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Abstract

Recommendation systems often face exploration-
exploitation tradeoffs: the system can only learn
about the desirability of new options by rec-
ommending them to some user. Such systems
can thus be modeled as multi-armed bandit set-
tings; however, users are self-interested and can-
not be made to follow recommendations. We
ask whether exploration can nevertheless be per-
formed in a way that scrupulously respects agents’
interests—i.e., by a system that acts as a fiduciary.
More formally, we introduce a model in which
a recommendation system faces an exploration-
exploitation tradeoff under the constraint that it
can never recommend any action that it knows
yields lower reward in expectation than an agent
would achieve if it acted alone. Our main con-
tribution is a positive result: an asymptotically
optimal, incentive compatible, and ex-ante indi-
vidually rational recommendation algorithm.

1. Introduction
Multi-armed bandits (henceforth MABs) (Bubeck et al.,
2012; Cesa-Bianchi & Lugosi, 2006) is a well-studied prob-
lem domain in online learning. In that setting, several arms
(i.e., actions) are available to a planner; each arm is asso-
ciated with an unknown reward distribution, from which
rewards are sampled independently each time the arm is
pulled. The planner selects arms sequentially, aiming to
maximize her sum of rewards. This often involves a trade-
off between exploiting arms that have been observed to
yield good rewards and exploring arms that could yield even
higher rewards. Many variations of this model exist, includ-
ing stochastic (Abbasi-Yadkori et al., 2011; Karnin et al.,
2013), Bayesian (Chapelle & Li, 2011; Agrawal & Goyal,
2012), contextual (Chu et al., 2011; Slivkins, 2014), adver-
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sarial (Auer et al., 1995) and non-stationary (Besbes et al.,
2014; Levine et al., 2017) bandits.

This paper considers a setting motivated by recommender
systems. Such systems suggest actions to agents based
on a set of current beliefs and assess agents’ experiences to
update these beliefs. For instance, in navigation applications
(e.g., Waze; Google maps) the system recommends routes
to drivers based on beliefs about current traffic congestion.
The planner’s objective is to minimize users’ average travel
time. The system cannot be sure of the congestion on a
road segment that no agents have recently traversed; thus,
navigation systems offer the best known route most of the
time and explore occasionally. Of course, users are not
eager to perform such exploration; they are self-interested
in the sense that they care more about minimizing their
own travel times than they do about conducting surveillance
about traffic conditions for the system.

A recent line of work (Kremer et al., 2014; Mansour et al.,
2015), inspired by the viewpoint of algorithmic mechanism
design (Nisan & Ronen, 1999; Nisan et al., 2007), deals
with that challenge by incentivizing exploration—that is,
setting up the system in such a way that no user would
ever rationally choose to decline an action that was recom-
mended to him. The key reason that it is possible to achieve
this property while still performing a sufficient amount of
exploration is that the planner has more information than the
agents. At each point in time, each agent holds beliefs about
the arms’ reward distributions; the planner has the same
information, but also knows about all of the arms previously
pulled and the rewards obtained in each case. More specifi-
cally, Kremer et al. (2014) consider a restricted setting and
devise an MAB algorithm that is incentive compatible (IC),
meaning that whenever the algorithm recommends arm i to
an agent, the best response of the agent is to select arm i.

Although this approach explicitly reasons about agents’ in-
centives, it does not treat agents fairly: agents who are asked
to explore receive lower expected rewards. More precisely,
in their attempt to reach optimality (in the static setting) or
minimize regret (in the online setting), these IC MAB al-
gorithms are intentionally providing (a priori) sub-optimal
recommendations to some of the agents. In particular, some
of the agents could be better off by not using the system and
follow their default arm— the a priori superior arm, which
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would be every agent’s rational choice in the absence both
of knowledge of other agents’ experiences and of a trusted
recommendation. Thus, it would be natural for agents to
see the recommendations of such IC MAB algorithms as
a betrayal of trust; they might ask “why should I trust a
recommender that occasionally gives out recommendations
it has every reason to believe could make me worse off?”

In this work, we explicitly suggest that a social welfare max-
imization standpoint might raise societal issues, harming
the trust agents put in recommender systems. The central
premise of this paper is that explore-and-exploit AI systems
should satisfy individual guarantees—guarantees that the
system should fulfill for each agent independently from the
other agents and their recommendations. At the one end of
the spectrum are current MAB algorithms—successful in
maximizing welfare, but do not offer the slightest individual
guarantee. At the other end is the fiduciary duty: borrowed
from law applications, it requires that the mechanism acts
in the interest of its clients with all its knowledge. This is
the strictest, and strongest, individual guarantee the system
could provide. However, if we applied this standard, we
would be left only with the mechanism that greedily picks
the apparently best arm in each iteration. In some settings,
perhaps this is the best that can be achieved; however, note
that this mechanism is rarely able to learn anything. It is
therefore natural to ask for an approach that enjoys both
worlds—maximizing welfare while satisfying individual
guarantees.

Our contribution We explore a novel compromise be-
tween these two extreme points, which we call ex-ante indi-
vidual rationality (EAIR). To motivate it, we consider the
benchmark reward of each agent to be that of the default arm:
the reward agents would get if the recommender system is
unavailable. A mechanism is EAIR if the reward of every
recommendation it makes beats that benchmark in expecta-
tion, per the mechanism’s knowledge. More technically, a
mechanism is EAIR if any probability distribution over arms
that it selects has expected reward that is always at least as
great as the reward of the default arm, both calculated based
on the mechanism’s knowledge (which is more extensive
than that of agents). While it is possible for the mechanism
to sample a recommendation from a distribution that is a pri-
ori inferior to the (realization of the) default arm, the agent
receiving the recommendation is nevertheless guaranteed to
realize expected reward weakly greater than that offered by
the default arm. Satisfying this requirement makes a MAB
algorithm more appealing to agents; we foresee that in some
domains, such a requirement might be imposed as fairness
constraints by authorities.

Algorithmically, we focus on constructing optimal EAIR
mechanisms. Our model is a bandit model withK ≥ 2 arms
and n agents (rounds). Similarly to Kremer et al. (2014),

we assume that rewards are fixed but initially unknown.

We consider two agent schemes. In the first part of the paper,
we assume that agents follow recommendations, as in the
classical MAB literature. This is the case if, e.g., agents are
oblivious to some of the actions’ desirability, unaware of
the entire set of alternatives, or if the cognitive overload of
computing expectations is high. The main technical contri-
bution of this paper is an EAIR mechanism, which obtains
the highest possible social welfare by any EAIR mechanism
up to an additive factor of o( 1

n ). Due to our static setting
(rewards are realized only once), following the wrong ex-
ploration policy for even one agent has detrimental effect
on social welfare. The optimality of our mechanism, which
we term Fiduciary Explore & Exploit (FEE) and outline
as Algorithm 1, follows from a careful construction of the
exploration phase. Our analysis uses an intrinsic property
of the setting, which is further elaborated in Theorem 1.

Later on, in Section 4, we adopt a different agent scheme,
which is fully aligned with the incentivizing exploration
literature. We assume that agents are strategic and have (the
same) Bayesian prior over the rewards of the arms. In this
context, a mechanism is incentive compatible (IC) if each
agent’s expected reward is maximized by the recommended
action. We provide a positive result in this challenging
case as well. Our second technical contribution is Incentive
Compatible Fiduciary Explore & Exploit (IC-FEE), which
uses FEE as a black box, and is IC, EAIR and asymptotically
optimal.

To complement this analysis, we also propose the more de-
manding concept of ex-post individual rationality (EPIR).
The EPIR condition requires that a recommended arm must
never be a priori inferior to the default arm given the plan-
ner’s knowledge. The EAIR and EPIR requirements differ
in the guarantees that they provide to agents and correspond-
ingly allow the system different degrees of freedom in per-
forming exploration. We design an asymptotically optimal
IC and EPIR mechanism. Finally, we analyze the social
welfare cost of adopting either EAIR or EPIR mechanisms.

Related work Background on MABs can be found in
Cesa-Bianchi & Lugosi (2006) and a recent survey (Bubeck
et al., 2012). Despite that many works address MAB rounds
as interacting agents, Kremer et al. (2014) is the first work
of which we are aware that suggests that vanilla algorithms
should be modified to deal with agents due to human nature
and incentives. The authors considered two deterministic
arms, a prior known both to the agents and the planner,
and an arrival order that is common knowledge among all
agents, and presented an optimal IC mechanism. Cohen &
Mansour (2019) extended this optimality result to several
arms under further assumptions. This setting has also been
extended to regret minimization (Mansour et al., 2015), so-
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cial networks (Bahar et al., 2016; 2019), and heterogeneous
agents (Chen et al., 2018; Immorlica et al., 2019). All of this
literature disallows paying agents; monetary incentives for
exploration are discussed in e.g., (Chen et al., 2018; Frazier
et al., 2014). None of this work considers the orthogonal,
societal consideration of individual rationality constraint as
we do here.

Our work also contributes to the growing body of work on
fairness in Machine Learning (Ben-Porat & Tennenholtz,
2018; Dwork et al., 2012; Hardt et al., 2016; Liu et al.,
2018). In the context of MABs, some recent work focuses
on fairness in the sense of treating arms fairly. In particu-
lar, Liu et al. (2017) aim at treating similar arms similarly
and Joseph et al. (2016) demand that a worse arm is never
favored over a better one despite a learning algorithm’s un-
certainty over the true payoffs. Finally, we note that the
EAIR requirement we impose—that agents be guaranteed
an expected reward at least as high as that offered by a de-
fault arm—is also related to the burgeoning field of safe
reinforcement learning (Garcıa & Fernández, 2015).

2. Model
Let A = {a1, . . . aK} be a set of K arms (actions). Re-
wards are deterministic but initially unknown: the reward of
arm ai is a random variable Xi, and (Xi)

K
i=1 are mutually

independent. We denote by Ri the observed value of Xi.
To clarify, rewards are realized only once; hence, once Ri
is observed, Xi = Ri for the rest of the execution. Further,
we denote by µi the expected value of Xi, and assume for
notational convenience that µ1 ≥ µ2 ≥ · · · ≥ µK . We also
make the simplifying assumption that the rewards (Xi)

K
i=1

are fully supported on the set [H]+
def
= {0, 1, . . . ,H}, and

refer to the continuous case in Section 6.

There are n agents, who arrive sequentially. We denote by
al the action of the agent arriving at stage l. The reward
of the agent arriving at stage l is denoted by Rl, and is a
function of the arm she chooses. For instance, by selecting
arm ar the agent obtains Rl(ar) = Xr. Agents are fully
aware of the distribution of (Xi)

K
i=1. Each and every agent

cares about her own reward, which she wants to maximize.

A mechanism is a recommendation engine that interacts
with agents. The input for the mechanism at stage l is
the sequence of arms pulled and rewards received by the
previous l − 1 agents. The output of the mechanism is a
recommended arm for agent l. Formally, a mechanism is
a function M :

⋃n
l=1 (A× R+)

l−1 → ∆(A); of course,
we can also define a deterministic notion that maps simply
to A. The mechanism has a global objective, which is to
maximize agents’ social welfare

∑n
l=1R

l(al).

We consider two agent schemes. The first is non-strategic
agents, i.e., agents always follow the recommendation. An

underlying assumption of classical MAB algorithms, such
behavior could be explicit in case the mechanism makes
decisions for the agents; or implicit, e.g., agents are un-
aware of the entire set of alternatives or their desirability,
or high cognitive overload is required to compute it. The
second agent scheme is strategic agents: the mechanism
makes action recommendations, but cannot compel agents
to follow these recommendations. In this scheme, we say
that a mechanism is incentive compatible (IC) when fol-
lowing its recommendations is a dominant strategy: that is,
when given a recommendation, an agent’s best response is
to follow her own recommendation. Formally,

Definition 1 (Incentive Compatibility). A mechanism M
is incentive compatible (IC) if ∀l ∈ {1, . . . , n}, for every
history h ∈ (A× R+)

l−1 and for all actions ar, ai ∈ A,

E(Rl(ar)−Rl(ai) |M(h) = ar) ≥ 0. (1)

Unless stated otherwise, we address the non-strategic agents
scheme. We handle the other agent scheme in Section 4.

When agents follow the mechanism, we can represent the
mechanism’s (expected) social welfare by

SW (M) = E

[
1

n

n∑
l=1

XM(hl)

]
, (2)

where XM(hl) =
∑K
r=1 PrM(hl) (ar)E(Xr | hl) is the

reward agent l receives. Notice that XM(hl) depends on the
randomness of the rewards and, possibly, the randomness
of M(hl).

Denote the highest possible social welfare under non-
strategic agents by OPT. A mechanism M∗ is said to
be optimal if SW (M∗) = OPT. A mechanism M∗ is
asymptotically optimal if, for every “large enough” num-
ber of agents n greater than some number n′, it holds that
SW (M∗) ≥ OPT−o( 1

n ). This definition of approximation
is equivalent to sub-linear regret in the MAB literature.

2.1. Individual Guarantees

An individual guarantee is a guarantee that a mechanism
can provide to the agents it interacts with, independently of
the other agents. In this subsection, we present our main
conceptual contribution: a meaningful individual guarantee
that allows exploration.

To put our guarantee in the right context, we first present
the strictest and the strongest guarantee that could be pro-
vided. A mechanism is a delegate if it acts as the agent
would have acted had it revealed the information it has with
her. Formally, A mechanism M is a delegate if for every
agent l ∈ {1, . . . , n}, every history h ∈ (A× R+)

l−1 and
every distribution p over A, it holds that E(XM(h) | h) ≥
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r=1 p(r)E(Xr | h). Indeed, this definition provides the

strongest individual guarantee. It characterizes the greedy
mechanism, GREEDY, which exploits in every round (ac-
cording to the information it has). Noticeably, GREEDY
performs little exploration, and probably leads to low social
welfare. While sometimes relaxing this strong guarantee is
impossible (e.g., banking or health-care), in many situations
the planner is willing to relax individual guarantees to favor
better social welfare.

The other extreme is to adopt a policy that we term FULL-
EXPLORATION. FULL-EXPLORATION is the mechanism
that first explores all arms sequentially, and then exploit the
best arm. Clearly, at least for the non-strategic agent scheme,
FULL-EXPLORATION is optimal when the number of agents
is large enough. Nevertheless, with very high probability, it
picks sub-optimal arms for the first K agents, which can be
a highly undesired property.

Our guarantee builds on the popular economic concept of
individual rationality. To introduce it, we propose the follow-
ing thought experiment. Assume that agents have to make
decisions without the mechanism. The agents know that
µ1 = maxi µi; hence, we shall assume that every agent’s
default action is a1.1 The default action is the action each
agent would have selected if she did not use the mechanism.
We compare the two options: picking the default arm or
following the mechanism’s action. If a mechanism guaran-
tees that the latter is higher in expectation according to its
knowledge, agents are better off using the mechanism. As a
result, an individually rational mechanism should guarantee
each agent at least the reward obtained by her default action.
The next definition relies on this reasoning.
Definition 2 (Ex-Ante Individual Rationality). A mechanism
M is ex-ante individually rational (EAIR) if for every agent
l ∈ {1, . . . , n}, and every history h ∈ (A× R+)

l−1,

K∑
r=1

PrM(h)(ar)E(Xr | h) ≥ E(X1 | h). (3)

The EAIR definition is conditioned on histories, i.e., the
mechanism’s knowledge. The right hand side is what an
agent would get, given the knowledge of the mechanism,
if she follows the default arm (which is optimal accord-
ing to her knowledge). The left hand side is the expected
value (over lotteries selected by the mechanism and re-
ward distribution) guaranteed by the mechanism. Due
to the mutual independence assumption, we must have
E(Xr | h) = Rr if arm ar was observed under the history
h and E(Xr | h) = µr otherwise. An EAIR mechanism
must select a portfolio of arms with expected reward never
inferior to the reward of the default arm a1.

1As it will become apparent later, if agents have different de-
fault arms the social welfare can only increase since more arms
could be explored.

Example. We now give an example to illustrate our setting
and to familiarize the reader with our notation. Consider
K = 3 arms, H = 30 and X1 ∼ Uni{0, . . . 30}, X2 ∼
Uni{0, . . . 20}, X3 ∼ Uni{0, . . . 10}; thus µ1 = 15, µ2 =
10, and µ3 = 5. As always, a1 is the default arm. To
satisfy EAIR, a mechanism should recommend a1 to the
first agent, since EAIR requires that the expected value
of any recommendation should weakly exceed R1. Let
h1 = (a1, R1) be the history after the first agent. Now, we
have three different cases. First, if R1 > µ2 = 10, we know
that E(X2 | h1) < R1 and E(X3 | h1) < R1; therefore, an
EAIR mechanism can never explore any other arm, since
any distribution over {a2, a3} would violate Inequality (3).
Second, if R1 ≤ µ3 = 5, then E(X2 | h1) ≥ R1 and
E(X3 | h1) ≥ R1, and hence an EAIR mechanism can
explore both a2 and a3.

The third and most interesting case is where µ3 < R1 ≤ µ2,
as when R1 = 8. In this case, arm a3 could only be recom-
mended through a portfolio. An EAIR mechanism could
select any distribution over {a2, a3} that satisfies Inequal-
ity (3): any p ∈ [0, 1] such that p · µ2 + (1− p) · µ3 ≥ R1.
This means that an EAIR mechanism can potentially explore
arm a3, yielding higher expected social welfare overall than
simply recommending a non-inferior arm deterministically.

3. Asymptotically Optimal EAIR Mechanism
In this section, we consider the case of non-stratgic agents.
We present the main technical contribution of this paper:
a mechanism that asymptotically optimally balances the
explore-exploit tradeoff while satisfying the EAIR prop-
erty. The mechanism, which we term Fiduciary Explore &
Exploit (FEE), is described as Algorithm 1. FEE is an event-
based protocol that triggers every time an agent arrives. We
now give an overview of FEE, focusing on the case where
all agents adopt the recommendation of the mediator (we
treat the other case in Section 4). We explain the algorithm’s
exploration phase in Subsection 3.1, describe the overall al-
gorithm in Subsection 3.2, and prove the algorithm’s formal
guarantees in Subsection 3.3. We provide a comprehensive
example of the way FEE operates in Section F.

FEE is composed of three phases: primary exploration
(Lines 1–6), secondary exploration (Lines 7–18), and ex-
ploitation (Lines 19). During the primary exploration phase,
the mechanism compares the default arm a1 to whichever
other arms are permitted by the individual rationality con-
straint. This turns out to be challenging for two reasons.
First, the order in which arms are explored matters; tackling
them in the wrong order can reduce the set of arms that can
be considered overall. Second, it is nontrivial to search in
the continuous space of probability distributions over arms.
To address this latter issue, we present a key lemma that
allows us to use dynamic programming and find the optimal
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exploration policy in time O(2KK2H2). Because we ex-
pect K either to be fixed or to be significantly smaller than
n,H , this policy is computationally efficient. Moreover, we
note that the optimal exploration policy can be computed
offline prior to the agents’ arrival.

The primary exploration phase terminates in one of two
scenarios: either the reward R1 of arm a1 is the best that
was observed and thus no other arm could be explored (as in
our example when R1 > 10, or when R1 = 8 and exploring
a2 yielded R2 ≤ R1 and thus a3 could not be explored),
or another arm ai was found to be superior to a1: i.e., an
arm ai was observed for which Ri > R1. In the latter case,
the mechanism gains the option of conducting a secondary
exploration, using arm ai to investigate all the arms that
were not explored in the primary exploration phase. The
third and final phase—to which we must proceed directly
after the primary exploration phase if that phase does not
identify an arm superior to the default arm—is to exploit
the most rewarding arm observed.

Remark. In this section we assume that agents are non-
strategic and follow the mechanism’s recommendation.

3.1. Primary Exploration Phase

Performing primary exploration optimally requires solving
a planning problem; it is a challenging one, because it in-
volves a continuous action space and a number of states
exponential in K and H . We approach this task as a Goal
Markov Decision Process (GMDP) (see, e.g., (Barto et al.,
1995)) that abstracts everything but pure exploration. In
our GMDP encoding, all terminal states fall into one of two
categories. The first category is histories that lead to pure
exploitation of a1, which can arise either because EAIR
permits no arm to be explored or because all explored arms
yield rewards inferior to the observed R1; the second is
histories in which an arm superior to a1 was found. Non-
terminal states thus represent histories in which it is still
permissible for some arms to be explored. The set of actions
in each non-terminal state is the set of distributions over the
non-observed arms (i.e., portfolios) corresponding to the
history represented in that state, which satisfy the EAIR con-
dition. The transition probabilities encode the probability
of choosing each candidate arm from a portfolio; observe
that the rewards of each arm are fixed, so this is not a source
of additional randomness in our model. GMDP rewards
are given in terminal nodes only: either the observed R1

if no superior arm was found or the expected value of the
maximum between the superior reward discovered and the
maximal reward of all unobserved arms (since in this case,
as we show later on, the mechanism is able to explore all
arms w.h.p. during the secondary exploration phase).

Formally, the GMDP is a tuple 〈S,A,P,R〉, where

• S is a finite set of states. Each state s is a pair (O,U),
where O ⊆ {(a, c) | a ∈ A, c ∈ H} is the set of arm-
reward pairs that have been observed so far, with each
a appearing at most once in O (since rewards from the
arms are deterministic): for every (O,U) and every a ∈ A,
|{c | (a, c) ∈ O}| ≤ 1. U ⊆ A is the set of arms not yet
explored. The initial state is thus s0 = (∅, A). For every
non-empty2 set of pairs O we define α(O) to be the reward
observed for arm a1, and β(O) = maxc:∃a,(a,c)∈O c to be
the maximal reward observed.

• A =
⋃
s∈S As is an infinite set of actions. For each

s = (O,U) ∈ S, As is defined as follows:

1. If s = s0, then As0 = ∆({a1}): i.e., a deterministic
selection of a1.

2. Else, if α(O) < β(O), then As = ∅. This condition
implies that we can move to secondary exploration.

3. Otherwise, As is a subset of ∆(U), such that p ∈ As
if and only if ∑

ai∈U
p(ai)µai ≥ α(O). (4)

Notice that this resembles the EAIR condition given
in Inequality (3). Moreover, the case where none of
the remaining arms have strong enough priors to allow
exploration falls here as a vacuous case of the above
inequality.

We denote by ST the set of terminal states, namely ST =
{s ∈ S | As = ∅}.

• P is the transition probability function. Let s = (O,U) ∈
S, and let s′ = (O′, U ′) such that O′ = O ∪ {(ai, c)}
and U ′ = U \ {ai} for some ai ∈ U, c ∈ [H]+. Then,
the transition probability from s to s′ given an action p is
defined by P(s′|s,p) = p(ai) Pr(Xi = c). If s′ is some
other state that does not meet the conditions above, then let
P(s′|s,p) = 0 for every p ∈ As.

• R : ST → R is the reward function, defined on terminal
states only. For each terminal state s = (O,U) ∈ ST ,

R(s)=

{
α(O) α(O)=β(O)

E
[
max

{
β(O),maxai′∈UXi′)

}]
α(O)<β(O)

.

That is, when a1 was the highest-reward arm observed,
the reward of a terminal state is α(O); otherwise, it is the
expectation of the maximum between β(O) and the highest
reward of all unobserved arms. The reward depends on
unobserved arms since the secondary exploration phase
allows us to explore all these arms; hence, their values are
also taken into account.

2Due to the construction, every non-empty O must contain
(a1, c) for some c ∈ [H]+.
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A policy π : (S × A)∗ × S → A is a function from all
GMDP histories (sequences of states and actions) and a
current state to an action. A policy π is valid if for every
history h and every non-terminal state s, π(h, s) ∈ As. A
policy π is stationary if for every two histories h, h′ and a
state s, π(h, s) = π(h′, s). When discussing a stationary
policy, we thus neglect its dependency on h, writing π(s).

Given a policy π and a state s, we denote by W (π, s) the
expected reward of π when initialized from s, which is
defined recursively from the terminal states:

W (π,s)=

{
R(s) if s∈ST∑
s′∈SP(s′|s,π(s))W (π,s′) otherwise.

We now turn to our technical results. The following lemma
shows that we can safely focus on stationary policies that
effectively operate on a significantly reduced state space.

Lemma 1. For every policy π there exists a stationary
policy π′ such that (1) π′(s) = π′(s′) for every pair of
states s = (O,U) and s′ = (O′, U) with α(O) = α(O′)
and β(O) = β(O′); and (2) for every state s, W (π′, s) ≥
W (π, s).

Lemma 1 tells us that there exists an optimal, stationary
policy that selects the same action in every pair of states
that share the same unobserved set U and values α(O) and
β(O), but are distinguished in the O component. Thus, we
do not need a set of states whose size depends on the number
of possible arm-reward observation histories: all we need
to record is U and a real value for either α(O) and β(O),
reducing the number of states to O(2KH).

We still have one more challenge to overcome: the set of
actions As available in each state s is infinite. Despite
that As is a convex polytope and thus we can apply Linear
Programming, our approach is much more computationally
efficient and interpretable. We prove that there exists an
optimal “simple” policy, which we denote π∗. Given two
indices i, r ∈ {2, . . . ,K}, we denote by pαir (for i 6= r) and
by pαii (for i = r) the distributions over {a1, . . . , aK} such
that

pαir(a)=


|α−µr|

|α−µi|+|α−µr| if a=ai
|α−µi|

|α−µi|+|α−µr| if a=ar

0 otherwise

,

and pαii(a) = 1 if and only if a = ai. When α = α(O) is
clear from context, we omit it from the superscript.

We are now ready to describe the policy π∗, which we later
prove to be optimal. For the initial state s0, π∗(s0) = p11.
For every non-terminal state s = (O,U) ∈ S with s 6= s0,

π∗(s) = pi∗r∗ such that (i∗, r∗) ∈ As maximize(
1−1i=r

2

)[
pir(i)

∑
s′∈S
P(s′|s,pii)W (π∗,s′)

+pir(r)
∑
s′∈S
P(s′|s,prr)W (π∗,s′)

]
.

The optimality of π∗ follows from a property that is for-
mally proven in Theorem 1: any policy π that satisfies the
conditions of Lemma 1 can be presented as a mixture of
policies that solely take actions of the form (pir)i,r. As
a result, we can improve π by taking the best such policy
from that mixture. We derive π∗ via dynamic programming,
where the base cases are the set of terminal states. For any
other state, π∗(s) is the best action of the form pir as de-
fined above, considering all states that are reachable from
s. While any policy π′ can be encoded as a weighted sum
over such “simple” policies, π∗ is the best one, and hence is
optimal.
Theorem 1. For every valid policy π and every state s, it
holds that W (π∗, s) ≥W (π, s).

Since our compressed state representation consists of
O(2KH) states, the computation of π∗ in each stage re-
quires us to consider O(K2) candidate actions, each of
which involves summation of at most H + 1 summands;
thus, π∗ can be computed in O(2KK2H2) time.

3.2. Intuitive Description of FEE

We now present the FEE algorithm, stated formally as Algo-
rithm 1. The primary exploration phase (Lines 1–6) is based
on the GMDP from the previous subsection. It is composed
of computing π∗ and then producing recommendations ac-
cording to its actions, each of which defines a distribution
over (at most) two actions. Let (U,O) denote the terminal
state reached by π∗ (the primary exploration selects a fresh
arm in each stage; hence such a state is reached after at most
K agents).

We then enter the secondary exploration phase. If β(O) =
R1 then this phase is vacuous: no distribution over the
unobserved arms can satisfy the EAIR condition and/or all
the observed arms are inferior to arm a1. On the other hand,
if β(O) > R1 (Line 7), we found an arm ar̃ with a reward
superior to R1, and can use it to explore all the remaining
arms. For every ai ∈ U , the mechanism operates as follows.
If the probability of ai yielding a reward greater than ar̃
is zero, we neglect it (Lines 11–13). Else, if µi ≥ R1, we
recommend ai. This is manifested in the second condition
in Line 15. Otherwise, µi < R1. In this case, we select a
distribution over {ar̃, ai} that satisfies the EAIR condition
and explore ai with the maximal possible probability, which
is pr̃i(i). As we show formally in the proof of Lemma 2,
the probability of exploring ai in this case is at least 1

H ,
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Algorithm 1 Fiduciary Explore & Exploit (FEE)
1: Initialize a GMDP instance 〈S,A,P,R〉, and compute
π∗.

2: Set s = (O,U) = (∅, A).
3: while s is not terminal do
4: Draw arm ai ∼ π∗(s), recommend ai and observe

Ri.
5: O ← O ∪ {(ai, Ri)}, U ← U \ {ai}.
6: s← (O,U).
7: if β(O) > R1 then
8: while U is not empty do
9: Let ar̃ s.t. ar̃ ∈ arg maxar∈A\U Rr.

10: Select an arbitrary arm ai ∈ U .
11: if Pr(Xi > Rr̃) = 0 then
12: U ← U \ {ai}.
13: continue.
14: Draw Y ∼ Uni[0, 1].
15: if Y ≤ Rr̃−R1

Rr̃−µi or µi ≥ R1 then
16: Recommend ai and observe Ri.
17: U ← U \ {ai}.
18: else, recommend ar̃.
19: Recommend ai∗ ∈ arg maxai∈A\U Ri to all agents.

implying that after H tries in expectation the algorithm
would succeed to explore ai.

Ultimately (Line 19), FEE recommends the best observed
arm to all the remaining agents.

3.3. Algorithmic Guarantees

We begin by arguing that FEE is indeed EAIR.

Proposition 1. FEE satisfies the EAIR condition.

The proof of Proposition 1 is highly intuitive: the reward
of every recommendation FEE makes always exceed R1 in
expectation. We now move on to consider the social welfare
of FEE. Let OPTEAIR denote the highest welfare attained
by any EAIR mechanism. First, we show that the expected
value of π∗ at s0, denoted by W (π∗, s0), upper bounds the
social welfare of any EAIR mechanism.

Theorem 2. It holds that OPTEAIR ≤W (π∗, s0).

The proof proceeds by contradiction: given an EAIR mech-
anism M , we construct a series of progressively-easier-to-
analyze EAIR mechanisms with non-decreasing social wel-
fare; we modify the final mechanism by granting it oracular
capabilities, making it violate the EAIR property and yet
preserving reducibility to a policy for the GMDP of Sub-
section 3.1. We then argue via the optimality of π∗ that
the oracle mechanism cannot obtain a social welfare greater
than W (π∗, s0). Next, we lower bound the social welfare
of FEE.

Lemma 2. SWn(FEE) ≥ OPTEAIR −O
(
KH2

n

)
.

The proof relies mainly on an argument that the primary and
secondary explorations will not be too long on average: after
(K+1)H agents the mechanism is likely to begin exploiting.
Noting that the lower bound of Lemma 2 asymptotically
approaches the upper bound of Theorem 2, we conclude
that FEE is asymptotically optimal.

4. Incentive Compatibility
In this section, we consider the second and more challenging
agent scheme: strategic agents. Our main goal is to show
that FEE, which we developed in Section 3.3, can be mod-
ified to satisfy IC as well.3We remark that there are cases
that an IC mechanism cannot explore all arms, regardless
of individual rationality constraints. To illustrate, assume
that Pr(X1 ≥ µ2) = 1, i.e., the reward of arm a1 is always
greater or equal to the expected reward of arm a2. In this
case, no agent will ever follow a recommendation for arm
a2. Consequently, we shall make the following standard
assumption (see, e.g., (Mansour et al., 2015))

Assumption 1. For every i, j such that 1 ≤ i < j ≤ K, it
holds that Pr(Xi < µj) > 0.

If Assumption 1 does not hold for some pair (i, j), arm aj
would never be explored; hence, we can remove such arms
from A. We shall also make the simplifying assumption that
µ1 > µ2 ≥ · · · ≥ µK , as otherwise the problem becomes
easier to solve.

Among other factors, the expectation in Inequality (1) is
taken over agents’ information on the arrival order. On the
one extreme, the arrival order could be uniform, i.e., each
agent l is entirely oblivious about her ”place in line.” In
this case, as we show in Section E, FEE satisfies IC as is
assuming that there are sufficiently many agents. On the
other extreme, which is the more popular in prior work
(Kremer et al., 2014; Mansour et al., 2015), agents have
complete information about their rounds. Namely, the agent
arriving at time l knows that she is the l’th agent. The
complete information case is the more demanding one, and
an IC mechanism for this case will also be IC under any
distributional assumption on the arrival order. Nevertheless,
as we demonstrate shortly, it requires more technical work.

We build on the techniques of Mansour et al. (2015) and
use phases: each phase contains one round of exploration
(that is, following FEE) and the other rounds are either
exploitation via GREEDY (defined in Subsection 2.1) or

3For simplicity, we formulated IC-FEE to satisfy IC in the best
response sense: given that all other agents follow their recommen-
dations, it is an agent’s best response to adopt the recommendation
as well. However, IC-FEE can be easily modified to offer dominant
strategies to agents.
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recommendation of arm a1. An IC version of FEE, which
we term IC-FEE, is outlined as Algorithm 2.

IC-FEE works as follows. It initializes an instance of FEE,
and uses it seldom in the earlier rounds, and regularly af-
terward (every time IC-FEE makes a recommendation, it
updates FEE). In Line 2, it recommends a1 to the first agent.
Recall that π∗ employed by FEE is only allowed to pick
a1 w.p. 1 in the first round; hence, FEE and IC-FEE coin-
cide with the first recommendation. Then, depending on the
value of R1, it recommends agents 2, . . . ,K either greedily
(maximizing the reward in each round, Line 3) or arm a1
(Line 4). Later, in Line 5, it splits the remaining rounds
to phases of size B (B will be determined later on). In
each such phase k, we first ask whether FEE is exploring
or exploiting (Line 7). If FEE exploits (Line 19 in Algo-
rithm 1), every agent of every phase from here on will be
recommended by FEE. If that is not the case (see the else
block starting at Line 9), IC-FEE picks one agent from the
B agents of this phase uniformly at random, denoted l(k).
Then, agent l(k) gets the recommendation from FEE. The
recommendation policy for the rest of the agents in this
phase depends on the observed arms. If IC-FEE already
discovered an arm ai with Ri > R1 (Line 11), we let agent
l exploit using GREEDY. Otherwise (Line 12), IC-FEE
recommends a1.

Lines 11 and 12 are also where our mechanism departs from
the principles of prior work. For example, in the work of
Mansour et al. (2015), each phase contains one round of ex-
ploration and the rest are exploitation rounds. In our setting,
agents that are not exploring might still not exploit. The
distinction between Lines 11 and 12 is crucial: exploiting
unobserved arms might lead to sub-optimal welfare, since
they are the chance to explore arms with expected reward
below R1. We elaborate more in the proof of Theorem 3.

To determine the phase lengthB, we introduce the following
quantities ξ and γ. Due to Assumption 1, there exist ξ > 0
and γ > 0 such that for all i ∈ [K], it holds that Pr(∀i′ ∈
[K] \ {i} : µi − Xi′ > ξ) > γ. In words, it says that
the reward of every arm i is greater than all other arms by
at least ξ, w.p. of at least γ. The following Theorem 3
summarizes the properties of IC-FEE.

Theorem 3. Let the phase length be B =
⌈
H
ξγ

⌉
+ 1. Under

Assumption 1, IC-FEE satisfies EAIR and IC. In addition,
SWn(IC-FEE) ≥ OPTEAIR −O

(
KH3

nξγ

)
.

5. Further Analysis
Notice that EAIR mechanisms guarantee each agent the
value of the default arm, but only in expectation. We now
propose a more strict form of individual rationality, ex-post
individual rationality (EPIR).

Algorithm 2 IC Fiduciary Explore & Exploit (IC-FEE)
1: Initialize an instance of FEE and update it after every

recommendation.
2: Recommend a1 to the first agent, observe R1.
3: if R1 < µK then recommend as GREEDY to agents

2, . . . ,K.
4: else, recommend a1 to agents 2, . . . ,K.
5: Split the remaining rounds into consecutive phases of
B rounds each.

6: for phase k = 1, . . . do
7: if FEE exploits (Line 19 in FEE) then
8: follow FEE .
9: else

10: Pick one agent l(k) from theB agents in this phase
uniformly at random, and recommend her accord-
ing to FEE.
As for the rest of the agents,

11: if an arm ai with Ri > R1 was revealed then
recommend as GREEDY.

12: else, recommend a1.

Definition 3 (Ex-Post Individual Rationality). A mechanism
M is ex-post individually rational (EPIR) if for every agent
l ∈ {1, . . . , n}, every history h ∈ (A× R+)

l−1, and every
arm ar such that PrM(h)(ar) > 0, it holds that E(Xr−X1 |
h) ≥ 0.

Satisfying EPIR means that the mechanism never recom-
mends an arm that is a priori inferior to arm a1 given the
mechanism’s knowledge. It is immediate to see that every
EPIR mechanism is also EAIR. EPIR mechanisms are quite
conservative, since they can only explore arms that yield
expected rewards of at least the value R1 obtained for a1.
We develop an optimal IC/EPIR mechanism in Section D.1.

5.1. Social Welfare Analysis

We now analyze the loss in social welfare due to individ-
ual rationality constraints. For simplicity, we consider the
case of non-strategic agents. Recall that OPT is the highest
possible social welfare, and OPTEAIR is its counterpart af-
ter imposing EAIR. In addition, let OPTEPIR and OPTDEL
denote the best asymptotic social welfare (w.r.t. some in-
stance 〈K,A, (Xi)〉 and infinitely many agents) achiev-
able by an EPIR and a delegate mechanisms, respectively.
Noticeably, for every instance 〈K,A, (Xi)〉, it holds that
OPT ≥ OPTEAIR ≥ OPTEPIR ≥ OPTDEL. In the rest of this
subsection, we analyze the ratio of two subsequent optimal
welfares. We begin by showing that individual guarantees
can deteriorate welfare even for the most flexible notion,
EAIR.

Proposition 2. For every K,H ∈ N, there exists an in-
stance 〈K,A, (Xi)〉 with OPT

OPTEAIR
≥ H

(
1− e−KH

)
.
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Proposition 2 shows that when K and H have the same
magnitude, the ratio is on the order of H , meaning that
EAIR mechanisms perform poorly when a large number of
different reward values are possible. However, this result de-
scribes the worst case; it turns out that optimal EAIR mech-
anisms have constant ratio under some reward distributions.
For example, as we show in Proposition 7 this ratio is at
most 8

7 if Xi ∼ Uni{0, 1, . . . H} for every i ∈ {2, . . . ,K}
and X1 is only slightly better a-priori.

Next, we consider the cost of adopting the stricter EPIR
condition rather than EAIR. As Proposition 3 shows, by
providing a more strict fiduciary guarantee the social welfare
may be harmed by a factor of H .

Proposition 3. For every K,H ∈ N, there exists an in-
stance 〈K,A, (Xi)〉 with OPTEAIR

OPTEPIR
≥ H+2

3

(
1− e−K−2

H

)
.

Finally, we show that the EPIR guarantee still allows us to
significantly improve upon OPTDEL.

Proposition 4. For every K,H ∈ N, there exists an in-
stance 〈K,A, (Xi)〉 with OPTEPIR

OPTDEL
≥ H

3

(
1− e−K−2

H

)
.

6. Conclusions and Discussion
This paper introduces a model in which a recommender
system must manage an exploration-exploitation tradeoff
under the constraint that it may never knowingly make a
recommendation that will yield lower reward than any indi-
vidual agent would achieve if he/she acted without relying
on the system.

We see considerable scope for follow-up work. First, from
a technical point of view, our algorithmic results are lim-
ited to discrete reward distributions. One possible future
direction would be to present an algorithm for the continu-
ous case. More conceptually, we see natural extensions of
EPIR and EAIR to stochastic settings, either by assuming
a prior and requiring the conditions w.r.t. the posterior dis-
tribution or by requiring the conditions to hold with high
probability. Moreover, we are intrigued by non-stationary
settings—where e.g., rewards follow a Markov process—
since the planner would be able to sample a priori inferior
arms with high probability assuming the rewards change
fast enough, thereby reducing regret.

Acknowledgements
We thank the participants of the Computational Data Science
seminar at Technion – Israel Institute of Technology and the
participants of Young Researcher Workshop on Economics
and Computation for their comments and suggestions. Ad-
ditionally, we thank ICML 2020 anonymous reviewers who
provided comments that improved the manuscript. The
work of G. Bahar, O. Ben-Porat and M. Tennenholtz is

funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement n◦ 740435). The work
of K. Leyton-Brown is funded by the NSERC Discovery
Grants program, DND/NSERC Discovery Grant Supple-
ment, Facebook Research and Canada CIFAR AI Chair
Amii. Part of this work was done while K. Leyton-Brown
was a visiting researcher at Technion – Israel Institute of
Science and was partially funded by the European Union’s
Horizon 2020 research and innovation programme (grant
agreement n◦ 740435).

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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2018, Montréal, Canada., pp. 1118–1128, 2018.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. In Advances
in Neural Information Processing Systems (NIPS), pp.
199–207, 2014.

http://doi.acm.org/10.1145/2940716.2940719
http://doi.acm.org/10.1145/2940716.2940719


Fiduciary Bandits

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends R© in Machine Learning, 5
(1):1–122, 2012.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge Univ Press, 2006.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. In Advances in neural information processing
systems, pp. 2249–2257, 2011.

Chen, B., Frazier, P., and Kempe, D. Incentivizing explo-
ration by heterogeneous users. In Bubeck, S., Perchet, V.,
and Rigollet, P. (eds.), Proceedings of the 31st Conference
On Learning Theory, volume 75 of Proceedings of Ma-
chine Learning Research, pp. 798–818. PMLR, 06–09 Jul
2018. URL http://proceedings.mlr.press/
v75/chen18a.html.

Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual
bandits with linear payoff functions. In Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 208–214, 2011.

Cohen, L. and Mansour, Y. Optimal algorithm for bayesian
incentive-compatible. In ACM Conf. on Economics and
Computation (EC), 2019.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
Innovations in Theoretical Computer Science conference
(ITCS), pp. 214–226. ACM, 2012.

Frazier, P., Kempe, D., Kleinberg, J., and Kleinberg, R.
Incentivizing exploration. In Proceedings of the Fif-
teenth ACM Conference on Economics and Computa-
tion, EC ’14, pp. 5–22, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2565-3. doi: 10.1145/2600057.
2602897. URL http://doi.acm.org/10.1145/
2600057.2602897.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

Hardt, M., Price, E., Srebro, N., et al. Equality of oppor-
tunity in supervised learning. In Advances in Neural
Information Processing Systems (NIPS), pp. 3315–3323,
2016.

Immorlica, N., Mao, J., Slivkins, A., and Wu, Z. S. Bayesian
exploration with heterogeneous agents, 2019.

Joseph, M., Kearns, M., Morgenstern, J. H., and Roth, A.
Fairness in learning: Classic and contextual bandits. In
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information

Processing Systems 29, pp. 325–333. Curran Associates,
Inc., 2016.

Karnin, Z., Koren, T., and Somekh, O. Almost optimal
exploration in multi-armed bandits. In International Con-
ference on Machine Learning, pp. 1238–1246, 2013.

Kremer, I., Mansour, Y., and Perry, M. Implementing the
wisdom of the crowd. Journal of Political Economy, 122:
988–1012, 2014.

Levine, N., Crammer, K., and Mannor, S. Rotting ban-
dits. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 30, pp. 3074–3083. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
6900-rotting-bandits.pdf.

Liu, L., Dean, S., Rolf, E., Simchowitz, M., and Hardt, M.
Delayed impact of fair machine learning. In International
Conference on Machine Learning, pp. 3156–3164, 2018.

Liu, Y., Radanovic, G., Dimitrakakis, C., Mandal, D., and
Parkes, D. C. Calibrated fairness in bandits, 2017.

Mansour, Y., Slivkins, A., and Syrgkanis, V. Bayesian
incentive-compatible bandit exploration. In ACM Conf.
on Economics and Computation (EC), 2015.

Nisan, N. and Ronen, A. Algorithmic mechanism design. In
Proceedings of the thirty-first annual ACM Symposium on
Theory of Computing (STOC), pp. 129–140. ACM, 1999.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V.
Algorithmic game theory, volume 1. Cambridge Univer-
sity Press Cambridge, 2007.

Slivkins, A. Contextual bandits with similarity information.
The Journal of Machine Learning Research, 15(1):2533–
2568, 2014.

http://proceedings.mlr.press/v75/chen18a.html
http://proceedings.mlr.press/v75/chen18a.html
http://doi.acm.org/10.1145/2600057.2602897
http://doi.acm.org/10.1145/2600057.2602897
http://papers.nips.cc/paper/6900-rotting-bandits.pdf
http://papers.nips.cc/paper/6900-rotting-bandits.pdf


Fiduciary Bandits

A. Omitted Proofs from Subsection 3.1
Proof of Lemma 1. The proof follows from Propositions 5 and 6 below.

Proposition 5. For every non-stationary policy π, there exists a stationary policy π′ such that for every state s ∈ S,
W (π, s) ≤W (π′, s).

Moreover, the following Proposition 6 implies that we can substantially reduce the state space by disregarding the observed
part O and

Proposition 6. For every stationary policy π there exists a stationary policy π′ such that:

1. π′(s) = π′(s′) for every pair of states s = (O,U), s′ = (O′, U) with α(O) = α(O′) and β(O) = β(O′).

2. for every state s, W (π′, s) ≥W (π, s).

Proof of Proposition 5. Fix an arbitrary non-stationary policy π. We prove the claim by iterating over all states in an
increasing order of the number of elements in U . We use induction to show that the constructed π′ indeed satisfies the
assertion.

For every s = (O,U) ∈ S such that |U | = 1, i.e., U = {a}. If s is terminal, thenAs = ∅ andW (π, s) = W (π′, s) = α(O).
Otherwise, the unique element in As is the action that assigns probability 1 to a, and by setting π′(s) = π(s) we get
W (π′, s) = W (π, s).

Assume that the assertion holds for every |U | ≤ j; namely, that W (π′, s) ≥W (π, s) for all s = (O,U) ∈ S with |U | ≤ j.
We now prove the assertion for s = (O,U) ∈ S with |U | = j + 1. If s is a terminal state, then we are done. Else, since
U and the support of each arm are finite, there exists a finite number of possible histories that lead from s0 to s that we
will mark as h1, . . . hw. For every possible history h ∈ {h1, . . . hw}, π assigns an action ph ∈ As that (can) depend on the
history h. Let

p∗ ∈ argmax
ph,h∈{h1,...,hw}

{ ∑
ai∈U

ph(ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

}
, (5)

breaking ties arbitrarily. We set π′(s) = p∗ . Hence we get:

W (π, s) =
∑

s′∈S,h∈{h1,...hw}

Pr(h)P(s′ | s, π, h)W (π, s′)

=
∑

ai∈U,h∈{h1,...hw}

Pr(h)ph(ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

≤
∑

h∈{h1,...hw}

Pr(h) arg max
h∈{h1,...,hw}

{( ∑
ai∈U

ph(ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

)}

= 1 arg max
h∈{h1,...,hw}

{ ∑
ai∈U

ph(ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

}

= arg max
h∈{h1,...,hw}

{ ∑
ai∈U

ph(ai)
∑
s′∈S
P(s′ | s,pii)W (π′, s′)

}
=
∑
ai∈U

p∗(ai)
∑
s′∈S
P(s′ | s,pii)W (π′, s′)

= W (π′, s);

hence, W (π, s) ≤W (π′, s). This concludes the proof.

Proof of Proposition 6. The proof is similar to the proof of Proposition 5, and is given for completeness. Fix an arbitrary
stationary policy π. We prove the claim by iterating over all states in an increasing order of the number of elements in U .
We use induction to show that the constructed π′ indeed satisfies the assertion.
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Algorithm 3 Optimal Policy π∗ for the GMDP
Input: an instance 〈S,A,P,R〉.
Output: an optimal policy π∗.

1: for every non-terminal state s = (O,U) ∈ S do
2: if s = s0 then
3: π∗(s)← p11.
4: else
5: π∗(s)← pi∗r∗ such that

(i∗, r∗) ∈ argmax
(i,r)∈U×U,

pir∈As

{(
1− 1i=r

2

)(
pir(i)

∑
s′∈S

P(s′|s,pii)W (π∗, s′) + pir(r)
∑
s′∈S

P(s′|s,prr)W (π∗, s′)

)}
. (7)

For every s = (O,U) ∈ S such that |U | = 1, i.e., U = {a}, if s is terminal then W (π, s) = W (π′, s) = α(O).
Otherwise, the unique element in As is the action that assigns probability 1 to a; hence, by setting π′(s) = π(s) we get
W (π′, s) = W (π, s).

Assume the assertion holds for every |U | ≤ j; namely, that W (π′, s) ≥ W (π, s) for all s = (O,U) ∈ S with |U | ≤ j.
Next, we prove the assertion for s = (O,U) ∈ S with |U | = j + 1. If s is a terminal state, then we are done. Else, since the
size of O and the support of each arm are finite, there exists only a finite number of states with the same U and α, which we
mark as s = s0 = (O,U), s1 = (O1, U), . . . sw = (Ow, U). For every state sj = (Oj , U), π assigns an action psj ∈ As.
Let

p∗ ∈ argmax
psj

,j∈{0,1,...w}

{ ∑
ai∈U

psj (ai)
∑
s′∈S
P(s′ | s,pii)W (π′, s′)

}
, (6)

breaking ties arbitrarily. Next, set π′(s) = p∗. We have that

W (π, s) =
∑
s′∈S
P(s′ | s, π)W (π, s′)

=
∑
ai∈U

ps(ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

≤ arg max
sj∈{s0,s1,...,sw}

{( ∑
ai∈U

psj (ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

)}

≤ arg max
sj∈{s0,s1,...,sw}

{( ∑
ai∈U

psj (ai)
∑
s′∈S
P(s′ | s,pii)W (π′, s′)

)}
= W (π′, s).

Proof of Theorem 1. Fix an arbitrary policy π. We prove the claim by iterating over all states in an increasing order of the
number of elements of U . We use induction to show that the constructed π∗ indeed satisfies the assertion. For convenience,
we restate π∗ elaborately in Algorithm 3.

For every s = (O,U) ∈ S such that |U | = 1, the claim holds trivially. To see this, recall that if s is terminal, As = ∅;
otherwise, the unique element in As is the action that assigns probability 1 to the sole element in U . Either way,
W (π∗, s) = W (π, s).

Assume the assertion holds for every |U | ≤ j; namely, that W (π∗, s) ≥W (π, s) for all s = (O,U) ∈ S with |U | ≤ j. If s
is a terminal state, then we are done. Else, we shall make use of the following claim, which shows that every action in As
can be viewed as a weighted sum over the elements of {pi,r ∈ As}.
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Claim 1. For any s ∈ S and p ∈ As, there exist coefficients (zi,r)(ai,ar)∈U×U such that

• zi,r ≥ 0,

•
∑

(ai,ar)∈U×U zi,r = 1, and

• p =
∑

pir∈As
zi,rpir.

The proof of the claim appears below this proof. In particular, Claim 1 suggests that π(s), which is valid and thus π(s) ∈ As
w.p. 1, can be presented as a weighted sum over all pairs pir ∈ As. Finally,

W (π, s) =
∑
s′∈S
P(s′ | s, π)W (π, s′)

=
∑
ai∈U

π(s)(ai)
∑
s′∈S
P(s′ | s,pii)W (π, s′)

=
∑
ai∈U

∑
ar∈U :pir∈As

(
1− 1i=r

2

)
(zi,rpir(i) + zr,ipri(i))

∑
s′∈S
P(s′ | s,pii)W (π, s′)

=
∑
ai∈U

∑
ar∈U :pir∈As

zi,r

(
1− 1i=r

2

)(
pir(i)

∑
s′∈S
P(s′ | s,pii)W (π, s′) + pir(r)

∑
s′∈S
P(s′ | s,prr)W (π, s′)

)

≤ arg max
ai,ar∈U,pir∈As

{(
1− 1i=r

2

)(
pir(i)

∑
s′∈S
P(s′|s,pii)W (π∗, s′) + pir(r)

∑
s′∈S
P(s′|s,prr)W (π∗, s′)

)}
,

= W (π∗, s),

where the last equality follows since π∗(s) = pi∗,r∗ and by the definition of (i∗, r∗) given in Equation (7). To sum, the
constructed π∗ satisfies W (π, s) ≤W (π∗, s) for every state s.

Proof of Claim 1. To ease readability, we shall use the notation α = α(O) and di = |α− µi| in this proof. Let s be an
arbitrary state and p ∈ As be an arbitrary action. Notice that p could be described as

p =
∑
ai∈U

vi · pii +
∑

pir∈As

zi,rpir, (8)

where vi = p(i) and zi,r = 0 for every ai, ar ∈ U such that pir ∈ As. We now describe a procedure that shifts mass from
the set (vi)i to (zi,r)i,r, while still satisfying the equality in Equation (8). Each time we apply this procedure we decrease
the value of one or more elements from (vi)i and increase one or more elements from (zi,r)i,r by the same quantity. As a
result, when it converges (assuming that it does), namely when

∑
i vi = 0, we are guaranteed that all the conditions of the

claim hold. Importantly, throughout the course of this procedure, the following inequalities hold∑
ai∈U

vi · µi ≥ α
∑
ai∈U

vi. (9)

∑
ai∈U

vi +
∑

pir∈As

zi,r = 1. (10)

For the initial set of (vi)i Equations (9)-(10) trivially hold due to the way we initialize (vi)i and since p ∈ As implies that∑
ai∈U

p(i)µi ≥ α. (11)

In each step of the procedure, we use the prime notation to denote the coefficients in the end of that step. The procedure
operates as follows:

• If vi = 0 for every ai ∈ U , the claim holds.
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• Else, if for every i such that vi > 0, µi ≥ α, then for every i with vi > 0 set z′i,i = zi,i + vi and set v′i = 0. Notice
that after this change Equations (8)–(10) still hold.

• There exists i with µi < α and vi > 0. Consequently, since Equation (9) holds, there must exist r such that µr > α
and vr > 0. We divide the analysis into three sub-cases, depending on the relation between dr

di
and vi

vr
.

1. dr
di
> vi

vr
: we replace vi, vr and zi,r with v′i , v′r and z′i,r such that v′i = 0 , v′r = vr − vi didr = vr + vi− vi

pir(i)
and

z′i,r = zi,r + vi
di+dr
dr

= zi,r + vi
pir(i)

. Clearly, after this modification the new coefficients are non-negative. To
show that Equation (8) still holds, we need to show that p(i),p(r) can be decomposed using the new coefficients.
Notice that

p(i) = vi +
∑

j:pi,j∈As

zi,jpij(i) +
∑

j:pj,i∈As

zj,ipji(i)

= v′i + vi + zi,rpir(i) +
∑

j:j 6=r,pi,j∈As

zi,jpij(i) +
∑

j:pj,i∈As

zj,ipji(i)

= v′i + vi
pir(i)

pir(i)
+ zi,rpir(i) +

∑
j:j 6=r,pi,j∈As

z′i,jpij(i) +
∑

j:pj,i∈As

z′j,ipji(i)

= v′i +

(
vi

pir(i)
+ zi,r

)
pir(i) +

∑
j:j 6=r,pi,j∈As

z′i,jpij(i) +
∑

j:pj,i∈As

z′j,ipji(i)

= v′i + z′i,rpir(i) +
∑

j:j 6=r,pi,j∈As

z′i,jpij(i) +
∑

j:pj,i∈As

z′j,ipji(i)

= v′i +
∑

j:pi,j∈As

z′i,jpij(i) +
∑

j:pj,i∈As

z′j,ipji(i).

Similarly,

p(r) = vr +
∑

j:pr,j∈As

zr,jprj(r) +
∑

j:pj,r∈As

zj,rpjr(r)

= v′r − vi +
vi

pir(i)
+ zi,rpir(r) +

∑
j:pr,j∈As

zr,jprj(r) +
∑

j:j 6=i,pj,r∈As

zj,rpjr(r)

= v′r +
vi(1− pir(i))

pir(i)
+ zi,rpir(r) +

∑
j:pr,j∈As

z′r,jprj(r) +
∑

j:j 6=i,pj,r∈As

z′j,rpjr(r)

= v′r +
vipir(r)

pir(i)
+ zi,rpir(r) +

∑
j:pr,j∈As

z′r,jprj(r) +
∑

j:j 6=i,pj,r∈As

z′j,rpjr(r)

= v′r +

(
vi

pir(i)
+ zi,r

)
pir(r) +

∑
j:pr,j∈As

z′r,jprj(r) +
∑

j:j 6=i,pj,r∈As

z′j,rpjr(r)

= v′r +
∑

j:pr,j∈As

z′r,jprj(r) +
∑

j:pj,r∈As

z′j,rpjr(r).
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As a result, Equation (8) holds. As for Equation (9), observe that∑
aj∈U

v′j · µj = v′iµi + v′rµr +
∑

j /∈{i,r},aj∈U

v′j · µj

= vrµr − viµr
di
dr

+
∑

j /∈{i,r},aj∈U

vj · µj

= vrµr + viµi − viµi − viµr
di
dr

+
∑

j /∈{i,r},aj∈U

vj · µj

= −viµi − viµr
di
dr

+
∑
aj∈U

vj · µj

≥ −viµi − viµr
di
dr

+ α
∑
aj∈U

vj

= −viµi − viµr
di
dr

+ α · vi + α · vr + α
∑

j /∈{i,r},aj∈U

vj

= −viµi − viµr
di
dr

+ α · vi +

(
α · v′r + α · vi

di
dr

)
+ α · v′i + α

∑
j /∈{i,r},aj∈U

vj

= −viµi − viµr
di
dr

+ α · vi + α · vi
di
dr

+ α
∑
aj∈U

v′j

= vi

(
−µi − µr

di
dr

+ α+ α
di
dr

)
+ α

∑
aj∈U

v′j

= vi

(
di − dr

di
dr

)
+ α

∑
aj∈U

v′j

= α
∑
aj∈U

v′j ;

hence, Equation (9) holds. Finally, vi + vr + zi,r = v′i + v′r + z′i,r while all other coefficients are left unchanged;
thus Equation (10) holds as well.

2. dr
di
< vi

vr
: the analysis is similar to the previous case and hence omitted.

3. dr
di

= vi
vr

: the analysis is similar to the first case and hence omitted.

This concludes the proof.

B. Omitted Proofs from Subsection 3.3
Proof of Proposition 1. We need to show that Inequality (3) holds for every history h. Since FEE operates in phases, it
would be convenient to divide the arguments into these three phases, according to which phase h belongs.

• Exploration phase: the recommendation is based on the action of π∗, the optimal policy of the GMDP in Subsection
3.1. If h is the empty history, then it is translated to s0, and π∗ selects a1 w.p. 1. Otherwise, due to Equation (4) the
action space of the GMDP is restricted to distributions over the unobserved arms with expectation greater or equal to
the observed value R1. As a result, in both cases Inequality (3) holds.

• Experience phase: in this phase, FEE (h) is a distribution over two arms, r̃ and i, with Rr̃ greater than the obtained
value R1 of arm a1. Further, Xi > Rr̃ with positive probability, or otherwise arm ai would have been discarded (Lines
11–13). If, in addition, µi ≥ R1, then the If sentence in Line 15 would select arm ai with probability 1, satisfying
Inequality (3). On the other hand, if µi < R1, then FEE selects arm ai w.p. Rr̃−R1

Rr̃−µi , and ar̃ with the remaining
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probability (Lines 14–19); hence expected value of FEE (h) is

µi ·
Rr̃ −R1

Rr̃ − µi
+Rr̃

(
1− Rr̃ −R1

Rr̃ − µi

)
,

which is greater or equal to R1.

• Exploit phase: in this phase FEE (h) is a deterministic selection of one arm — the most rewarding one. Since the value
of arm a1, R1 was observed before (as mentioned for the exploration phase), the arm ai∗ selected in Line 19, satisfies
Ri∗ > Ri.

B.1. Optimality

Proof of Theorem 2. To facilitate the proof, we introduce the following definitions: given a mechanism M and a history h,
we say that M is fruitless w.r.t. h if M(h) gives a positive probability to at least one observed arm ai, i 6= 1, with Ri ≤ R1,
i.e., reward that is at most R1 (notice that it implies that a1 and ai were observed). In addition, we say that a history h is
auspicious if an action with reward greater than that of a1 is observed under h.

We are ready to begin the proof. Let M be an arbitrary mechanism, and for the sake of the proof fix the number of agents,
and only consider histories of length of at most n. The proof contains three steps. In Step 1 we slightly modify M , resulting
in a new mechanism M (1) that attains a social welfare at least as high as that of M , and is still EAIR. In Step 2, we modify
M (1) to use an oracle whenever it reaches an auspicious history. As we show, the resulting mechanism, M (2) has an
improved social welfare, SW (M (2)) ≥ SW (M (1)). Finally, in Step 3 we show that the social welfare of M (2) is at most
W (π∗, s0).

Step 1: In this step we construct a modification of M with at least the same social welfare, which is not fruitless on any
history h. We define a mechanism M (1) that receives M as a black box and uses it for recommendations. M (1) is defined as
follows:

1. Let h̃ be the empty history. Act as M(h̃) and update h̃ accordingly.

2. While the length of h̃ is less than n:

2.1 Draw ai ∼M(h̃). If the reward of ai was already observed andRi ≤ R1, recommend a1 and set h̃ = h̃⊕(ai, Ri).
Else, act as M(h̃) and update h̃ accordingly.

It is straightforward to see that M (1) satisfies the EAIR condition, and that SW (M (1)) ≥ SW (M).

Step 2: In this step, we present a non-feasible mediator M (2) that modifies the way M (1) operates on auspicious histories.
M (2) uses an oracle that hints the best arm.

More concretely, M (2) is defined as follows:

1. Let h̃ be the empty history. Act as M (1)(h̃) and update h̃ accordingly.

2. While h̃ is not auspicious:

2.1 Act as M (1)(h̃) and update h̃ accordingly.

3. If h̃ is auspicious:

3.1 Use an oracle to reveal the best arm, a∗. From here on, recommend a∗ to all users.

Notice that M (2) is EAIR for every non-auspicious history, but not EAIR in general; for this reason, it is not feasible.
Moreover, it holds that SW (M (2)) ≥ SW (M (1)).
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Step 3: The final step is to claim that the resulting mechanism M (2) cannot get more than the optimal value of the GMDP
in Section 3. However, the GMDP does not allow selecting a1, so we have to have some minor modifications.

This step is structured as follows. First, formally define a modified version of the GMDP presented in Section 3, with
minor modifications. We call the new GMDP Repeated GMDP, or R-GMDP for abbreviation to distinguish between the
two. Then, we show that the best achievable value in the R-GMDP is exactly W (π∗, s0). The final step is mapping M (2)

obtained in Step 2 to a non-stationary strategy in the R-GMDP, which achieves at least as as the social welfare of M (2), that
is SW (M (2)). The claim then follows since the policy constructed using M (2) cannot obtain more that W (π∗, s0).

Consider the following R-GMDP: 4

• S is a finite set of states. Each state s is a pair (O,U), where O ⊆ {(a, c) | a ∈ A, c ∈ H} is the set of arm–reward pairs
that have been observed so far. U ⊆ A is the set of arms not yet explored. The initial state is thus s0 = (∅, A). For every
non-empty set of pairs O we define α(O) to be the reward observed for arm a1 (that can be obtained several times, as we
explain shortly), and β(O) = maxc:∃a,(a,c)∈O c to be the maximal reward observed.

• A =
⋃
s∈S As is an infinite set of actions. For each s = (O,U) ∈ S, As is defined as follows:

1. If s = s0, then As0 = ∆({a1}): i.e., a deterministic selection of a1.
2. Else, if α(O) < β(O), then As = ∅.
3. Otherwise, As is a subset of ∆(U ∪ {a1}), such that p ∈ As if and only if∑

ai∈U∪{a1}

p(ai)µai ≥ α(O).

We denote by ST the set of terminal states, namely ST = {s ∈ S | As = ∅}.

• P is the transition probability function. Let s = (O,U) ∈ S, and let s′ = (O′, U ′) such that O′ = O ∪ {(ai, c)} and
U ′ = U \ {ai} for some ai ∈ U ∪ {a1}, c ∈ [H]+.

Then, the transition probability from s to s′ given an action p is defined by

P(s′|s,p) =

{
p(ai) Pr(Xi = c) ai ∈ U
1c=α(O) ai = a1

.

If s′ is some other state that does not meet the conditions above, then let P(s′|s,p) = 0 for every p ∈ As.

• R : ST → R is the reward function, defined on terminal states only. For each terminal state s = (O,U) ∈ ST ,

R(s) =

{
α(O) α(O) = β(O)

E
[
max

{
β(O),maxai′∈U Xi′)

}]
α(O) < β(O).

.

Next, we prove that there exists an optimal policy for the R-GMDP with a significantly reduced support.

Lemma 3. For every policy π for R-GMDP, there exists a stationary policy π′ such that

1. π′(s) = π′(s′) for every pair of states s = (O,U) and s′ = (O′, U) with α(O) = α(O′) and β(O) = β(O′).

2. For every state s, W (π′, s) ≥W (π, s).

The proof of the lemma is identical to the proof of Lemma 1 and hence omitted. Lemma 3 suggests that we can focus on
strategies that distinguish between states based on U,α(O) and β(O) solely. The reduced state space does allows self loop
by selecting a1, without having any effect on the reward. It is thus straightforward to see that an optimal strategy that ignores
a1 exists, with a reward of exactly W (π∗, s0).

4The crucial difference between R-GMDP and GMDP is in the action space and the transition probabilities, colored in red for
readability.
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Notice that M (2) defines a non-stationary policy π for the R-GMDP, by mimicking the actions (distributions) π selects.
When M (2) gets to an auspicious history or could not explore anymore, the policy π gets to a terminal state and obtains a
reward. Each time M (2) directs an agent, that agent gets at most the maximal reward M (2) discovered; hence, SW (M (2))
is less or equal to the reward obtained by that non-stationary policy π, which is at most W (π∗, s0).

This completes the proof of the theorem.

Proof of Lemma 2. Let N1, N2 denote the r.v. representing the number of agents in the explore and experience phases,
respectively. Notice that the definition of social welfare given in Equation 2 can be interpreted as

SW (FEE) =
1

n

(
E

(
N1+N2∑
l=1

XM(hl)

)
+ E

(
n∑

l′′=N1+N2+1

XM(hl′′ )

))
. (12)

Observe that every agent in the explore and experience phases obtains the reward of arm a1 in expectation. Moreover, every
agent in the exploit phase obtains W (π∗, s0) in expectation; hence, Equation (12) can be rearranged as

SW (FEE) =
1

n

(
E

(
N1+N2∑
l′=1

X1

)
+ E

(
n∑

l′′=N1+N2+1

W (π∗, s0)

))

=
1

n
(µ1 E (N1 +N2) +W (π∗, s0)E (n−N1 −N2))

= W (π∗, s0)− 1

n
E (N1 +N2) (W (π∗, s0)− µ1).

To finalize the proof, recall that N1 ≤ K almost surely since there are K arms that could be explored, and on every step in
the exploration phase exactly one arm gets explored. Moreover, due to Observation 3 it holds that E(N2) ≤ KH; hence,

SW (FEE) ≥W (π∗, s0)− 1

n
(K +KH) (W (π∗, s0)− µ1).

C. Omitted Proofs from Section 4
Proof of Theorem 3. It is immediate to see that IC-FEE is EAIR. Satisfying EAIR follows from mixing FEE, which is
EAIR, with GREEDY, which satisfies the delegate property and hence also the EAIR constraint, and recommendations of a1.

Moreover, IC-FEE is asymptotically optimal since, after finitely many agents, its recommendations will coincide with those
of FEE, and FEE is asymptotically optimal. While IC-FEE is not exploiting (Line 7), its recommendations coincide with
those of FEE at least once per phase. Since the expected exploration time of FEE is O

(
KH2

n

)
(see Lemma 2), IC-FEE

explores for O
(
BKH2

n

)
rounds in expectation.

Showing that IC-FEE satisfies IC is trickier. We divide the analysis to several parts:

• The first agent gets a1, which is the a-priori best action.

• Agents 2, . . . ,K either get recommendations from GREEDY (Line 3) or are recommended a1 (Line 4). In the former,
agents get the best arm known to the mechanism. In the latter, the only new information agents could learn is that
X1 ≥ µK ; thus, for every aj 6= a1 it holds that

E(X1 −Xj | X1 ≥ µK)
iid
≥ E(X1 −Xj) ≥ 0.

Agents cannot know if they are being recommended by Line 3 or Line 4, but in both cases they are better off with
accepting the recommendation; hence, IC holds for agents 2, . . . ,K.
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• Agents K+ 1, . . . , n, and the recommended arm is a1. This case might be trivial at first glance, but it is not as innocent.
IC-FEE can recommend a1 via Lines 8 and 12. In both cases, we know that a1 is the best among all the explored arms.
Nevertheless, there could still be unexplored arms with an expected value greater than R1. One such scenario is when
R1 revealed by the first agent yielded µ2 ≤ R1 ≤ µ3. In this case, IC-FEE recommends agent K + 1, assuming that
she was not selected to be the exploring agent, arm a1. Nevertheless, according to IC-FEE’s information at that point,
arm a2 is the best arm. Recommending a2 greedily might disallow the mechanism to explore more arms using the
mixture FEE employs, which leads to sub-optimal social welfare.

Nevertheless, we will show that IC holds in this case as well. Fix an agent l and some phase k, and assume IC-FEE
recommended agent l arm a1. Let ElO denote the event indicating that O ⊆ A arms where observed just before agent l
arrives, and X1 ≥ Xi for every ai ∈ O. Clearly, agent l does not know whether ElO occurs or not, but she can compute
the occurrence probability. We have that

E(X1−Xj |M=a1)=E(X1−Xj |X1>µ2)Pr(X1>µ2)+
∑
O⊆A

E(X1−Xj |X1≤µ2,E
l
O)Pr(X1≤µ2,E

l
O). (13)

In addition,
E(X1 −Xj | X1 ≤ µ2, E

l
O) ≥ E(X1 −Xj | X1 ≤ µ2).

This inequality follows immediately if aj ∈ O. Otherwise, if aj /∈ O, due to the i.i.d. assumption,X1 −Xj could only
increase conditioning on ElO; hence,

Eq.(13)≥E(X1−Xj |X1>µ2)Pr(X1>µ2)+E(X1−Xj |X1≤µ2)Pr(X1≤µ2).

=E(X1−Xj |M=a1)≥0.

We conclude that agents K + 1, . . . , n follow IC-FEE when it recommends a1.

• Agents K + 1, . . . , n, and the recommended arm is ai 6= a1. Fix an agent l and some phase k, and assume IC-FEE
recommended agent l arm ai 6= a1. We need to show that for every aj , it holds that E [Xi −Xj |M = ai] ≥ 0. Due
to Assumption 1, there exists ξ > 0, γ > 0 such that

∀i ∈ [K] : Pr(∀i′ ∈ [K] \ {i} : µi −Xi′ > ξ) > γ.

In words, Assumption 1 guarantees that with positive probability γ, all arms but i have a reward that is less than µi by
at least ξ. Denote this event by 1ai . If 1ai occurs, we are guaranteed that arm ai will be explored in Line 3. Moreover,
denote by 1l,exp the event that agent l is the agent selected by IC-FEE to explore in Line 10. We have that

E[Xi−Xj |M=ai]=E[Xi−Xj |M=ai,1l,exp]Pr(1l,exp)+E
[
Xi−Xj |M=ai,1l,exp

]
Pr(1l,exp)

≥−H
B

+E
[
Xi−Xj |M=ai,1l,exp,1ai

]
Pr(1l,exp,1ai)+E

[
Xi−Xj |M=ai,1l,exp,1ai

]︸ ︷︷ ︸
≥0

Pr(1l,exp,1ai)

≥−H
B

+
ξγ(B−1)

B
, (14)

and the latter is non-negative if B ≥ H
ξγ + 1.

Overall, we showed that every agent is better off by accepting IC-FEE’s recommendation; hence, IC-FEE is IC.

D. Omitted Proofs and Claims from Section 5
D.1. Ex-Post Individual Rationality

Notice that EAIR mechanisms guarantee each agent the value of the default arm, but only in expectation. We now propose a
more strict form of individual rationality, ex-post individual rationality (EPIR).

Definition 4 (Ex-Post Individual Rationality). A mechanism M is ex-post individually rational (EPIR) if for every agent
l ∈ {1, . . . , n}, every value R1 in the support of X1, every history h = (h1, . . . , hl−1) ∈ (A× R+)

l−1, and every arm ar
such that Pr(M(h) = r) > 0, it holds that E(Xr | h) ≥ R1.
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Algorithm 4 IC EPIR Explore & Exploit (IC-EP-FEE)
1: Initialize an instance of MEPIR and update it after every recommendation.
2: Recommend as GREEDY to agents 1, 2, . . . ,K.
3: Split the remaining rounds into consecutive phases of B rounds each.
4: for phase k = 1, . . . do
5: if MEPIR exploits then
6: follow MEPIR
7: else
8: Pick an agent l(k) from the B agents in this phase uniformly at random.
9: Every agent in this phase is recommended as GREEDY, except agent l(k) who is recommended according to MEPIR.

Satisfying EPIR means that the mechanism never recommends an arm that is a priori inferior to arm a1. Noticeably, every
EPIR mechanism is also EAIR, yet EPIR mechanisms are quite conservative, since they can only explore arms that yield
expected rewards of at least the value R1 obtained for a1.

An optimal EPIR mechanism is immediate in case of non-strategic agents; we denote by MEPIR this intuitive mechanism.
First, explore arm a1, and observe R1. Then, remove all arms ar with µr < R1, and name the obtained set A′. Then,
proceed with FULL-EXPLORATION on A′ ∪ {a1}.

For the case of strategic agents, MEPIR is not enough: agents might be reluctant to explore arms with a-priori low rewards.
We propose IC-EP-FEE, which is an asymptotically optimal IC and EPIR mechanism. IC-EP-FEE relies on the same
technique we use in Section 4 and is outline in Algorithm 4.

Theorem 4. Let the phase length be B =
⌈
H
ξγ

⌉
+ 1. Under Assumption 1, IC-EP-FEE satisfies EPIR and IC. In addition,

SWn(IC-FEE) ≥ OPTEPIR −O
(
KH3

nξγ

)
.

The proof of Theorem 4 is similar to that of Theorem 3, and is hence omitted.

D.2. Omitted Proofs from Subsection 5.1

Proof of Proposition 2. Let X1 be such that Pr(X1 = 1) = 1, and for every i such that 2 ≤ i ≤ K let

Xi =

{
0 w.p. 1− 1

H + ε

H w.p. 1
H − ε

,

for a small positive constant ε. Clearly, µ1 = 1 while µi < 1 for 2 ≤ i ≤ K; hence, OPTEAIR = 1. On the other hand,

OPT = E( max
1≤i≤K

Xi) = Pr( max
2≤i≤K

Xi = H)H + Pr( max
2≤i≤K

Xi = 0) · 1

=

(
1− (1− 1

H
+ ε)K−1

)
H + (1− 1

H
+ ε)K−1.

Taking ε to zero, we get that OPT is arbitrarily close to(
1− (1− 1

H
)K−1

)
H + (1− 1

H
)K−1 = H

(
1− (1− 1

H
)K
)
.

Finally, we use the fact that e−x ≥ (1 − x
n )n whenever |x| ≤ n. By setting n = K and x = K

H , we conclude that
e−

K
H ≥ (1− 1

H )K ; therefore,
OPT

OPTEAIR
≥ H

(
1− e−KH

)
.
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Proof of Proposition 3. Let X1, X2, . . . XK such that

X1 =

{
1 w.p. 1− 1

H−1 − ε
H w.p. 1

H−1 + ε
, X2 =

{
2 w.p. 1 , ∀3 ≤ i ≤ K : Xi =

{
0 w.p. 1− 1

H + ε

H w.p. 1
H − ε

.

It holds that

OPTEPIR = H

(
1

H − 1
+ ε

)
+ 2

(
1− 1

H − 1
− ε
)
.

On the other hand,

OPTEAIR = H

(
1

H − 1
+ ε

)
+ 2

(
1− 1

H
+ ε

)K−2
+H

(
1−

(
1− 1

H
+ ε

)K−2)
.

Taking ε to zero, we get

OPTEAIR

OPTEPIR
=
H
(

1
H−1

)
+ 2

(
1− 1

H

)K−2
+H

(
1−

(
1− 1

H

)K−2)
3− 1

H−1

≥
(H + 2)

(
1−

(
1− 1

H

)K−2)
3

≥ H + 2

3

(
1− e−

K−2
H

)
.

Proof of Proposition 4. Let X1, X2, . . . XK such that

X1 =

{
0 w.p. 1

2 − ε
2 w.p. 1

2 + ε
, X2 =

{
1 w.p. 1 , ∀3 ≤ i ≤ K : Xi =

{
0 w.p. 1− 1

H + ε

H w.p. 1
H − ε

.

For ε→ 0. It holds that OPTDEL = 1
2 · 2 + 1

2 · 1 = 1.5. On the other hand,

OPTEPIR =
1

2
· 2 +

1

2
·
(

1(1− 1

H
)K−2 +H · (1− (1− 1

H
)K−2)

)
≤ 1 +

H

2

(
1− e−

K−2
H

)
;

thus, OPTEPIR
OPTDEL

≥ H
3

(
1− e−K−2

H

)
.

Proposition 7. Fix K,H ∈ N. Let Xi ∼ Uni[H]+, and let X1 =

{
Uni[H]+ w.p. 1− ε
H w.p. ε

for arbitrarily small ε > 0. It

holds that OPT
OPTEAIR

≤ 8
7 +O(ε).

Proof of Proposition 7. Assume for simplicity that H is even. First, by simple probability tricks one can show that

OPT = E( max
1≤i≤K

Xi) = (1− ε) K

K + 1
H + εH =

K

K + 1
H +O(ε).

Second, since E(X1) > E(Xi) for every i ∈ {2, . . .K}, any EAIR mechanism must explore X1 first. Notice that
max2≤i≤K µi = H

2 ; thus,

OPTEAIR = Pr(X1 >
H

2
)E(X1 | X1 >

H

2
) + Pr(X1 ≤

H

2
)E( max

1≤i≤K
Xi | X1 ≤

H

2
)

≥ 1− ε
2

3H

4
+ εH +

1

2
E( max

2≤i≤K
Xi)

=
3H

8
+

1

2

K − 1

K
H +O(ε).
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By taking ε to zero and applying standard manipulations, we obtain

OPT
OPTEAIR

≤ K2

7
8K

2 + 3
8K −

1
2

.

This term attains 16
15 for K = 2 and is monotonically increasing for K ≥ 3; hence, the claim is proven by taking K to

infinity.

E. Incentive Compatible Mechanism for Strategic Agents and Uniform Arrival
In this section, we consider strategic agents and uniform arrival. Formally, we assume that the n agents arrive in a random
order, σ : {1, . . . , n} → {1, . . . , n}, where σ is selected uniformly at random from the set of all permutations. We show
that FEE satisfies IC as is, assuming that there are sufficiently many agents. We introduce the following quantity δ. Let
δi = Pr(∀i′ ∈ [K] \ {i} : Xi > Xi′). In words, δi is the probability that arm ai is superior to all other arms. Clearly, if
Assumption 1 holds, δi > 0 for every arm i ∈ [K]. In addition, let δ = mini∈[K] δi. Lemma 4 implies that if there are
poly(H,K, 1δ ) agents, then FEE is IC.

Lemma 4. Under Assumption 1 and uniform arrival, if n ≥ 24H2

δ max
{
K,H ln 4H

δ

}
, then FEE is IC.

Proof of Lemma 4. To prove the statement, we need to show that whenever an agent is recommended arm ar, her best
response is to select arm ar. We focus on an arbitrary agent, and present the analysis from her point of view. In addition,
if r = 1, either she is the first agent to arrive at the system or no better arm was discovered, resulting in a1 being a best
response. Otherwise, r 6= 1. We define the following events: let Errec be the event indicating that FEE recommends arm ar
to the agent; Eropen indicates whether arm ar was recommended to some agent; and Eropt indicates whether ar is an optimal
arm. All of these events are defined w.r.t. the distribution over histories and the agent arrival distribution. Due to the uniform
arrival distribution, the probability of Errec matches the proportion of agents who are recommended arm ar. We proceed by
analyzing the odds of being recommended ar. Due to the definition of ε and the way FEE works when it observed a superior
arm,

Pr
(
Eropt | Eropen

)
≥ δ, Pr

(
Eropt | Eropen

)
≤ 1− δ. (15)

Next, we present a lemma that gives a large deviation bound on the number of agents needed for the experience phase.

Lemma 5. Let Q(ε) = max{2KH, 2H2 ln 1
ε }. The experience phase terminates after Q(ε) agents w.p. of at least 1− ε.

The proof of Lemma 5 and other claims we use in this lemma appear just after the end of this proof. For simplicity, denote
Q = Q(ε). Conditioning on Eropen, arm ar is either recommended exactly once (in case its reward is observed to be inferior
to another arm during the execution), or several times. The latter can only happen if Rr > R1 and arm ar is used by FEE to
explore other, unobserved arms. In this case, Lemma 5 implies that would not happen more than Q times, w.h.p. As a result,

Pr(Errec | Eropt, Eropen) ≤ (1− ε)Q+ 1

n
+ ε

n

n
≤ Q+ 1 + εn

n
. (16)

Moreover,

Observation 1. For every history h such that Eropt, E
r
open occur, if FEE already reached the exploit phase (Line 19) under

h, then Pr(FEE(h) = ar) = 1.

Due to Observation 1, we also conclude that

Pr(Errec | Eropt, Eropen) ≥ (1− ε)n−Q−K
n

. (17)

We now analyze the ratio between the probability of arm ar being optimal and the probability that it is not, given Errec. We
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have

Pr(Eropt | Errec, Eropen)

Pr(Eropt | Errec, Eropen)
=

Pr(Errec,E
r
opt,E

r
open)

Pr(Errec,E
r
open)

Pr(Errec,E
r
opt,E

r
open)

Pr(Errec,E
r
open)

=
Pr(Errec, E

r
opt, E

r
open)

Pr(Errec, E
r
opt, E

r
open)

(18)

=
Pr(Eropen) Pr(Eropt | Eropen) Pr(Errec | Eropen, Eropt)
Pr(Eropen) Pr(Eropt | Eropen) Pr(Errec | Eropen, Eropt)

.

Applying the bounds from Equations (15),(16) and (17) to Equation (18), we get

Pr(Eropt | Errec, Eropen)

Pr(Eropt | Errec, Eropen)
≥
δ(1− ε)n−Q−Kn

(1− δ)Q+1+εn
n

,

and by rearranging we obtain

Pr(Eropt | Errec, Eropen) ≥ Pr(Eropt | Errec, Eropen)
δ(1− ε)(n−Q−K)

(1− δ)(Q+ 1 + εn)
. (19)

Next, we bound the expected difference between the reward of arm ar and that of an arbitrary arm ai, with i 6= r. We have

E(Xr −Xi | Errec) = E(Xr −Xi | Errec, Eropen)

= E(Xr −Xi | Errec, Eropen, Eropt) Pr(Eropt | Errec, Eropen) (20)

+ E(Xr −Xi | Errec, Eropen, Eropt) Pr(Eropt | Errec, Eropen)

≥ 1 · Pr(Eropt | Errec, Eropen)−H · Pr(Eropt | Errec, Eropen).

By plugging in the bound obtained in Equation (19) to Equation (20) we get

E(Xr −Xi | Errec) ≥ Pr(Eropt | Errec, Eropen)

(
δ(1− ε)(n−Q−K)

(1− δ)(Q+ 1 + εn)
−H

)
. (21)

Ultimately, since

Observation 2. Let ε = δ
4H and Q = max{2KH, 2H2 ln 4H

δ }. If n ≥ 6HQ
δ , it holds that

δ(1− ε)(n−Q−K)

(1− δ)(Q+ 1 + εn)
≥ H.

The proof is completed by combining Observation 2 with Equation (21) to show that E(Xr −Xi | Errec) ≥ 0 for every arm
ai.

Proof of Lemma 5. Let Z denote the number of agents receiving recommendations in the experience phase (Lines 16
and 18). The proof is based on two observations: first, we show that Z is first-order stochastically dominated by an
easy-to-analyze random variable. Then, we use a concentration bound to complete the proof.

Observation 3. For every z ∈ N,

Pr

(
NBin(K,

1

H
) ≥ z

)
) ≥ Pr(Z ≥ z).

Moreover, using Hoeffding’s inequality we have

Claim 2. Let ε > 0, K,H ∈ N, and let Q = max{2KH, 2H2 ln 1
ε } . It holds that

Pr

(
NBin(K,

1

H
) ≥ Q

)
≤ ε.
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By combining Observation 3 and Claim 2, we get

Pr(Z ≥ Q) ≤ Pr(NBin(K,
1

H
) ≥ Q) ≤ ε

This completes the proof of this lemma.

Proof of Observation 1. To see why Observation 1 holds, recall that if Eropen occurs, then FEE revealed Rr. Moreover,
reaching Line 19 suggests that the experience phase is over; therefore, the rewards of all arms are revealed. Finally, since
Eropt holds, FEE will pick it with probability 1.

Proof of Observation 2. First, notice that ε < 1
2 and Q > K; thus,

δ(1− ε)(n−Q−K)

(1− δ)(Q+ 1 + εn)
≥

δ
2 (n− 2Q)

(2Q+ εn)
. (22)

It suffices to show that the right-hand side of Equation (22) is greater or equal to H . Now,

δ
2 (n− 2Q)

(2Q+ εn)
≥ H ⇔ δ

2
(n− 2Q) ≥ H(2Q+ εn)⇔ δn

2
− δQ ≥ 2HQ+ εHn

⇔ δn

2
− εHn ≥ 2HQ+ δQ⇔ n

(
δ

2
− εH

)
≥ 2HQ+ δQ⇔ n ≥ Q(2H + δ)(

δ
2 − εH

) . (23)

Inserting the values of ε and Q, we argue that the statement holds as long as

n ≥
max{2KH, 2H2 ln 4H

δ }(2H + δ)(
δ
2 −

δ
4HH

) =
4 max{2KH, 2H2 ln 4H

δ }(2H + δ)

δ
. (24)

To conclude the proof, recall that n ≥ 12HQ
δ ; hence

n ≥
12H max{2KH, 2H2 ln 4H

δ }
δ

≥
4 max{2KH, 2H2 ln 4H

δ }(2H + δ)

δ
;

thus, Equation (24) holds.

Proof of Claim 2. First, observe that

Pr

(
NBin(K,

1

H
) ≥ Q

)
= Pr

(
Bin(Q,

1

H
) ≤ K

)
. (25)

Next, notice that k ≤ Q
2H ; thus,

Eq.(25) ≤ Pr

(
Bin(Q,

1

H
) ≤ Q

2H

)
. (26)

By using the multiplicative version of the Chernoff Bound, we get that

Eq.(26) ≤ e−
Q

2H2 . (27)

Recall that Q ≥ 2H2 ln 1
ε ; therefore,

e−
Q

2H2 ≤ e−
2H2 ln 1

ε
2H2 = ε.

Proof of Observation 3. The exploration phase of FEE is based on π∗. Once π∗ reaches a terminal state, there are two
options:
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• The terminate state exhibits β = R1. In this case, the statement of the If sentence in Line 7 is false, and there is no
need for experience. Consequently, Z = 0 w.p. 1 and the statement holds.

• The terminate state exhibits β > R1. In this case, FEE enters the While loop in Line 8. In each iteration of the While
loop, either the size of U decreases by 1 (Lines 12 and 16), or stays the same (Line 18). The statement in Line 18 will
only execute if the arm ai selected in Line 10 satisfies µi < R1, otherwise the If condition in Line 15 would execute;
hence, the probability of executing Line 18 is bounded by

Pr

(
Uni(0, 1) ≥ Rĩ −R1

Rĩ − µi

)
≤ Pr

(
Uni(0, 1) ≥ 1

H

)
= 1− 1

H
.

This applies for every iteration of the While loop. Recall that there are at most K − 2 arms needed to be explored, and
hence the statement holds.

E.1. The Full Exploration Mechanism

Proposition 8. Under Assumption 1 and uniform arrival, FULL-EXPLORATION is IC and asymptotically optimal.

Proof of Proposition 8. Asymptotic optimality is straightforward. The proof of being IC goes along the lines of Theorem 4
and hence omitted.

F. Elaborated Example of FEE
In this section, we provide an elaborated example of the way FEE operates. Consider K = 4 arms, H = 40 and
X1 ∼ Uni{0, . . . 40}, X2 ∼ Uni{0, . . . 30}, X3 ∼ Uni{0, . . . 20}, X4 ∼ Uni{0, . . . 10}; thus µ1 = 20, µ2 = 15,
µ3 = 10, and µ4 = 5. As always, a1 is the default arm. Let us assume for the sake of this example that X =
(X1, X2, X3, X4) = (6, 3, 7, 2), but these values are not known to the algorithm. We illustrate π∗ in Figure 1, obtained
from a simple Python program.

Nodes with a square frame are associated with states of the GMDP. The leaves are terminal states, and the intermediate
nodes are non-terminal. Blue circled nodes are auxiliary, and separate between values the newly observed arm can take. The
outgoing edges from each non-terminal white node are the transition probabilities. For instance, in v1, the outgoing edges
are p2,4(2) and p2,4(4), hinting that the action taken in v1 is p2,4.

The colored leaves represent terminal states. Green leaves are terminal states where the policy revealed an arm with a value
greater than R1, i.e., β > R1 (see Line 7 in FEE). Yellow leaves are terminal states in which π∗ reveals all the rewards, but
those are less or equal to R1. And the red node, v3 refers to the terminal state in which a2, a3 were explored and R2, R3

were less or equal to R1, and a4 was not explored. Notice that v5 and v11 are associated with the same state, and since π∗ is
stationary, their sub-trees are identical. Per our assumption on X , the GMDP will reach one of the leaves in {v4, v7, v13},
depending on the coin flips. To illustrate, we assume that π∗ reached v4 and explain the trajectory.

The root of the tree, v0, denotes the initial state s0. Due to the construction of the optimal policy π∗, it will always explore
a1 in the first round (level 0 of the tree in Figure 1); thus, FEE recommends the first agent a1, and observes that R1 = 6
(recall we assume the rewards are according to X). The GMDP then transitions to v1. At v1, π∗ picks p2,4. FEE then draw
coins (Line 4), which realized with a2 (since we assume the leaf v4 was realized eventually), and selects a2 for the second
agent. The value of R2 = 3 is then observed, and the GMDP moves v2. π∗ picks p3,4, FEE draw coins (Line 4), which
realized with a3, and selects a2 for the second agent. The value of R3 = 7 is realized, and the GMDP reaches v4, which
is a terminal state. FEE exists the while loop in Line 3. FEE then enters the if statement of Line 7, since it observe that
β = R3 > R1. At this point, the set of unobserved arms U is {a4}, and so FEE enters the while loop in Line 8. In Line 9, it
sets ar̃ = a3, following by setting ai = a4 in the subsequent line. Since there is a positive probability that X4 > R3, FEE
skips the if block in Line 11.

Then, in Line 14, FEE draws Y ∼ Uni[0, 1]. Since µ4 = 5 ≤ 6 = R1, the second condition of the if block in Line 15
does not hold; hence, the only way to enter the if block in Line 15 is by having Y ≤ R3−R1

R3−µ4
= 7−6

7−5 = 0.5. If Y > 0.5,
FEE moves to Line 18, recommends a3 to the fourth agent, and starts another iteration of the while loop in Line 8. With
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v0 : U = {a1, a2, a3, a4}

v1 : {a2, a3, a4}, α = β = 6

v2 : {a3, a4}, α = β = 6

v3 v4 v5 : {a3}, α = β = 6

v6 v7

v8

v9 v10 : {a2, a3}, α = β = 6

v11 : {a3}, α = β = 6

v12 v13

v14

v15

...

p1,1(1)

R1 = 6

p2,4(2)

R2 ≤ 6

p3,4(3)

R3 ≤ 6 R3 > 6

p3,4(4)

R2 ≤ 6

p3,3(3)

R3 ≤ 6 R3 > 6

R4 > 6

R2 > 6

p2,4(4)

R4 ≤ 6

p2,2(2)

R2 ≤ 6

p3,3(3)

R3 ≤ 6 R3 > 6

R2 > 6

R4 > 6

R1 6= 6

Figure 1. Visualization of π∗ obtained for the example in Section F. The right child of v0 encapsulates the sub-tree of the policy for
R1 6= 6.

probability 1, after finitely many agents, FEE will draw Y ≤ 0.5. Then, it will recommend a4 in Line 16, and observe R4.
In Line 17, U becomes the empty set. FEE will then exit the while loop in Line 8, move to Line 19, and every subsequent
agent will exploit—FEE will recommend a3 from then on.


