(i∗k) ≤ OPTγkδ/2. Similarly, there is a configuration556

i∗ remaining in N at the end of the final CAPSANDRUNS call (after Line 17 in Algorithm 1), for557

which Rτi∗ (i∗) ≤ OPTγδ/2.558

Proof. Suppose E4 holds (this also means that E1 and E2 hold). Let i′ denote the configuration that559

last set T .560

For k = K − 1 there is no PRECHECK as T =∞, in other words nothing is rejected by PRECHECK.561

For iterations 0 ≤ k ≤ K − 2, and for the final CAPSANDRUNS call, either R
δ
2 (̂ı∗k) ≤ Rτi′ (i

′), in562

which case by Lemma 8, under E1 and E3,k,̂ı∗k
, ı̂∗k is not rejected, or R

δ
2 (̂ı∗k) > Rτi′ (i

′). Thus under563

E4, R
δ
2 (̂ı∗k) > Rτi′ (i

′) holds whenever ı̂∗k is rejected. We assume this for the rest of the proof.564

The remainder of this proof handles iterations 0 ≤ k ≤ K − 1, but the arguments transfer for the565

final CAPSANDRUNS call case by writing γ and ı̂∗−1 instead of γk and ı̂∗k. We investigate the two566

possible cases:567

• If ı̂∗k is not rejected by PRECHECK, then under E1 by Lemma 8 in [35], there is an i in the set568

of configurations CAPSANDRUNS is called with, that will not be rejected by QUANTILEEST,569

and for which Rτi(i) ≤ R
δ
2 (̂ı∗k) ≤ OPTγkδ/2.570

• If ı̂∗k is rejected by PRECHECK, i′ is a configuration not rejected by QUANTILEEST (as it set571

T), for which Rτi′ (i
′) ≤ R δ

2 (̂ı∗k) ≤ OPTγkδ/2.572

In either case, there is a configuration i not rejected by QUANTILEEST, for which Rτi(i) ≤ OPTγkδ/2.573

Thus by Lemma 9, under E1, there is a configuration i∗k not rejected by QUANTILEEST or RUN-574

TIMEEST for which Rτi∗
k
(i∗k) ≤ Rτi(i) ≤ OPTγkδ/2.575

Corollary 11. Under E4, the configuration returned by IMPATIENTCAPSANDRUNS is (ε, δ, γ)-576

optimal.577

Proof. By Lemma 9 and Lemma 10, under E4, the final CAPSANDRUNS call returns with a configu-578

ration I for which RτI (I) ≤ (1 + ε)Rτi∗ (i∗) ≤ (1 + ε)OPTγδ/2. Under E1, Rδ(I) ≤ RτI (I), so I579

is (ε, δ, γ)-optimal.580

Corollary 12. Under E4, for all iterations 0 ≤ k ≤ K − 1, T is set by QUANTILEEST to at581

most 2OPTγkδ/2, and the combined time spent by QUANTILEEST and RUNTIMEEST evaluating the582

configuration that has set T is bounded by 4bOPTγkδ/2 when it sets T .583

Proof. Take i∗k as in Lemma 10. Since i∗k is not rejected in either QUANTILEEST or RUNTIMEEST, its584

b measurements in RUNTIMEEST will complete, and by [35, Lemma 4], under E1, this measurement585

will be at most 2Rτi∗
k
(i∗k) ≤ 2OPTγkδ/2. T is thus set to at most this value. From the proof of586

[35, Lemma 5], the work spent by QUANTILEEST and RUNTIMEEST evaluating i∗k is bounded by587

4bOPTγkδ/2 time.588

Corollary 13. Suppose E4 holds. Then for all iterations 0 ≤ k ≤ K − 1, CAPSANDRUNS performs589

at most Õ
(
b|N k|OPTγkδ/2

)
work.590

Proof. By Corollary 12, under E4, in iteration k, T is set to at most 2OPTγkδ/2, after which by591

the proof of [35, Lemma 5], each configuration performs at most Õ
(
bOPTγkδ/2

)
work. Also by592

15

Corollary 12, the work performed by the configuration that set T to this value in iteration k is593

upper bounded by 4bOPTγkδ/2. Since configurations are run in parallel, all the other configurations594

performed at most this amount of work in the meantime. Thus in total CAPSANDRUNS performs at595

most Õ
(
b|N k|OPTγkδ/2

)
work in iteration k.596

Lemma 14. There is an event E5 such that Pr(E5) ≥ 1 − ζ, and under E5, E1, and E4, for all597

iterations k ∈ [−1,K − 2], the number of configurations not rejected by PRECHECK can be bounded598

as599

|N k| ≤ (log(K/ζ) + 1)

[
F (38OPT

γk+1

δ/2)
1

γk
+

√
2F (38OPT

γk+1

δ/2)
1

γk
+

2

3

]
,

where F (x) = Pri∼Π(R0.35(i) ≤ x) + 4ζ/K.600

Proof. Note that for the first call of PRECHECK, with k = K − 1, PRECHECK returns its input601

without any modification, so |M′| = |M|. For the rest of the calls, −1 ≤ k < K − 1.602

Denoting by Bi the indicator whether configuration i ∈ Nk is accepted by PRECHECK. Since603

elements of Nk are independent and identically distributed random variables, and there are no604

interactions between configurations being evaluated by PRECHECK, the outcomes Bi of PRECHECK605

are also independent and identically distributed. By Lemma 8, under E1, PRECHECK rejects a606

configuration i if R0.35(i) ≥ 19T with probability at least 1− 4ζ/K, so the probability of reject is at607

least Pri∼Π(R0.35(i) ≥ 19T |T)(1−4ζ/K) ≥ Pri∼Π(R0.35(i) ≥ 19T |T)−4ζ/K = 1−F (19T),608

so the conditional probability of accept is at least F (19T). The number of configurations not accepted609

is
∑
i∈Nk Bi. By the Bernstein inequality,610

Pr

[∑
i∈Nk

Bi ≥ F (19T)|Nk|+

√
2F (19T)|Nk| log

K

ζ
+

2

3
log

(
K

ζ

) ∣∣∣T] ≤ ζ

K
,

so by a union bound over k ∈ [−1,K − 2], this is true for all iterations under an event E5 with611

probability at least 1 − ζ. By Lemma 6, |Nk| ≤ log(K/ζ)/γk + 1. By Corollary 12, under E4,612

T ≤ 2OPT
γk+1

δ/2 when PRECHECK is run for iteration k. Making these substitutions and reordering613

the terms gives the result.614

Lemma 15. For iterations −1 ≤ k < K − 1, under E4, PRECHECK runs for at most615

10OPT
γk+1

δ/2

⌈
32.1 log

(
2K
ζ

)⌉
(log(K/ζ)/γk + 1) time.616

Proof. By Corollary 12, under E4, T ≤ 2OPT
γk+1

δ/2 when PRECHECK is run for iteration k. Phase617

I of PRECHECK is aborted when the total runtime reaches 1.9Tb′ ≤ 3.8OPT
γk+1

δ/2 b′. Phase II of618

PRECHECK is aborted when the total Phase II runtime exceeds 2.99Tb′ ≤ 5.98OPT
γk+1

δ/2 b′. This619

abort only happens after the last run, which takes at most τ ′ time, where τ ′ is measured in Phase I of620

PRECHECK. Because of the way τ ′ is calculated by Phase I, at least b0.2b′c instances were running621

up until τ ′ time, which took b0.2b′c τ ′ ≤ 1.9Tb′ time. For any valid setting of ζ, b0.2b′c ≥ 0.19b′,622

so τ ′ ≤ 10T ≤ 20OPT
γk+1

δ/2 ≤ 0.21OPT
γk+1

δ/2 b′, so the work of PRECHECK for each configuration is623

upper bounded by (3.8 + 5.98 + 0.21)OPT
γk+1

δ/2 b′ < 10OPT
γk+1

δ/2 b′. Multiplying this by the number624

of configurations |Nk| PRECHECK evaluates, and using Lemma 6, the total work of PRECHECK is625

bounded by 10OPT
γk+1

δ/2 b′(log(K/ζ)/γk + 1).626

Proof of Theorem 1. Suppose E4 and E5 hold. By a union bound, taking also into account the lower627

bounds on the probabilities of these events and for events E1, E2, and E3,k,i∗k,j
(given by Remark 3,628

Lemma 4, Lemma 8, Lemma 14), we have Pr(E1 ∩ E2 ∩ E4 ∩ E5) ≥ 1 − 12ζ. By Corollary 11,629

under these events, the configuration returned by IMPATIENTCAPSANDRUNS is (ε, δ, γ)-optimal.630

Next we consider the runtime of IMPATIENTCAPSANDRUNS. For iteration k = K − 1, E1, E2, and631

E4, by Corollary 13 and Lemma 6, the runtime of CAPSANDRUNS is Õ
(
bOPTγkδ/2/γK−1

)
. For iter-632

ations 0 ≤ k < K−1, by Corollary 13, the runtime of CAPSANDRUNS in iteration k is upper bounded633

16

as Õ
(
b|N k|OPT

γK−1

δ/2

)
. Using the bound |N k| = Õ

(
F (38OPT

γk+1

δ/2)/γk

)
given by Lemma 14634

the work by CAPSANDRUNS in iteration k is bounded by Õ
(
bF (38OPT

γk+1

δ/2)OPTγkδ/2/γk

)
.635

For the final CAPSANDRUNS call, the total work performed by CAPSANDRUNS would only increase636

if we didn’t do any work on any configurations before, in other words, if we restarted CAPSANDRUNS637

with the input configurations N . By this idea we can upper bound the total work of the final638

CAPSANDRUNS call using [35, Theorem 1], which states that under E1, the total work of a restarted639

CAPSANDRUNS with input configurations N is at most Õ
(
|N | 1

ε2δ mini∈N R
δ
2 (i)

)
, which is a640

simplified form of the problem-dependent bound (1) in [35]. By Lemma 10, mini∈N R
δ
2 (i) ≤641

OPTγδ/2, and by Lemma 14, |N | = Õ
(
F (38OPTγδ/2)/γ

)
. Plugging these in the bound we get that642

the final CAPSANDRUNS takes Õ
(

OPTγδ/2F (38OPTγδ/2) 1
ε2δγ

)
time.643

Now we turn our attention to bounding the work done in PRECHECK. By Lemma 15, under E1, for644

all the iterations, and including the final PRECHECK call, the total work is Õ
(∑K−1

k=0 OPTγkδ/2/γk

)
.645

Adding all this work up, noting that b = Õ(1/δ), we get that under E4 and E5, the total work646

performed by IMPATIENTCAPSANDRUNS is647

Õ

(
1

ε2δγ
OPTγδ/2F (38OPTγδ/2) +

K−2∑
k=0

1

γk
OPTγkδ/2

(
1 + F (38OPT

γk+1

δ/2)/δ
)

+
1

δγK−1
OPT

γK−1

δ/2

)
.

648

B Runtime bound analysis with exponential distributions649

To better understand the runtime bound in Theorem 1, consider a scenario where the runtime of650

each configuration follows an exponential distribution. Such scenarios are realistic and motivated by651

practical applications: roughly speaking, many solvers for NP-hard problems (e.g., SAT) proceed by652

initializing with a random seed and, if they fail, try again with another random seed. The runtimes of653

such solvers will follow approximately exponential distributions, due to being essentially memoryless.654

To make the example concrete, suppose that the mean runtime for each configuration is distributed655

uniformly between A and A + B, denoted by U(A,A + B), for some A,B > 0. Here A can be656

thought of as a small runtime associated with the cost of starting the run of any configuration on any657

problem instance, and B as the maximum “true” mean runtime of the configurations.658

We can simplify the runtime bound of Theorem 1 with this assumption. The best γk fraction of the con-659

figurations have meanA+Bγk so OPTγkδ/2 ≤ A+Bγk. Furthermore, for a configuration iwith mean660

1
λ , Rτ (i) = 1

λ

(
1− e−λτ

)
for any runtime cap τ . Substituting τ = tδ(i), noting that the probability661

of running over the cap is δ so e−λτ = δ, we have Rδ(i) = 1
λ (1− δ). Similarly, R0.35(i) = 0.65 1

λ .662

Then F (38OPTγkδ/2) − 4ζ/K = Pri∼Π(R0.35(i) ≤ 38OPTγkδ/2) ≤ Pr 1
λ∼U(A,A+B)(0.65 1

λ ≤663

38(A + Bγk)) ≤ Pr 1
λ∼U(A,A+B)(

1
λ ≤ 58.5(A + Bγk)) ≤ 58.5(A+Bγk)−A

B = O(γk + A
B). This664

bounds F (38OPTγkδ/2) − 4ζ/K. The extra 4ζ/K is insignificant, as the failure probability ζ can665

simply be chosen to be O(ε2δ) with only additional logarithmic factors in the runtime as a result,666

and then any term multiplied by ζ in the runtime bound disappears in the Õ(·) notation. Substituting667

the bound on F and OPTγkδ/2, assuming a choice of ζ as above, the runtime bound (Eq. (1)) becomes668

Õ

(
(A+Bγ)

1

ε2δγ
·
(
γ +

A

B

)
+

K−2∑
k=0

(A+Bγk)
1

γk

(
1 +

(
γk + A

B

)
δ

)
+ (A+BγK−1)

1

δγK−1

)

= Õ
(

1

ε2δ

(
A2

Bγ
+A+Bγ

)
γ +

1

δ

(
A

γK−1
+B

)
+
A

γ

)
,

where the K term disappears in the Õ(·) notation as K ≤ log2(1
γ). Contrasting this with the typical669

runtime bound Õ
(

1
ε2δγOPTγδ/2

)
= Õ

((
A
γ +B

)
1
ε2δ

)
of previous works, we see the main term670

17

Figure 2: Distribution of δ-capped mean runtime of the sampled configurations, with δ = 0.1. For Minisat/CNFuzzDD, many configurations
are close to the optimal one, whereas for CPLEX/Regions200 and CPLEX/RCW, many configurations are significantly worse than the optimal
one. Consequently, PRECHECK is able to discard more configurations in the latter two scenarios.

(the one multiplied by 1
ε2δ) is reduced by a factor of max{γ, AB }. The rest of the terms have no671

dependence on ε and are indeed always much smaller than the typical runtime bound for other works:672
A

δγK−1
is smaller than the first term provided that K is chosen to be large enough for γK−1 not to be673

too small, Bδ does not depend on the number of configurations evaluated, and A
γ is associated with674

having to evaluate about 1
γ number of configurations, and this term could not scale better than with675

the minimum runtime A.676

C Details of Experiments677

We followed the experimental setup of [35]. Runs were pre-computed and then queried from a678

simulation environment in which they can be stopped and resumed. In a scenario where this is not679

possible (e.g., due to memory constraints when performing real runs) the experiments can still be680

implemented by restarting runs from scratch with doubling cap times, resulting in at most a factor of681

2 slowdown.682

Parameter values Experiments on all datasets were done with (ε, δ) = (0.05, 0.1) and varying683

γ ∈ {0.01, 0.02, 0.05}. For each configurator, ζ was set so that the total failure probability is 0.05.684

The hyperparameter K was set such that 0.25 < γ2K−1 ≤ 0.5. This is a somewhat arbitrary choice,685

but was made so that values of γk were neither too big to be trivial, nor too small to be computationally686

prohibitive.687

EPM Setup We used the provided generators for Regions200 and RCW to produce as many new688

random instances as needed, which were pre-processed using the feature extractors provided with the689

EPM.9 Runtime-related features were dropped since they are machine-dependent. We then used the690

provided configurations and runtime data10 to train the EPM model, using the parameters suggested in691

[12]. Finally, the trained EPM was used as a surrogate model to provide runtimes on future scenarios.692

We can query this model to produce a runtime estimate for any configuration-instance pair. New693

configurations were sampled by uniformly choosing a value for each parameter of CPLEX. A new694

instance was then generated and the pair was given to the EPM. Note that ICAR examined more695

configurations than CAR did. For consistency, sampling was done so that the configurations seen by696

CAR were a subset of those seen by ICAR.697

Datasets Description698

• Minisat/CNFuzzDD is a SAT scenario based on the minisat solver, with 6 parameters,699

applied to the CNFuzzDD11 instances. The benchmark dataset we use is the same as in700

[34, 35, 24].701

9http://www.cs.ubc.ca/labs/beta/Projects/EPMs/
10https://www.ml4aad.org/automated-algorithm-design/performance-prediction/epms/
11http://fmv.jku.at/cnfuzzdd/

18

Figure 3: As the proportion of configurations that are far from the optimal gets larger (i.e., as c gets larger), the CPU runtime of CAR was more
dominated by the work spent on bad configurations, while ICAR was able to drop more bad configurations with its PRECHECK mechanism.

• CPLEX/Regions200 is a MIP scenario based on the CPLEX, an interger programming702

solver, applied to the combinatorial auction winner determination problem. There are 74703

parameters for CPLEX. The benchmark dataset is generated with the EPM described above.704

• CPLEX/RCW is a MIP scenario based on the CPLEX solver, applied to Red-cockaded Wood-705

pecker conservation problem. The configuration space is the same as CPLEX/Regions200.706

The benchmark dataset is generated with the EPM described above.707

D IMPATIENTCAPSANDRUNS with varying parameters708

We also compared the performance of ICAR and CAR++ with varying values of ε and δ (with fixed709

γ = 0.02 and failure probability ζ = 0.05). The speedup (computed as the ratio of the runtimes)710

achieved by ICAR over CAR++ is reported in Table 2. As we can see, the speedup was fairly stable711

across a range of ε and δ that a user might be likely to care about.712

Table 2: Speedup achieved by ICAR over CAR++ for various values of ε and δ. Values greater than one indicate ICAR is faster.

Minisat/CNFuzzDD CPLEX/Regions200 CPLEX/RCW

δ 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1

ε = 0.025 0.80 0.83 0.71 0.95 2.76 2.44 2.15 2.03 2.27 1.99 1.83 1.63

ε = 0.05 0.83 0.84 0.78 0.92 2.90 2.54 2.24 2.06 2.54 2.21 1.96 1.80

ε = 0.075 0.84 0.86 0.82 0.92 2.94 2.58 2.28 2.09 2.66 2.30 2.03 1.85

ε = 0.1 0.85 0.87 0.85 0.93 2.97 2.60 2.29 2.11 2.73 2.36 2.08 1.88

E Synthetic Experiments713

To better understand how well ICAR can exploit a needle-in-a-haystack scenario, we examined its714

performance on synthetic data. In this way we could choose each configuration’s true mean, and715

thus control their distribution. The runtimes of each configuration were sampled from an exponential716

distribution, with the means being uniformly chosen from the interval [OPT, c ·OPT]. We tend to717

think that real algorithm runtimes do look somewhat exponential, and there is justification for this, at718

least in certain cases [14, 16, 15, 25].719

We ran the simulation for c ∈ {2, 5, 10, 25}. The larger the value of c, the more configurations will720

tend to be far from the best one, creating more and more of a “needle-in-a-haystack” scenario. We721

used (ε, δ, γ) = (0.05, 0.1, 0.02) and failure probability of 0.05, as before. Table 3 shows the total722

CPU time to find a (0.05, 0.1, 0.02)-optimal configuration for the range of c values. The degree to723

which ICAR outperformed CAR increases as c increases, as expected. We see that PRECHECK was724

able to reject a greater proportion of configurations when many tended to be far from optimal (large725

c).726

Figure 3 shows the CPU time spent on each configuration, sorted by the δ-capped mean runtime. When727

c = 2, ICAR rejected very few configurations in PRECHECK, but as c increases we can see a greater728

proportion of configurations were being run for minimal time compared to CAR++. Furthermore, the729

runtime of CAR and CAR++ became dominated by the runs on the bad configurations, as we can see730

from the area under the curve.731

19

Total CPU Time (days) Number of Configurations Before/After Precheck

c = 2 c = 5 c = 10 c = 25 c = 2 c = 5 c = 10 c = 25

ICAR 505 (23) 187 (18) 113 (17) 92 (27) 351 / 349 351 / 114 351/ 54 351/ 27
CAR++ 344 (24) 214 (12) 193 (20) 195 (31) 245 245 245 245

CAR 447 (21) 384 (15) 380 (35) 406 (62) 245 245 245 245

Table 3: Total CPU time in days to find a (0.05, 0.1, 0.02)-optimal configuration in the synthetic datasets, and the number of configurations
before and after precheck. For CAR and CAR++, the number of configurations sampled is reported. CAR++ is the improved version CAR
arising from more careful analysis. Error terms are standard deviations over five runs.

20

	Introduction
	The Model
	The Algorithm
	Experiments
	Conclusions
	Proof of main-theorem
	Runtime bound analysis with exponential distributions
	Details of Experiments
	ImpatientCapsAndRuns with varying parameters
	Synthetic Experiments

